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Abstract: To date, several methods have been explored for the challenging task of cross-language
speech emotion recognition, including the bag-of-words (BoW) methodology for feature processing,
domain adaptation for feature distribution “normalization”, and data augmentation to make machine
learning algorithms more robust across testing conditions. Their combined use, however, has yet to
be explored. In this paper, we aim to fill this gap and compare the benefits achieved by combining
different domain adaptation strategies with the BoW method, as well as with data augmentation.
Moreover, while domain adaptation strategies, such as the correlation alignment (CORAL) method,
require knowledge of the test data language, we propose a variant that we term N-CORAL, in which
test languages (in our case, Chinese) are mapped to a common distribution in an unsupervised
manner. Experiments with German, French, and Hungarian language datasets were performed, and
the proposed N-CORAL method, combined with BoW and data augmentation, was shown to achieve
the best arousal and valence prediction accuracy, highlighting the usefulness of the proposed method
for “in the wild” speech emotion recognition. In fact, N-CORAL combined with BoW was shown to
provide robustness across languages, whereas data augmentation provided additional robustness
against cross-corpus nuance factors.

Keywords: cross-language speech emotion recognition; bag of audio words; modulation spectrum;
domain adaptation; data augmentation

1. Introduction

Speech emotion recognition (SER) is an emerging field in affective computing that, as
the name suggests, has as its goal the detection or characterization of a speaker’s emotional
states based on analysis of the speech signal alone. SER can have applications across a
wide range of domains, from call centers, to smart cars, healthcare, and education, to name
a few. Emotion-aware human–machine interfaces are starting to emerge in the market
via start-ups, such as audEERING, Nemesysco, Nexidia, and Emospeech. “In the wild”
SER, however, is still very challenging as there are a number of parameters that can vary
between training and testing conditions, including but not limited to the types of emotions
collected, labeling schemes, sampling rates, environmental conditions, microphone settings,
and speakers, as well as spoken languages and cultural background, just to name a few.
These cross-corpus changes are known to severely hamper SER performance [1–4].

While many studies have explored the issue of cross-corpus SER (e.g., [1,2,5–7]), in
this paper, we focus on the mismatch due to different languages. Commonly, cross-lingual
emotion prediction has relied on three methods: feature normalization [3,6,8–10], domain
adaptation (DA) [8,11,12], or transfer learning [2,4,13,14]. We pay particular attention
to domain adaptation methods, which have seen great success in computer vision tasks
(e.g., [15]) but are still under-explored in SER tasks. Domain adaptation improves the
generalization of the SER system by minimizing the distribution shift between the source
(training) and target (testing) data, including shifts due to varying languages. DA separates
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the two domains via measures of maximum mean discrepancy, correlation distances, or
even by creating a shared representation of the source and target data [16].

Alternately, bag-of-word (BoW) [17] and data augmentation methodologies [18,19]
have also been explored as ways to remove cross-corpus biases. BoW has been used for text-
based sentiment analysis, as well as multimodal emotion recognition systems [20,21], and
was recently explored for cross-lingual SER tasks [17,19]. Data augmentation, in turn, has
been shown to provide some robustness against cross-corpus mismatches, including cross-
language mismatches [18]. While DA, BoW, and data augmentation have been explored
individually for cross-language SER tasks in the past, their combinations have yet to be
explored. This paper aims to fill this gap, and experiments with SER tasks in German,
Hungarian, Chinese, and French are performed. In particular, in this paper, the following
contributions are made:

1. We explore the combination of DA and BoW for improved cross-language SER. Exper-
iments with the BoW methodology before or after domain adaptation are performed
to assess their advantages/disadvantages. Different DA methods are explored to
gauge their effects on overall cross-language SER. In particular, the CORAL [22], and
Subspace alignment-based domain adaptation (SA-DA) are compared.

2. A variant of the CORAL method is proposed for cross-language SER. The method,
termed N-CORAL, makes use of a third unseen unlabeled dataset/language to adapt
both domain and source data, in essence normalizing both training and test datasets
to a common distribution, as typically done with domain generalization.

3. Lastly, we explore the added benefits of data augmentation, on top of BoW and DA,
for cross-language SER.

The remainder of this paper is organized as follows: Section 2 describes related
literature in cross-language SER, multilingual training, and data augmentation for SER,
DA, and domain generalization. Section 3 describes the proposed method along with the
materials and methods used, while Section 4 presents the experimental setup. Section
5 presents the experimental results and discusses them, and finally, Section 6 draws the
conclusions.

2. Related Work

In this section, we describe related work dealing with cross-language, multilingual
training and the data augmentation, domain adaptation, and generalization aspects of
speech emotion recognition.

2.1. Cross-Language SER

The primary goal of an SER system is to detect emotions within a speech signal. As
available datasets are typically recorded in one language, the majority of existing systems
have reported monolingual results. Under cross-corpus conditions, however, especially
with systems trained on one language and tested on another, system performance can decay
drastically [1–4]. The work in [6], for example, proposed the use of feature and speaker
normalization to remove language effects from the SER system, and experiments across six
languages showed the importance of multilingual training paradigms. The work in [23],
on the other hand, showed the importance of feature selection for cross-language SER. The
experiments in [24] showed that gender- and language-specific models could be used to
improve cross-language SER accuracy between Mandarin and other western languages.
They reported higher performance in cross-language families compared to within-language
families, suggesting some universal cues of emotional expression, regardless of language.
Overall, cross-language SER accuracy was shown to be higher for the arousal dimension
relative to valence [1,23].

In the work described in [25], subspace-alignment-based domain adaptation schemes
were used to map language-specific SER models to unseen languages. Chiou and Chen, in
turn, explored data normalization using histograms for improved cross-language SER [9].
Furthermore, the authors in [26] used deep belief networks to learn generalized features
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across different languages and showed improved cross-corpus SER performance. Ning et al.,
in turn, showed that universal feature representations could be achieved with bidirectional
long short-term memory (Bi-LSTM) neural networks with shared hidden layers trained on
English and Mandarin speech [27]. Several other works (e.g., [28–30]) have explored the
use of end-to-end deep neural networks trained on multilingual data for improved cross-
language SER. Multilingual SER can also be seen as a form of data augmentation; thus, the
next section focuses on multilingual training and data augmentation for cross-lingual SER.

2.2. Multilingual Training and Data Augmentation for SER

Hesam et al. showed the benefits of using language identification coupled with
multi-language SER models [10] for cross-language SER. In fact, multi-language training
(i.e., training models with data from more than one language) has been shown to attain
reliable SER predictions for unseen languages [31–34]. Schuller et al. showed the effect
of selecting only the most prototypical examples when training cross-dataset SER sys-
tems [35] and later showed the importance of fusing the outputs of different deep learning
systems [31]. More recently, convolutional neural networks (CNN) with attention have
been proposed for cross-language SER [2,7], where multi-language training was shown to
improve cross-language SER performance. In [2,36], data augmentation was also shown to
improve cross-language SER accuracy.

2.3. Domain Adaptation for SER

Domain adaptation aims to improve the generalization capacity of models by adapting
the domain shift of the source or target data, thus minimizing the differences in the feature
space between both domains. Zhang et al. tackled cross-language SER by separately
normalizing the features of each speech corpus [33]. Hassan et al., in turn, employed
kernel mean matching to increase the weight of the training data to match that of the test
data distribution [11]. Zong et al. used least square regression to remove the projected
mean and covariance differences between the source data and unlabeled target samples
while learning the regression coefficient matrix [37], thus proposing a domain-adaptive
least-squares regression model for cross-corpus SER. Song et al. proposed a novel DA
method based on dimensionality reduction to create a similar feature space for both source
and target domains [38]. Abdelwahab et al., in turn, explored a model-based DA method in
which supervised adaptation of a support vector machine (SVM) classifier was performed
via access to small amounts of target domain data [39].

Furthermore, the work in [8] proposed kernel canonical correlation analysis (KCCA)
on principal component subspaces for DA. They first projected the source and target to
the feature space using PCA applied on the combined source and target domains. Then,
they used KCCA to maximize the correlation between both. Song et al., in turn, proposed a
non-negative matrix factorization-based DA for cross-language SER [12]. More specifically,
the authors proposed an algorithm that aimed to represent a matrix formed by data from
both the source and target domains as two non-negative matrices whose product was an
approximation of the original matrix. In order to ensure that the differences in the feature
distributions of the two corpora were minimized, they regularized this factorization by
the maximum mean discrepancy. Moreover, Abdelwahab and Busso [40] proposed a semi-
supervised approach by creating ensemble classifiers. In this method, each classifier focuses
on a different feature space, thus learning the discriminant features for the target domain.

2.4. Domain Generalization for SER

Domain generalization differs from domain adaptation, in which the training and test
domains are mapped to a common space where the feature representation is more robust
to the variations between the domains. In [41], a sparse autoencoder method was used
for feature transfer learning for SER. A common emotion-specific mapping rule is first
learned from a small set of labeled data in a target domain. Then, this rule is applied to
emotion-specific data in a different domain. Deng et al. [42], in turn, used autoencoders to



Sensors 2022, 22, 6445 4 of 18

find a common feature representation between the source and target domains by minimiz-
ing the reconstruction error on both domains. Later, Mao et al. [43] proposed learning a
shared feature representation by sharing the class priors across domains. The work in [44]
proposed Universum autoencoders, where the Universum loss is added to the reconstruc-
tion loss of an auto-encoder to reduce the reconstruction and classification error on both
the source and target domains. Deng et al. also presented a denoising autoencoder-based
approach for cross-language SER [45,46]. In fact, several variations of autoencoders have
been investigated for cross-language SER, including variational autoencoders (VAE) [47],
adversarial autoencoders (AAE) [48], and adversarial variational Bayes (AVB) [48].

3. Proposed Method

This section describes the proposed method based on the combination of bag-of-word
(BoW) signal methodology and domain adaptation for cross-language SER. Figure 1 depicts
a block diagram of the two methods explored herein, where the BoW feature extraction
methodology is explored before or after domain adaptation. More details about each
individual block are described next.

Figure 1. Block diagram of the cross-language SER systems combining BoW and domain adaptation.

3.1. Speech Feature Extraction

SER systems rely on different speech feature representations. In previous AVEC
Challenges, hand-crafted features have been compared against feature representations
obtained directly from end-to-end deep neural networks. It has been observed that hand-
crafted features still outperform deep-spectrum-based features, for example [17]. This is
likely due to the fact that existing emotion-labeled datasets are fairly small compared to
other domains, such as speech recognition, in which large amounts of data are available
to allow for accurate feature representations to be obtained directly from the model. As
the datasets used herein are fairly small, we employ two popular feature representations,
namely eGeMAPS and modulation spectral features (MSF). Here, the openSMILE toolkit is
used to extract the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [49],
which has been widely used in various recent SER challenges (e.g., [18,50,51]). In particular,
eGeMAPS contains a set of 88 acoustic parameters relating to pitch, loudness, unvoiced
segments, temporal dynamics, and cepstral features. In our pilot experiments, however, we
have found that a subset of 23 eGeMAPS features performed better when combined with the
bag-of-words methodology (as detailed in the next section), so in our experiments described
herein, a subset of 23 features are used. In particular, these 23 LLDs also include loudness,
voicing-related features, pitch, cepstral features, and temporal dynamics. Modulation
spectral features are also explored as they capture spectral and temporal information from
the speech signal and have been shown to not only convey emotional information but
also provide some robustness against environmental factors [52,53]. Modulation spectral
features were extracted using a window size of 256 ms and a frame step of 40 ms, following
the steps described in [53]. We fuse these two feature sets into a final feature vector of
dimension 246, of which 23 correspond to eGeMAPS and 223 to MSF features.

3.2. Bag-of-Words Methodology

The bag-of-words (BoW) methodology was initially proposed for natural-language-
processing applications [54]. However, this approach has also captured the attention of
applications where low-level descriptors (LLDs; i.e., features at a short time scale) are
employed, yielding performance improvements for speech, audio, video, and other modal-
ities [55]. In audio processing, BoW has been utilized with the term bag-of-audio-words,
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where LLDs are extracted from the audio signal and then codebook quantized [56]. Gen-
erally, statistical functionals such as mean, standard deviation, minimum, and maximum
have been widely employed to represent frame-level features as utterance-level features.
BoW is an alternative representation that aggregates frame-level features into utterance-
level ones using different clustering methods. BoW has been utilized for music information
retrieval [57] and, more recently, for SER [58].

Figure 2 depicts the steps involved in BoW feature processing. In this method, we
first pre-process the LLDs using different normalization methods, such as min-max scaling,
linear scaling, and z-score. These normalized features are then input to the codebook
generation algorithm. There are different methods for codebook generation, such as
random sampling or K-means clustering. The histogram represents the frequency of
occurrence of each feature or word. The histograms are generated from the frequencies of
each numeric value. As a final post-processing step, the resulting histogram is normalized
using term frequency (TF) weighting and inverse document frequency (IDF) weighting, and
the resultant vector is then fed to a regression model [58]. Here, we explore the usefulness
of applying the BoW methodology after domain adaptation for cross-language SER. More
details about the BoW procedure can be found in [19,58]. The code for BoW generation
can be found at https://github.com/shrutikshirsagar/cross-language-SER (accessed on 19
August 2022) . In particular, we employed Z-score standardization and random sampling
for codebook generation. The random-sampling-based codebook generation is much faster
than the k-mean-clustering-based algorithm.

Figure 2. Steps for bag of audio word generation.

3.3. Domain Adaptation/Generalization

Here, two domain adaptation methods are explored, and one domain generalization
method is proposed. More details are provided in the sub-sections to follow.

3.3.1. Subspace Alignment-Based Domain Adaptation

SA-DA aims to find a domain-invariant feature space by learning a mapping function
that aligns the source subspace with the target one [59]. SA-DA linearly aligns the source
domain to the target domain in a reduced-dimension PCA subspace. In this method,
we first create subspaces for both the source and target domains and then learn a linear
mapping that aligns the source subspace with the target subspace. This allows comparisons
of the source domain data directly with the target domain data and allows one to build
classifiers on source data and apply them to the target domain. With SA-DA source data S,
target data T, source labels LS, and subspace dimension D, source data S and target data T
are first projected into the D dimension via the following equations:

XS = PCA(S, D), (1)

https://github.com/shrutikshirsagar/cross-language-SER
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XT = PCA(T, D), (2)

where XS and XT represent the projected source and target data, respectively. Moreover,

XA = XSX′SXT , (3)

where X′S represents the transpose of the projected source data. Lastly,

SA = SXA, (4)

TT = TXT . (5)

In our experiment, the resultant feature embedding of source SA and target domain
TT can be either input to a deep-learning-based regression model for arousal and valence
prediction (in Method 1) or further processed via the BoW methodology prior to emotion
recognition (Method 2).

3.3.2. Correlation Alignment

We also explored the unsupervised CORAL algorithm [22], which matches the first-
and second-order statistics of the source and target data. Let the source domain correspond
to the training data language, and the target domain, the test set language; the CORAL
algorithm first calculates the statistics of the target domain and then subtracts the covariance
of the target domain from the source domain by whitening and recoloring the source
domain.

More specifically, the source domain feature matrix Dsource is first whitened and given
by Dw

source, that is,

Dw
source = Dsource ∗ C−

1
2

source, (6)

where * represents matrix multiplication.
The matrix is recolored (Dadapted

source ) by the following:

Dadapted
source = Dw

source ∗ C
1
2
target, (7)

where Csource and Ctarget are given by

Csource = Σsource + I, (8)

Ctarget = Σtarget + I. (9)

Here, I corresponds to the identity matrix, and Σsource and Σtarget to the covariance
matrices of the source and target domains, respectively.

3.3.3. Domain Generalization with CORAL

We propose a variant of the described approach where a third language is used to adapt
both the training and test domains. Figure 3 depicts this domain generalization method,
which we term N-CORAL. In our experiments, we utilize a Chinese language dataset as
the target domain and adapt the training and test data of three different languages, namely
German, French, and Hungarian, to this common domain before training an SER classifier.
The main advantage of the proposed method is that we do not need access to the test data,
as in previous methods. The same whitening and recoloring equations from (6)–(9) are
used, but now for a common language.

4. Experimental Setup

In this section, we describe the databases used, proposed regression model architec-
tures, benchmark systems, and figure-of-merit used to gauge system performance.
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Figure 3. Proposed N-CORAL-based domain generalization strategy for cross-language SER.

4.1. Databases

For emotion prediction, we employed four datasets in four different languages.
The first corresponds to the Remote Collaborative and Affective Interactions (RECOLA)
database [60]. This database was used during the 2016 audio-visual emotion challenge
(AVEC) [51] and is in the French language. Based on spontaneous and naturalistic interac-
tions collected from a collaborative task, six annotators measured emotion continuously
using a time-continuous scale for two emotion primitives, namely arousal and valence.
Even though all subjects were fluent French speakers, they came from different nationalities
(French, Italian, and German); thus, the database provides some diversity in the expression
of emotion. In addition, the total number of speakers in the RECOLA dataset was 27, out
of which 16 were females, and 11 were males. Detailed participant statistics are available
in [60]. The subjective labels were originally available with a frame rate of 40 ms. We aggre-
gated five consecutive frames to generate a frame rate of 200ms for analysis via averaging.
The RECOLA database is partitioned into three disjoint sets: training, development, and
test, each containing 5-minute-long speech files from nine speakers.

The second and third datasets correspond to the German and Hungarian language
subsets of the Sentiment Analysis in the Wild (SEWA) database. This database was used
in the AVEC 2018 [17] and AVEC 2019 [18] challenges. Subjects (in pairs of friends and
relatives) were recorded through a dedicated video chat platform, using their own standard
web cameras and microphones while they discussed an advertisement they had watched.
Detailed participant demographics for both datasets are available in [61]. The duration of
the recordings in the dataset range from 40 seconds to 3 minutes for each file. Both datasets
are divided into 34 files for training, 14 in the development set, and 16 for testing. In our
experiments, we only used the training and development parts, as the labels were not
available for the test set. The SEWA dataset has valence and arousal labels available, with a
frame rate of 100 ms; thus, we aggregated two consecutive frames via averaging to remain
consistent with the frame durations used with the RECOLA dataset. Both the RECOLA
and SEWA datasets were recorded with a sampling rate of 44.1 kHz. Further details about
the dataset can be found in [61].

The fourth dataset corresponds to the Chinese language subset of the SEWA project.
The audio recordings’ sample rate was 44.1 kHz, and the total data duration is 3:17:52 hours.
There were audio samples from 36 male and 34 female participants. A total of 70 audio files
without labels were made available through the AVEC 2019 [18] challenge. Detailed partici-
pant demographics for this dataset are available in [61]. In our experiment, we specifically
used this unlabeled dataset for the proposed N-CORAL domain generalization method
described in Section 3.3.3. We downsample all audio files to 16 kHz for further processing.

Next, we used the recorded noise dataset AURORA [62] for data augmentation pur-
poses to further corrupt the SEWA and RECOLA datasets. More specifically, two noise
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types, multi-talker babble and noise recorded inside a commercial airplane, were used to
corrupt data. We further added noise at five different signal-to-noise levels (SNRs): 0 dB,
5 dB, 10 dB, 15 dB, and 20 dB. Moreover, three recorded room impulse responses taken
from [63] were used and convolved with the speech files to simulate room reverberation at
different reverberation times, namely T60 = 0.25, 0.48, and 0.8 seconds.

4.2. Regression Model

Recurrent neural networks (RNN) are a family of neural networks and are extremely
useful for handling sequential data as their output corresponds to a specific combination
of current and past inputs. However, due to the nature of the long sequence, they usually
suffer from vanishing/exploding gradient problem. In order to solve this problem, LSTM-
RNNs were later proposed [64]. A bidirectional LSTM, or BiLSTM, is a sequence-processing
model that consists of two LSTMs, one taking the input in a forward direction and the other
in a backward direction. BiLSTMs effectively increase the amount of information available
to the network, improving the content available to the algorithm. BiLSTMs and LSTMs
have been widely used in speech applications (e.g., [17,27,65,66]).

We employed the benchmark architecture from the AVEC 2018 [17] and AVEC 2019
challenges described in [18]. We used two-layer BiLSTM with hidden layers of sizes
64 and 32, respectively. A whole sequence was used for training, and the experiment
lasted 1000 epochs. A concordance correlation coefficient (CCC)-based loss function (see
Section 4.5) was used for training inspired by the AVEC 2018 and 2019 benchmark systems.
We used TensorFlow with KERAS as a backend. The implemented model for experimental
validation can be found at https://github.com/shrutikshirsagar/cross-language-SER (ac-
cessed on 19 August 2022) . Finally, for the hyper-parameter search, we used the validation
set. We experimented with three widely used optimizers, RmsProp, Adam, and SGD,
with three different learning rates (0.01, 0.001, 0.0001) and varying dropout (0.1–0.5 in 0.1
increments).

4.3. Data Augmentation

As mentioned previously, data augmentation has been widely used to improve model
generalizability against training/test mismatch. In fact, recent results have shown data
augmentation to provide some robustness to language mismatch [19]. Here, we aim to
explore the additional benefits that data augmentation can bring for cross-lingual SER
when combined with other strategies, such as domain adaptation and BoW. In particular,
we augment the unprocessed speech training datasets with (i) two different noise types
(babble and airport) at five different signal-to-noise ratios (SNR = 0, 5, 10, 15, and 20 dB); (ii)
three reverberation levels to simulate a small, medium, and large-sized room (RT60 = 0.25,
0.48, and 0.80 s); and (iii) 12 noise-plus-reverberation conditions (2 noises × 3 SNR levels
(0, 10, and 20 dB) × 2 RT60 values (0.25, 0.8 s)).

4.4. Benchmark Systems

Several benchmarks are used to gauge the benefits achieved with the proposed SER sys-
tem. In particular, SA-DA alone [59] and CORAL-DA alone are used as benchmarks [22], as
well as BoW alone, and no processing. We also used the AVEC 2019 challenge baseline [17]
as an additional benchmark, as it relied on a bag-of-words methodology but over eGeMAPS
features alone, together with an LSTM regressor. Furthermore, in order to demonstrate
the usefulness of the proposed approach, we compared it with several other methods,
including a transfer learning approach based on principal component analysis (PCA), as
in [67]; a canonical-correlation-analysis-based method (KCCA), as in [8]; and structural
correspondence learning (SCL), as in [68]. Lastly, we use only data augmentation as a
benchmark system.

https://github.com/shrutikshirsagar/cross-language-SER
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4.5. Figure-of-Merit, Testing SetUp, and Experimental Aims

The performance measure used here is the typical metric used within SER tasks, that
is, the concordance correlation coefficient (CCC). This figure-of-merit combines Pearson’s
correlation coefficient ρ with the square difference between the mean of the two compared
time series and is given as follows (Equation (10)):

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2 , (10)

where µ and σ stand for the first and second order statistics of times series x and y, which cor-
respond to the emotion predictions and their corresponding subjective ratings, respectively.

For the experimental setup, we have employed only the labeled training and validation
partitions of the AVEC challenge datasets. More specifically, we used the training data as
our training data, and further divided this training data (80%/20%) for hyper-parameter
tuning of the Bi-LSTM models. In addition, our test set is the challenge validation set. In
the end, once we found appropriate parameters, including optimizer, learning rate, and
drop-out, for the model’s final training, we joined our training and validation sets (which
were earlier divided as 80%/20%). We also showed the significance of the obtained results
using a z-score test between the CCCs. In particular, we used a 95% level (p < 0.05) against
the AVEC 2019 benchmark system.

We start the experiments with an ablation study aimed at measuring the upper bound
achieved per language using monolingual models where the same language is used for
training and testing. Next, we examine the impact of multilingual training, where multiple
languages are combined during training. Next, we explore the impact of including the
bag-of-words methodology, domain adaptation schemes, and data augmentation, both
individually and combined. Lastly, we experiment with the proposed N-CORAL method.

5. Experimental Results and Discussion

In this section, we present the experimental results and then discuss our findings in
light of the existing literature.

5.1. Ablation Study

As an ablation study, we explored monolingual and multilingual training experiments
to obtain “upper bounds” on what could be achieved for the tested languages and datasets
without any domain adaptation strategies in place. Monolingual refers to experiments
where the language of the test samples are the same as those used during training. Multi-
lingual, in turn, combines multiple languages during training and tests them individually
with either matched or unseen languages. Table 1 presents the ablation study results for
several experiments, including three monolingual (training/testing in German, Hungarian,
and French), three multilingual (training with German/Hungarian/French and testing
with each language individually), three unseen multilingual (training with two languages
and testing with the third unseen), and lastly, the three unseen multilingual conditions, but
with data augmentation during training. For all experiments, BoW features and a BiLSTM
regressor were used.

For these experiments, 34 audio files for training and 14 audio files for testing were
used from the SEWA-German and SEWA-Hungarian datasets, whereas nine audio files
were used for training, and nine audio files were used for testing from the RECOLA-French
dataset. As can be seen from Table 1, valence estimation is more challenging compared to
arousal, corroborating findings in [1,23]. Moreover, with the exception of the Hungarian
language, multi-language training did not help improve accuracy over the monolingual
settings. Having the test language present during training was shown to be important.
Lastly, in the case where the test language was unseen, data augmentation was shown to
be important.
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Table 1. Ablation study results for monolingual, multilingual with matched test language, and
multilingual with unseen test language experiments, without and with (‘+Aug’) data augmentation.

Train Test Arousal Valence

German German 0.450 0.363

AVEC 2019 German 0.434 0.455

Multi-matched German 0.399 0.318

Multi-unseen German 0.067 0.150

Multi-unseen + Aug German 0.179 0.187

Hungarian Hungarian 0.123 0.145

AVEC 2019 Hungarian 0.291 0.135

Multi-matched Hungarian 0.263 0.154

Multi-unseen Hungarian 0.147 0.037

Multi-unseen + Aug Hungarian 0.241 0.240

French French 0.772 0.418

AVEC 2019 French 0.323 0.144

Multi-matched French 0.538 0.186

Multi-unseen French 0.046 0.045

Multi-unseen + Aug French 0.157 0.164

5.2. Proposed System

Tables 2 and 3 show the cross-language results obtained under the different conditions
explored herein for arousal and valence prediction, respectively. Cross-language results
achieved with different benchmarks (see Section 4.4) and the proposed systems are reported.
In the tables, a column labeled ‘G-H’ means that German and Hungarian languages were
used for training and testing, respectively. As previously, for training, we used the 34
(training) audio files from the SEWA-G and SEWA-H datasets and 9 French-language audio
files from the RECOLA dataset. For testing, we used 14 audio files from the SEWA-G and
SEWA-H test sets and 9 from RECOLA. Significant improvements relative to the AVEC
2019 benchmark are reported with an asterisk. All results rely on the BiLSTM model.

As can be seen, for arousal, all of the proposed methods significantly outperformed
the AVEC 2019 benchmark system on average. This benchmark is based on BoW applied to
eGeMAPS features combined with an LSTM regressor. Interestingly, the other benchmark
based on applying only BoW on the combined eGeMAPS and MSF features, together with
a BiLSTM, was also shown to significantly improve arousal prediction accuracy over the
AVEC 2019 benchmark, thus highlighting the importance of the MSF features for the task at
hand. Moreover, comparing the two proposed domain adaptation methods (SA-DA + BoW
and CORAL + BoW), on average, the CORAL-based method achieved the highest CCC.
The left- and right-side plots in Figure 4 depict the histograms of one MSF feature for
the French, German, and Hungarian languages before and after CORAL normalization,
respectively. As can be seen, CORAL reduces the shift between the distributions across
languages, resulting in improved cross-language accuracy.

Overall, the proposed N-CORAL method achieved the highest CCC values of all
tested methods, also outperforming several multilingual settings, as shown in Table 1. This
was followed closely by the proposed CORAL + BoW setting. Data augmentation, in turn,
helped improve performance for half of the cross-language tasks, but on average, it did not
provide any significant advantage for the N-CORAL setting. Moreover, it can be seen that
in the conditions involving the SEWA German and SEWA Hungarian cross-language tasks,
the highest CCC values across all tested cross-language tasks was achieved, especially with
the N-CORAL + BoW method. These findings suggest that such a proposed scheme can be
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useful for cross-language normalization but not necessarily for cross-corpus normalization,
where other nuance factors may be present. For cross-corpus and cross-language robustness,
N-CORAL combined with BoW and data augmentation showed the most significant gains,
combining the benefits of the N-CORAL + BoW method for cross-language robustness and
the benefits of data augmentation for cross-corpus nuance factors.

Table 2. Performance comparison of arousal estimation with different explored schemes in terms
of CCC. Bi-LSTM regression was used for all methods. Highest values are indicated in bold, and
significantly better results relative to benchmark are highlighted by an asterisk.

Systems Settings Arousal

G-H G-F F-H F-G H-F H-G Avg

Benchmark

AVEC 2019 0.160 0.143 0.134 0.312 0.021 0.698 0.244

No processing 0.118 0.128 0.144 0.237 0.045 0.711 * 0.230

BoW only 0.179 * 0.131 0.155 * 0.320 0.115 * 0.749 * 0.274 *

PCA 0.130 0.146 0.097 0.125 0.028 0.717 * 0.207

KCCA 0.180 * 0.228 * 0.123 0.082 0.180 * 0.674 0.244

SCL 0.124 0.165* 0.141 0.198 0.037 0.766 * 0.238

SA-DA 0.140 0.151 0.122 0.148 0.195 * 0.762 * 0.253

CORAL 0.125 0.236 * 0.124 0.161 0.119 * 0.729 * 0.249

Data augmentation 0.201 * 0.129 0.220 * 0.119 0.150 * 0.447 0.211

Proposed

SA-DA + BoW 0.193 * 0.154 0.188 * 0.248 0.109 * 0.765 * 0.276 *

CORAL + BoW 0.268* 0.167 * 0.138 0.433 * 0.138 * 0.739* 0.313*

N-CORAL 0.207* 0.127 0.167 * 0.278 0.148 * 0.733 * 0.276 *

N-CORAL + BoW 0.282 * 0.126 0.175 * 0.464 * 0.124 * 0.787* 0.326 *

N-CORAL + BoW + Aug 0.193 * 0.189 * 0.241 * 0.369 0.156 * 0.480 0.271 *

Table 3. Performance comparison of arousal estimation with different explored schemes in terms
of CCC. Bi-LSTM regression was used for all methods. Highest values are indicated in bold, and
significantly better results relative to benchmark are highlighted by an asterisk.

Systems Settings Valence

G-H G-F F-H F-G H-F H-G Avg

Benchmark

AVEC 2019 0.046 0.112 0.200 0.073 0.090 0.671 0.198

No processing 0.014 0.104 0.204 0.130 * 0.109 * 0.719 * 0.213 *

BoW only 0.074 * 0.133 * 0.260 * 0.153 * 0.141 * 0.745 * 0.251 *

PCA 0.031 0.160 * 0.137 0.104 * 0.048 0.712 * 0.198

KCCA 0.069 * 0.129 0.165 0.069 0.057 0.641 0.188

SCL 0.024 0.157 * 0.169 0.092 * 0.071 0.771 * 0.214 *

SA-DA 0.033 0.126 0.128 0.117 * 0.117 * 0.782 * 0.217 *

CORAL 0.065 * 0.168 * 0.315 * 0.113 * 0.09 0.726 * 0.246 *

Data augmentation 0.107 * 0.141 * 0.214 0.075 0.154 * 0.32 0.165

Proposed

SA-DA + BoW 0.094 * 0.139 * 0.114 0.130 * 0.158 * 0.778 * 0.235 *

CORAL + BoW 0.128 * 0.200 * 0.371 * 0.202 * 0.123 * 0.681 * 0.284 *

N-CORAL 0.062 * 0.125 0.143 0.131 * 0.078 0.752 * 0.215 *

N-CORAL + BoW 0.141 * 0.169 * 0.217 * 0.310 * 0.051 0.799 * 0.281 *

N-CORAL + BoW + Aug 0.129 * 0.131 * 0.352 * 0.247 * 0.169 * 0.473 0.267 *
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Figure 4. Illustration of the effects of CORAL on the distribution of one MSF feature for French,
German, and Hungarian languages. Plots on the left are before normalization, and those on the right
are after normalization.

Moreover, comparing the results from the tables, it can be seen that valence prediction
is a more challenging task compared to arousal prediction, corroborating previous find-
ings [1,31]. Notwithstanding, the proposed methods were shown to reduce this gap across
many of the cross-language tasks. Overall, all of the proposed methods achieved CCC
values significantly better than most benchmarks. Similar to the arousal prediction case,
the proposed N-CORAL and CORAL + BoW settings achieved the highest average results.
For valence prediction, data augmentation only helped for two of the six tested cases.

To better understand some of these findings, Figure 5 depicts a snapshot of the average
modulation spectrogram across multiple speakers for three different languages for both
high- (left) and low- (right) arousal conditions. As can be seen, differences across languages
can be seen for both high- and low-arousal cases, motivating the need for cross-language
strategies. Apart from the language differences, differences can also be seen between the
high- and low-arousal conditions. Figure 6, on the other hand, shows modulation spectro-
grams for high- (left) and low- (right) valence conditions across the three languages. As
can be seen, the differences are more subtle, suggesting a more complex classification task.

Furthermore, it can be observed that that while utilizing only data augmentation to
compensate for cross-language issues can provide some improvements relative to doing
nothing, the gains are typically substantially lower than applying other domain adaptation
strategies. This can be somewhat expected as the augmentation strategies comprised
adding noisy versions of the same language.

Lastly, while the proposed N-CORAL method was shown to achieve the best perfor-
mance across several valence and arousal prediction tests, further improvements may be
achieved if other target languages are used. Here, the Chinese unlabeled data from the
SEWA dataset was used as it was available together with other emotion-labeled subsets.
As Chinese belongs to a different family of languages than the other source languages
experimented with here, future work may explore the use of different target languages
belonging to the same family as the source languages to see if further gains can be achieved.
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Figure 5. Average modulation spectrogram for German (top), Hungarian (middle), and French
(bottom) language for high- (left) and low- (right) arousal conditions.
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Figure 6. Average modulation spectrogram for German (top), Hungarian (middle), and French
(bottom) language for high-(left) and low-(right) valence conditions.
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6. Conclusions

In this paper, we explored combined use of the bag-of-words methodology, domain
adaptation, and data augmentation as strategies to counter the detrimental effects of cross-
language (and cross-corpus) speech emotion recognition. A new method termed N-CORAL
was also proposed in which all languages are mapped to a common distribution (in our case,
a Chinese language model). Experiments with German, French, and Hungarian languages
show the benefits of the proposed N-CORAL method, combined with data augmentation
and BoW for cross-language SER.
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