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Abstract: Building occlusions usually decreases the accuracy of boundary regularization. Thus, it is
essential that modeling methods address this problem, aiming to minimize its effects. In this context,
we propose a weighted iterative changeable degree spline (WICDS) approach. The idea is to use
a weight function for initial building boundary points, assigning a lower weight to the points in
the occlusion region. As a contribution, the proposed method allows the minimization of errors
caused by the occlusions, resulting in a more accurate contour modeling. The conducted experiments
are performed using both simulated and real data. In general, the results indicate the potential of
the WICDS approach to model a building boundary with occlusions, including curved boundary
segments. In terms of Fscore and PoLiS, the proposed approach presents values around 99% and
0.19 m, respectively. Compared with the previous iterative changeable degree spline (ICDS), the
WICDS resulted in an improvement of around 6.5% for completeness, 4% for Fscore, and 0.24 m for
the PoLiS metric.

Keywords: boundary modeling; LiDAR; vegetation occlusion; remote sensing; urban application

1. Introduction

The extraction of building boundaries is an important task in urban applications such
as 3D city modeling, disaster management, database updating, and urban planning. In
general, mapping companies and municipalities derive building boundaries from topo-
graphic surveys, manual image vectorization, or restitution processes. However, they are
time consuming, particularly in large urban areas and constantly changing regions. Con-
sidering these aspects, the scientific community has turned its efforts to develop automatic
or semi-automatic techniques for deriving building boundaries from remotely sensed data.

In this context, airborne LiDAR data have been widely used since they have some
advantages when compared with conventional photogrammetry. The main advantage
is related to the direct acquisition of dense 3D point clouds, which forgoes the need for
an image matching stage. Additionally, LiDAR data are not affected by scene conditions
such as shadows and illumination. Previous studies have looked at combined airborne
LiDAR with aerial or satellite images. Despite the improvement in extracted contours, the
integration is still faced with some challenges due to the varying nature of these datasets
(e.g., regular versus irregular data structure and ensuring the alignment of both datasets to
a common reference frame) [1,2].

According to dos Santos et al. [1], building boundaries derived from LiDAR data have
an aliasing shape (zigzag); thus, a regularization/modeling process is usually applied to
obtain a contour closer to the real boundary. The vast majority of regularization methods
are based on building boundaries that are made up of straight-line segments [3–12]. In this
sense, developed methods estimate line parameters that best fit and represent each segment.
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Additionally, parallelism and/or perpendicularity constraints are applied. In [13], the build-
ing regularization is performed through a Recursive Minimum Bounding Rectangle (RMBR)
algorithm, which determines the rectangle or combination of rectangles that best fits the
boundary points. In contrast, there are approaches that consider more complex building
boundaries, which have non-right-angled corners [1,4,14] and curved segments [1,14]. Dos
Santos et al. [1] developed an iterative changeable degree spline (ICDS) regularization
method in 3D space. In their approach, the polynomial function that best models each
segment is estimated automatically through a statistical analysis. Conducted experiments
indicated that the method is robust for modeling contours with complex curved segments.
Despite the promising results, the modeling is strongly influenced by occlusions.

Figure 1 shows a building partially covered by a tree, as well as a corresponding point
cloud and modeled boundary obtained by applying the ICDS approach (blue contour).
As can be observed in Figure 1c, part of the roof building is missing due to tree canopy
occlusion, leading to an incorrect contour modeling (Figure 1d).

Sensors 2022, 22, x FOR PEER REVIEW 2 of 18 
 

 

applied to obtain a contour closer to the real boundary. The vast majority of regularization 
methods are based on building boundaries that are made up of straight-line segments [3–
12]. In this sense, developed methods estimate line parameters that best fit and represent 
each segment. Additionally, parallelism and/or perpendicularity constraints are applied. 
In [13], the building regularization is performed through a Recursive Minimum Bounding 
Rectangle (RMBR) algorithm, which determines the rectangle or combination of rectan-
gles that best fits the boundary points. In contrast, there are approaches that consider more 
complex building boundaries, which have non-right-angled corners [1,4,14] and curved 
segments [1,14]. Dos Santos et al. [1] developed an iterative changeable degree spline 
(ICDS) regularization method in 3D space. In their approach, the polynomial function that 
best models each segment is estimated automatically through a statistical analysis. Con-
ducted experiments indicated that the method is robust for modeling contours with com-
plex curved segments. Despite the promising results, the modeling is strongly influenced 
by occlusions. 

Figure 1 shows a building partially covered by a tree, as well as a corresponding point 
cloud and modeled boundary obtained by applying the ICDS approach (blue contour). As 
can be observed in Figure 1c, part of the roof building is missing due to tree canopy oc-
clusion, leading to an incorrect contour modeling (Figure 1d). 

 
Figure 1. Building partially covered by a tree and modeled boundary using the ICDS method. Aerial 
image (a), airborne LiDAR data (b), and sampled points on the roof building (c) and modeled con-
tour (d). 

According to Feng et al. [2], in an urban environment, many buildings might be par-
tially covered by adjacent trees so that the laser cannot pass through when the leaves are 
relatively dense, especially during the spring and summer. To overcome this problem, the 
authors proposed an improved minimum bounding rectangle (IMBR) algorithm to extract 
and model building boundaries with partial occlusion from airborne LiDAR data. The 
IMBR algorithm is executed in two-dimensional space, looking to model buildings com-
posed of straight segments and with right-angled corners. 

To overcome the aforementioned limitation, we propose a weighted iterative change-
able degree spline method (WICDS). The idea consists of including the occlusion infor-
mation in boundary modeling and assigning a lower weight to contour points located in 
the occlusion region. 

The main contribution of this work is to propose a novel approach, which allows 
automatic modeling of boundaries with partial occlusions even for curved contours. Ad-
ditionally, it is executed in 3D space, making it possible to model the 3D spatial shape of 

Figure 1. Building partially covered by a tree and modeled boundary using the ICDS method.
Aerial image (a), airborne LiDAR data (b), and sampled points on the roof building (c) and modeled
contour (d).

According to Feng et al. [2], in an urban environment, many buildings might be
partially covered by adjacent trees so that the laser cannot pass through when the leaves
are relatively dense, especially during the spring and summer. To overcome this problem,
the authors proposed an improved minimum bounding rectangle (IMBR) algorithm to
extract and model building boundaries with partial occlusion from airborne LiDAR data.
The IMBR algorithm is executed in two-dimensional space, looking to model buildings
composed of straight segments and with right-angled corners.

To overcome the aforementioned limitation, we propose a weighted iterative change-
able degree spline method (WICDS). The idea consists of including the occlusion informa-
tion in boundary modeling and assigning a lower weight to contour points located in the
occlusion region.

The main contribution of this work is to propose a novel approach, which allows
automatic modeling of boundaries with partial occlusions even for curved contours. Addi-
tionally, it is executed in 3D space, making it possible to model the 3D spatial shape of the
contour. To perform qualitative and quantitative evaluation, simulated occlusions together
with real airborne LiDAR data are used. In addition, we also evaluate the influence of
occlusion size and weight magnitude on contour modeling.
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2. Proposed Method

In Figure 2, we show a simplified flowchart of the proposed approach. The blue
dashed rectangle highlights the steps that differ from the ICDS approach proposed in [1].
The building roof points are obtained using the same strategy of the previous approach
ICDS and since the focus of this paper is on contour modeling, the occlusion regions were
identified manually by visual inspection. The occlusion information is incorporated in
three steps: critical point determination, changeable degree (CD) spline modeling, and
determination of residuals. Similar to the ICDS approach, we use the residuals for automatic
selection of the polynomial function.
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2.1. Critical Point Determination

Considering the boundary points in 3D space, critical (key) points are obtained us-
ing the well-known Douglas–Peucker algorithm, followed by angle-based generalization.
Similar to [1,14], Douglas–Peucker algorithm is executed in 3D space using a distance
threshold (Tdist), whereas the elimination of redundant critical points is executed using
an angle threshold (Tang). In the angle-based generalization step, we calculate the angles
between two adjacent lines formed by connecting adjacent critical points. If the angle (θi)
is smaller than an angle threshold (Tang), the point is regarded as a redundant point and
discarded. In Figure 3c, we illustrate the geometric representation of the angle θ.

The selection of the critical points depends on the thresholds, especially the Tang as
discussed in the previous work [1]. The value of Tdist can be easily determined based on
point cloud spacing. In contrast, the Tang may vary according to the complexity of the
building, requiring a priori knowledge of the buildings contained in the area of interest.
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Figure 3. Critical point determination for a partially occluded building roof: Boundary points
extracted using alpha-shape algorithm (a). Critical points derived from Douglas–Peucker (blue
squares) (b). The angle θ between two adjacent lines formed by connecting adjacent critical points (c).
Critical points derived from angle-based generalization (d), and from occlusion-based refinement (e).

Occlusions will cause loss of information on part of the roof, consequently affecting
the critical point determination (Figure 3b). In this sense, we use the occlusion information
to identify and eliminate critical points extracted in impacted regions.

In Figure 3, we show an example of critical point determination for a partially oc-
cluded building roof. The boundary points are extracted using the adaptive alpha-shape
algorithm [15]. The points in the occlusion region, highlighted by the cyan dashed rectangle,
are represented by orange square points. In Figure 3b,d,e, we show the results derived
from the Douglas–Peucker algorithm, angle-based generalization, and occlusion-based
refinement, respectively.

2.2. CD-Spline Modeling and Weight Function

Considering the boundary points as input data, the CD-spline is applied to model
a parametric curve. According to [16], the mathematical model represented by C(t)
(Equation (1)) is a piecewise polynomial function used to model a curve through the
boundary points, whereas D is the largest degree considered in the modeling process
(D = max{di}). This equation is composed of two terms. The first term represents the
CD-splines basis functions (Ni,D). The elements of Ni,D are computed from the degree of
the polynomial (di), critical points (knot points), and continuity type between connected
adjacent segments. The second term (Pi) is formed by control points, which controls the
shape of the curve and is determined through an estimation process, using the least-squares
method, for example.

C(t) =
n

∑
i=1

Ni,D(t)Pi (1)
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Assuming m + 1 boundary points in 3D space, i.e., (Q0, Q1, . . . . . . , Qm), these points
can be represented by a vector Qr (Equation (2)), with Qj =

[
xj yj zj

]
.

Qr= {Q 0, Q1, . . . . . . , Qm} (2)

The ICDS approach uses the chord length formulation to parameterize the coordinates
of the piecewise polynomial function C(t) (Equations (3) and (4)):

t0= 0 tj= tj−1 +
‖Qj − Qj−1‖

L
tm= 1 (3)

where

L =
m

∑
j=1
‖Qj − Qj−1‖ (4)

Considering the occurrence of occlusions, we propose the following parameterization
(Equations (5)–(8)):

t0= 0, tm= 1

tj= tj−1 +
‖Qj−Qj−1‖

L → ∀ point j outside occlusion region

tj= hj

( tfinaloccl
−tinitialoccl

hfinal−hinitial

)
+

(
hfinal tinitialoccl

−hinitial tfinaloccl
hfinal−hinitial

)
→ ∀ point j in a given occlusion region

(5)

where
hinitial = ‖Qinitialoccl

− Qinitialoccl−1‖ (6)

hfinal =
finaloccl

∑
j=initialoccl

‖Qj − Qj−1‖ (7)

hj= hj−1 + ‖Qj −Qj−1‖ (8)

In Figure 4, we show the representation of the points tinitialoccl
and tfinaloccl

for a contour
with occlusion. In this example, the contour points are organized in a clockwise order. It is
important to emphasize that a building with multiple occlusions will also have multiples
tinitialoccl

and tfinaloccl
.
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According to [17], the control points are estimated from a least-squares adjustment
process. In this context, the error function in Equation (9) is considered [17]. To determine
the control points, the ICDS approach uses the formulation shown in Equation (10).

φ =
m

∑
j=0

∣∣∣Qj − C(t j

)∣∣∣ (9)

P = (A T A)−1 (A TQr

)
(10)

where Qj corresponds to a given contour point in 3D space (Qj = [xj yj zj]), Qr = {Q0, Q1,
. . . , Qm}, and A is the Jacobian matrix defined by the basis function elements.

ICDS approach assumes that all contour points have equal weight in the CD-spline
modeling (w0 = w1 = w2 = . . . = wm). Additionally, in this approach, the variance related
to each point (σ2

j ) is equal to an a priori variance factor (σ2
0 ). From these two assumptions,

the weight matrix (W) can be represented by an identity matrix (I) (W = I). However,
this strategy can lead to incorrect modeling when building roofs are partially occluded
(Figure 1d).

Usually, boundary points extracted in occluded regions negatively influence the
contour modeling, as exemplified in Figure 1d. To minimize this problem, we propose the
inclusion of a weight function, which assigns a lower weight to boundary points in the
occlusion region. In Equation (11), we show the formulation of the weight function for
points located outside and inside occluded regions:

wj =
σ2

0
σ2

LiDAR
→ ∀ point j outside occlusion region

wj =
σ2

0
σ2

Oclussion
→ ∀ point j in occlusion region

(11)

where σ2
LiDAR = σ2

xy + σ2
z , and σ2

Oclussion = b σ2
LiDAR.

The terms σ2
xy and correspond to the approximate variance of the LiDAR data in

planimetric and vertical directions, respectively, and b is a multiplying factor, which can
vary from 1 to +∞. Assuming σ2

0 = σ2
LiDAR, the weight function is simplified for the following

formulation (Equation (12)):{
wj= 1 → ∀ point j outside occlusion region

wj =
1
b → ∀ point j in occlusion region

(12)

With the inclusion of the weight function, Equation (13) is used to estimate the con-
trol points.

P = (A T WA)−1 (A TWQr

)
(13)

2.3. Residual Determination for Boundary Points in Occluded Regions

In the ICDS approach, the polynomial function that best models each segment is
automatically selected by an incremental and iterative process, where the stopping criterion
is based on the statistical F-test. In the first iteration, all segments are modeled by a
first-degree polynomial. After this modeling, the sum of residuals for each segment is
determined. In the next iteration, the degree of the function (di) corresponding to the
segment with the biggest sum of residuals is increased by one (di + 1). In the following
iterations, the boundary is modeled considering the new polynomial degree. The process is
repeated until there is no significant difference between the modeled boundaries between
two successive iterations.



Sensors 2022, 22, 6440 7 of 18

The magnitude of the residual (rj) for each point and the sum of residuals for each
segment (Sum_ri) are computed from Equations (14) and (15), respectively:

rj =
∣∣∣C(t j) − Qj

∣∣∣ (14)

Sum_ri = ∑ ri
j (15)

The statistical F-test (Equation (16)) is conducted using the estimated statistic (Fc)
(Equation (17)) [18,19], which is obtained considering the standard deviations of residuals
in iterations k and k− 1. In this test, Fc is compared to the critical values of the F distribution
(Fα

2 , n−1, n−1, F1−α
2 , n−1, n−1) based on the number of boundary points (n) and level of

significance (α):{
Fα

2 , n−1, n−1 < Fc < F1−α
2 , n−1, n−1 → process is finished

otherwise → go to next iteration
(16)

where

Fc =

(
sk

r

sk−1
r

)2

(17)

Since ICDS took into consideration the residuals of all contour points, an overfitting
problem may occur in occluded regions. To overcome this problem, we include an exception
in the residual estimation (Equation (18)). In this case, we adopt rj = 0 for boundary points
located in the occlusion regions:{

rj= 0 → if point j is located in occlusion region

rj =
∣∣∣C(t j) − Qj

∣∣∣→ otherwise
(18)

3. Experiment Design and Quality Assessment

In the experiments, we consider simulated and real data. In the first case, we simu-
lated occlusions of different sizes for two buildings: a rectangular building and another
composed of straight-line and curved segments. Occlusions were manually generated
using Cloud Compare software (https://www.cloudcompare.org, accessed on 15 January
2022). In the second case, we selected buildings with partial occlusions from the Presidente
Prudente/Brazil dataset [20]. The 3D point cloud used in the experiments has a point
density of around 12 points/m2. It was acquired from an average flying height of 550 m
above ground using a REIGL LMS-Q680i scanning system [20]. To perform the quantitative
analysis, the modeled contour is compared with the reference boundary. The reference
boundaries are derived manually from airborne LiDAR using Cloud Compare software.

To carry out a quantitative analysis, we use the following metrics: relative error in
area, completeness, correctness, Fscore [21,22], and PoLiS [23]. The relative error in area (ER)
is estimated using the values of area of reference (AR) and the area estimated from the
extracted contour (AE) (Equation (19)).

ER = (AE − AR)/AR (19)

Assuming an extracted polygon (A) and the reference polygon (B), completeness
(Comp.), correctness (Corr.), and Fscore can be obtained from Equations (20)–(22) [21,22]:

Comp = ar(TP)/(ar(TP) + ar(FN)) (20)

Corr = ar(TP)/(ar(TP) + ar(FP)) (21)

https://www.cloudcompare.org
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Fscore= 2 ar(TP)/(2ar(TP) + ar(FP) + ar(FN)) (22)

where ar(.) is the measured area; ar(TP) = A∩B; ar(FN) = ar(B) − A∩B; and ar(FP) = ar(A)
− A∩B; true positive (TP); false positive (FP); and false negative (FN). The completeness,
correctness, and Fscore are estimated in 2D space and range from 0 to 1. Values approaching
1 indicate that the modeled boundary has a high overlap with the reference contour.

The PoLiS metric p(A, B) between two polygons A and B is defined by Equation (23) [23]:

p(A, B) =
1
2q ∑

aj∈A
min
b∈∂B
‖aj − b‖+ 1

2r ∑
bk∈B

min
a∈∂A
‖bk − a‖ (23)

where q and r correspond to the number of vertices of polygons A and B, respectively;
∂A and ∂B denote the boundary of polygons A and B, respectively; and ‖a − b‖ is the
Euclidean distance between points a and b. The PoLiS is computed in 3D space and ranges
from 0 to +∞, approaching zero if the modeled boundary is closely similar to the reference.

4. Results
4.1. Simulated Data

In Figures 5 and 6, we show the buildings with simulated occlusions (first row), as
well as results derived from the ICDS (second row) and WICDS (third row). The modeled
contour is represented by blue lines. In addition, the occlusion size is indicated in the
figures. These results of WICDS are generated using w = 1/300 (b = 300 in Equation (12)).
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Figure 6. Curved building with different sizes of occlusion areas. Roof points (First row), modeled
boundary (blue line) using ICDS (Second row) and WICDS (Third row).

In Figure 7, we show the quality metrics Fscore and PoLiS for the simulated buildings
using both modeling methods (ICDS and WICDS).

In order to evaluate the influence of weight, we show the plots in Figure 8. Several
weight values, i.e., different values of b, are adopted for modeling buildings with partial
occlusions. In total, fourteen values are considered (w = 1; w = 1/5; w = 1/10; w = 1/50;
w = 1/100; w = 1/200; . . . ; w = 1/1000). Figure 8a,b show the Fscore values corresponding
to each weight for rectangular and curved buildings, respectively, whereas Figure 8c,d
show the PoLiS values. In addition, we show the visual result of the modeling for buildings
B1_oc2 and B2_oc2 using different weight values (Figure 9).
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4.2. Real Data

In order to evaluate the proposed method for a real environment, we selected a set
of buildings from the Presidente Prudente/Brazil dataset (Figures 10–14). In this case, all
buildings have occlusions caused by nearby trees. Care was taken in the selection, aiming
to choose buildings and occlusions with different complexities. Similar to the simulated
dataset, the WICDS was performed using w =1/300.
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Figure 10. Buildings with occlusions selected in the Presidente Prudente/Brazil dataset. Aerial image
patches (first column), points sampled over the building roof (second column), and results derived
from ICDS (third column) and WICDS method (fourth column).
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Figure 12. Modeled boundary for building B8. Results using the ICDS and WICDS method. The
orange rectangles highlight the occlusion region.
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Figure 13. Two-dimensional (a) and three-dimensional (b) representations for buildings B9–B11. First
row in (a): aerial image patches, roof points and results derived from building modeling methods.
Second row in (b): representation 3D of roof points and results of boundary modeling. The cyan
rectangles in (a) highlight the occlusions caused by antennas.
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Figure 14. Occlusions at building corners caused by nearby trees. Building with curved segments
(first row). Building with straight-line segments (second row). For both buildings, we show aerial
image patches, roof points, and modeled boundaries. The orange rectangles highlight the corner
region in B13 where the occlusion occurs.

In Figure 10, we show the results using the ICDS and WICDS methods for buildings
B3–B8. Additionally, we show aerial image patches corresponding to each building and
its surroundings, as well as the points sampled on the building roof. In order to show the
influence of weight on real data, we show the modeling results for different weight values
for buildings B6 and B7 (Figure 11).

In Figure 12, we show building B8 considering its projection in 2D space. This building
has a pitched roof (Figure 10) and the occlusion covers part of the ridge up to the rightmost
corner. The orange rectangle highlighted the segment with occlusion, as well as the results
derived from both modeling methods (Figure 12).

In Figure 13, we show the 2D and 3D representations for buildings B9–B11. In this case,
building B9 is partially occluded by two trees, whereas building B10 is partially occluded
by a tree and three circular antennas (right side). Building B11 has a small occlusion caused
by a large antenna. In Figure 13a, the cyan rectangles highlight the occlusions caused by
these antennas.

Figure 14 shows two cases where the occlusion occurs at the building corner. In
buildings B12 and B13, both occlusions are caused by nearby trees. In this case, B12 is
composed of curved segments, whereas B12 is composed only of straight-line segments.
The orange rectangles highlight the modeling at the occlusion region.

In Table 1, we show the reference area for selected buildings, as well as the area and
relative error corresponding to modeling approaches. In Table 2, we show the completeness,
correctness, Fscore, and PoLiS metrics for buildings B3–B11 using ICDS and WICDS methods.
In the last column in Table 2, we show the metric PoLiS corresponding to WICDS and the
percentage of improvement or deterioration with respect to the ICDS. In Figure 15, we
show graphics of the quality metrics Fscore and PoLiS for buildings B3–B11 considering
both approaches.
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Table 1. Estimated area and relative error in area using ICDS and WICDS approaches.

Reference ICDS Approach WICDS Approach

ID Area (m2) Area (m2) ER (%) Area (m2) ER (%)

B3 595.72 584.24 −1.93 584.90 −1.82
B4 454.03 422.09 −7.03 444.76 −2.04
B5 383.05 349.42 −8.78 376.54 −1.70
B6 303.75 210.03 −30.85 290.91 −4.23
B7 805.95 801.49 −0.55 811.37 0.67
B8 612.09 601.90 −1.66 608.55 −0.58
B9 52.91 44.01 −16.82 51.76 −2.17

B10 108.84 106.80 −1.87 109.67 0.76
B11 77.00 75.32 −2.18 75.64 −1.77

Table 2. Quality metrics for different buildings using the ICDS and WICDS approaches.

ICDS Approach WICDS Approach

ID Comp. (%) Corr. (%) Fscore (%) PoLiS (m) Comp. (%) Corr. (%) Fscore (%) PoLiS (m)

B3 97.4 99.3 98.3 0.159 97.4 99.2 98.3 0.162
(1.88%) *

B4 92.4 99.5 95.8 0.377 97.5 99.5 98.5 0.193
(−48.80%)

B5 91.0 99.8 95.2 0.434 98.1 99.8 99.0 0.121
(−72.12%)

B6 68.2 98.7 80.7 0.783 94.9 99.0 96.9 0.244
(−68.84%)

B7 98.3 98.9 98.6 1.368 99.7 99.0 99.4 0.105
(−92.32%)

B8 98.2 99.8 99.0 0.294 99.2 99.8 99.5 0.561
(90.82%)

B9 82.1 98.7 89.7 0.274 96.6 98.8 97.7 0.147
(−46.35%)

B10 97.1 99.0 98.1 0.109 99.3 98.6 98.9 0.084
(−22.94%)

B11 96.7 98.9 97.8 0.107 97.1 98.8 97.9 0.104
(−2.8%)

Mean 91.3 99.2 94.8 0.434 97.8 99.2 98.5 0.191
(−55.93%)

* Percentage of improvement (negative values ”−“) or deterioration (positive values “+”) of PoLiS metric for
WICDS approach in comparison to the ICDS approach.
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5. Discussion

Through a visual analysis of modeled boundaries for the simulated dataset
(Figures 5 and 6), we can observe that contours are not correctly modeled by the ICDS
approach in occlusion regions. In building B1, the ICDS adjusted curves of different de-
grees for the occlusion regions (B1_oc1, B1_oc2, and B1_oc3), incorrectly modeling the
irregularity caused by occlusion. In building B2, the ICDS properly models the curved
segment when a small occlusion is present (B2_oc1). However, this is not the case for larger
occlusions (B2_oc2 and B2_oc3). In contrast, the WICDS correctly models all segments,
even when dealing with occlusions with different magnitudes. The exception occurred in
building B3_oc3, which has a large occlusion covering (around 70%) of a curved segment.
In this case, it is modeled as a straight-line segment instead of a curve. In general, this
visual analysis indicates the potential of the proposed method in modeling contours with
different magnitudes of occlusion, including those buildings composed of curved segments.

Analyzing the Fscore and PoLiS plots for buildings B1 and B2 (Figure 7), we can observe
that modeling using ICDS tends to get worse with increasing occlusion sizes. For the
WICDS, the quality metrics remained stable even when experiencing occlusions of different
magnitudes, having Fscore and PoLiS values very close to buildings without occlusions. Ad-
ditionally, it is possible to note that only the Fscore of curved buildings with large occlusions
(B2_oc3) has a large difference, since the curved segment is modeled by a straight line.
These results reinforce the potential of WICDS and its superiority over the ICDS.

In Figure 8, we show the Fscore and PoLiS plots for buildings with partial occlusions
as a function of the weight values, i.e., by changing the multiplying factor b (Section 2.2).
It is possible to note that weight value may influence the boundary modeling. However,
the results tend to stabilize when a weight value less than 1/100 is considered for points
located at the occlusion region, as can be observed in plots. This behavior is also observed
in Figures 9 and 11, where the visual representation of the modeled contour using different
weights is shown. This information can guide the user in defining the weight.

Considering buildings B3–B8 from the Presidente Prudente/Brazil dataset (Figure 10),
it is possible to note that most of the occluded segments are not correctly modeled by
ICDS, especially those with large occlusions, for example, buildings B4–B6. The ICDS
has a problem in the modeling of curved buildings with occlusions (building B7). It can
observe that the two curved segments are modeled by a straight line. In contrast, the
WICDS method correctly modeled the contours in most cases, including buildings B4–B6
with a high occlusion level and curved building B7. The proposed method has a problem
in modeling the corner of the pitched roof in building B8, since the occlusion occurred in
this region.

Although the proposed approach does not model the corner of the pitched roof in B8,
the contour in 2D space has a consistent representation, as can be observed in Figure 12. In
contrast, the ICDS method is able to extract the corner of the pitched roof: however, the
final contour has an irregular shape in the occlusion region (Figure 12).

In buildings B9–B11, it is possible to observe multiple occlusions, which are caused
by trees and circular antennas (Figure 13). Even with this complex scene, all contours are
correctly modeled by the WICDS method. In contrast, the ICDS approach is not able to
properly model the segments with tree canopy occlusions in buildings B9 and B10, and the
segment with an antenna occlusion in building B10.

Performing a visual analysis in Figure 14, it is possible to observe that both methods
present problems to model contours when the occlusion occurs close to the building corners.
In the case of ICDS, the method tries to adjust small straight-line segments in the occlusion
region. In the WICDS approach, the occlusion is modeled by a curved segment. In fact, this
is one critical situation and these results indicate a limitation of both methods to model
contours with occlusion in corner regions.

In Table 1, it can be seen that the relative error in the area tends to be negative, i.e.,
the extracted area is smaller than the reference area. This characteristic is related to the



Sensors 2022, 22, 6440 17 of 18

subsampling of LiDAR data. Comparing the two approaches, it is possible to observe that
WICDS has a smaller magnitude of relative error for the majority of buildings.

In terms of completeness (Table 2), the WICDS presents an average value of 97.8%,
against 91.3% of the ICDS. In this case, the WICDS presents an improvement of around 6.5%
in completeness. It is important to highlight that the completeness of the ICDS approach is
influenced by the size of the occlusion, i.e., higher occlusions lead to lower completeness
values, as can be observed in Table 2. Considering the correctness values, both methods
present values of 99.2%. Analyzing the Fscore metric, the WICDS has an average value of
around 98.5%, against 94.8% of the ICDS. This increase in Fscore reflects the improvement
in completeness, since Fscore is a harmonic mean between completeness and correctness.
In general, these results indicate the improvement of the proposed method in terms of
completeness for the modeling of boundaries with occlusions.

In terms of the PoLiS metric, the ICDS has a value of around 0.43 m, against 0.19
m of the WICDS. It represents an increase of around 0.24 m (improvement of ≈56%).
Building B7 has the greatest magnitude of improvement going from 1.37 to 0.10 m (≈92%).
These results indicate the robustness of the proposed method when working with partially
occluded buildings.

Analyzing the Fscore and PoLiS plots for buildings B3–B11 (Figure 15), we observe
that WICDS presents similar or better values than ICDS. The exception is the PoLiS value
for building B8, since the proposed approach is not able to extract the corner point of a
pitched roof.

In summary, the qualitative and quantitative analysis indicates that the proposed strat-
egy has the potential to model building boundaries with occlusions, including boundaries
formed by curved segments and occlusions of different sizes.

6. Conclusions

This paper proposes a method for modeling building boundaries with partial occlu-
sions from airborne LiDAR data. The main contribution is the addition of weights to the
previously developed ICDS approach, which allows for the correct modeling of segments
in occlusion regions. The conducted experiments indicated that the proposed method is
robust in modeling contours with occlusion, including curved segments and occlusions
of different sizes. In terms of Fscore and PoLiS, the proposed method results in values of
around 99% and 0.19 m, respectively. The drawback relates to the modeling of buildings
with occlusions at or near the corners.

For future research, it is suggested to automatically estimate the weights for points in
potential occlusion regions with the integration of data acquired from a different perspec-
tive, such as, for example, terrestrial LiDAR data or oblique images, in order to identify
corners in occlusion regions. In addition, we suggest the use of an automatic approach for
detecting the occlusion regions.
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