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Abstract: Ego-motion estimation is a foundational capability for autonomous combine harvesters,
supporting high-level functions such as navigation and harvesting. This paper presents a novel
approach for estimating the motion of a combine harvester from a sequence of stereo images. The
proposed method starts with tracking a set of 3D landmarks which are triangulated from stereo-
matched features. Six Degree of Freedom (DoF) ego motion is obtained by minimizing the reprojection
error of those landmarks on the current frame. Then, local bundle adjustment is performed to refine
structure (i.e., landmark positions) and motion (i.e., keyframe poses) jointly in a sliding window.
Both processes are encapsulated into a two-threaded architecture to achieve real-time performance.
Our method utilizes a stereo camera, which enables estimation at true scale and easy startup of
the system. Quantitative tests were performed on real agricultural scene data, comprising several
different working paths, in terms of estimating accuracy and real-time performance. The experimental
results demonstrated that our proposed perception system achieved favorable accuracy, outputting
the pose at 10 Hz, which is sufficient for online ego-motion estimation for combine harvesters.

Keywords: combine harvesters; ego-motion; FREAK feature; visual odometry; stereo camera

1. Introduction

An increase in farming productivity and efficiency is needed to meet the challenges
of population growth, climate change, and labor shortages. The development of robotics
and autonomous vehicles provides an attractive solution that is core to precision agri-
culture [1,2]. Currently, combine harvesters are manned in most cases, and the steering
accuracy decreases rather dramatically when operators have worked long hours in tedious
and monotonous fields to ensure the yield is collected on time. The application of an au-
tonomous system for combine harvesters could release the operators from arduous driving
tasks, reduce operator fatigue, and improve product quality and operational safety.

Ego-motion estimation is a key capability for autonomous combine harvesters, which
refers to the ability to obtain the states of combine harvesters, including locations, orienta-
tions, and velocities. These measured values combined with the target path can produce
lateral and heading offset, which can be used as control variables to drive actuators (steer-
ing, throttle, or brake) to achieve autonomous navigation. Extensive research has been
dedicated to localization for agricultural vehicles, with different studies varying in terms
of the type of sensor used in processing methods, and accuracy, real-time performance,
and cost. The Real-Time Kinematic-Global Navigation Satellite System (RTK-GNSS) is
widely used in agricultural vehicles due to its accessibility and centimeter-level location
accuracy [3–5], but it is vulnerable to interference and is incapable of perceiving the en-
vironment, limiting its usage as the primary sensor of the agricultural vehicle perception
system. Inertial measurement units (IMUs) are prone to drift and can be expensive in
high-precision applications. Wheel odometry does not work in rough terrain (slipping and
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sinking). Vision sensors are lightweight, cost-effective, and have flexible hardware settings,
providing abundant information. Furthermore, visual motion estimation is less sensitive to
soil mechanics and has lower drift rates.

Recent progress in computer vision, in combination with the advent of new hardware
platforms, has demonstrated promising successes in a wide range of applications, such as
the Mars rover, mobile robots, and self-driving cars. The latest research efforts based on
visual perception in agricultural vehicles have been developed, tested, and reported [6,7].
However, as for crop field operation and combine harvesters, highly similar or repetitive
patterns, varying lighting conditions, and dynamic scenes pose a great challenge to inferring
accurate and timely motion from visual measurement.

This paper proposes a novel approach for estimating the ego-motion of a combine
harvester using an on-board stereo camera. Our method was developed based on an open-
sourced algorithm and off-the-shelf libraries in computer vision, tailored for crop field
operation and combine harvesters. The primary contributions of our work are summarized
as follows:

1. An accurate and robust stereo visual odometry was developed to estimate the motion
of combine harvesters. We studied the problem of implementing salient feature detec-
tion, discriminative description, and reliable matching under the agricultural scenario.

2. We exploit prior information about the harvester motion and its environment to speed
up data association. Several strategies are implemented to tackle the highly similar or
repetitive agriculture scenes.

3. Systematic and extensive evaluation of our method was performed on real datasets
recorded in a crop field by a stereo camera mounted on top of combine harvesters.
The results demonstrate high performance in the pose estimation task.

The remainder of the paper is organized as follows: Section 2 reviews visual-based
self-motion estimation applications in agriculture. Section 3 gives an overview of our
method and describes the components in detail, including stereo visual odometry (front-
end) and local map optimization (back-end). Section 4 presents the experimental setup,
and evaluates our method on a variety of sequences in the agricultural environment, and
is followed by a discussion about its capabilities and limitations in Section 5. Section 6
concludes this work and gives ideas for future work.

2. Related Work

Vision-based localization is a popular and broad topic that is deeply task-dependent,
and refers to the process of obtaining the position and orientation of a vehicle by analyzing
consecutive images from cameras. Design and commissioning are heavily dependent
on the type of motion, environmental characteristics, performance requirements, and
computational resources. This section examines works that are more closely related to
agricultural applications.

Agricultural scenarios are richly textured and thus suitable for feature-based vision
algorithms. The effectiveness and efficiency of the feature extraction have an important
influence on the performance of the visual odometer or SLAM system. SIFT [8] and SURF [9]
are the most well-known algorithms and have good performance in terms of robustness
to rotation, scale, and noise, but they cannot meet the real-time requirement for a VO or
SLAM system due to their high computational cost. Recently, many effective and efficient
feature detectors and descriptors have emerged, such as OBR [10], AGAST [11], BRISK [12],
and FREAK [13]. These algorithms are implemented by encoding a local intensity value
comparison/order statistic into binary strings for detection and description, meaning their
detection and description are fast, and they are memory efficient.

Ericson and Åstrand [14] analyzed two visual odometry methods in different camera
setups (downward-facing and forward-facing) in an agricultural scenario. Both methods
use a feature-based approach. The results demonstrated that a forward-facing camera
with an angle of 75◦ achieved the least localization error. Shahzad Zamana and Lorenzo
Combab [15] presented a reliable and cost-effective monocular visual odometry system
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for UGV navigation in agricultural applications. The system used the normalized cross-
correlation methodology to process the low-resolution images (320× 240 pixels). Field tests
were carried out on several terrains, including soil, grass, concrete, asphalt, and gravel. The
experiment results verified its accuracy and robustness in motion evaluation. Dawei Jiang
and Liangcheng Yang [16] designed a 3D ego-motion estimation system for an agricultural
vehicle (i.e., a gantry) on uneven terrains. Harris features were tracked in image sequences
using a stereo camera, and field tests were conducted on a soybean field and to demonstrate
its accuracy.

To alleviate the impact of inherent camera measurement noise, two methods are preva-
lent: filtering approaches (EKF/UKF/Particle SLAM) and batch optimization (bundle
adjustment). The work of F. Auat Cheein [17] described an optimized EIF SLAM algo-
rithm to detect olive stems as an alternative to EKF- and UKF-based SLAM, whose linear
computational cost was more suitable for real-time applications. Santosh Hiremath [18]
proposed a localization and navigation method based on particle filtering to account for the
different uncertainties in a semi-structured agricultural environment. Hauke Strasdat’s [19]
research showed that, through progress in computer processing power and algorithms,
keyframe-based bundle adjustment outperformed filtering. A plethora of excellent batch
nonlinear optimization methods have emerged [20,21]. A keyframe-based sliding win-
dow strategy was used to build a metric constraint around the current frame for jointly
optimizing keyframes and landmarks [22], after balancing accuracy and speed.

Feature-based VO and VSLAM are the most widely used formulations [23–25], and
are very well-suited for richly textured agricultural environments. In general, it is difficult
for visual perception systems to detect loops for applications in agricultural scenarios, and
most SLAM systems will degenerate into VO systems, resulting in inevitable drift, which is
still considered an unresolved problem.

3. Materials and Method
3.1. Overview

The main focus of our method concerns the way a combine harvester estimates its
motion using a stereo camera. Most state-of-the-art visual perception systems make use of
a multithread design to run in real time without FPGA or GPU acceleration. We follow this
principle by adopting a two-thread architecture. The architecture and components of the
proposed method are shown in Figure 1, and consist of a front-end and a back-end. The
front-end thread detects features, creates landmarks, and outputs the poses of harvesters at
a specific frame rate. The back-end thread is in charge of jointly refining landmark positions
and keyframe poses at a lower rate.

As a feature-based method, the choice of feature detector and descriptor is both crucial
and challenging for applications in agricultural scenarios. In addition to the essential prop-
erties required for visual odometers, i.e., rotation invariance and scale invariance, we are
more concerned with robustness to similar texture and illumination changes. Furthermore,
the feature should be fast to detect, describe, and match to fulfill real-time performance.
We experimentally evaluated ORB, AGAST, BRIEF, etc., and adopted the FAST detector
combined with the FREAK descriptor in our method, which not only demonstrated high
efficiency in computation and memory usage, but also exhibited discriminative power
against the repetitive agriculture scenes.

We used stereo cameras to obtain depth information from only a pair of stereo images,
which greatly simplified the complexity of system initialization and avoided scale drift.
As a first step to system initialization, a set of sparse landmarks are generated by means
of triangulating FREAK features from the first stereo frame. The first frame is set as a
keyframe and its pose as the origin of the world coordinate system (all subsequent position
and coordinate estimates are made with respect to this frame).
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Figure 1. Our method is split into two separate threads, one for estimating the motion of combine
harvesters (green block) and the second for optimization (yellow block).

3.2. Front-End

The front-end thread detects features, creates landmarks, and outputs the poses of
harvesters at a frame rate. The back-end thread is in charge of jointly refining landmark
positions and keyframe poses at a lower rate. The front-end refers to stereo VO for estimat-
ing the 6DOF pose of a combine harvester at each new stereo frame and deciding when
to insert a new keyframe. The whole trajectory is recovered by concatenating the motion
of the vehicle in successive frames. Next, we detail each step of the stereo VO, including
image pre-processing, feature extraction and matching, pose estimation, new keyframe
decision, and landmark creation.

3.2.1. Image Pre-Processing

For each input stereo image, we perform distortion removal and rectification using
known parameters to improve the efficiency of stereo matching. Then, the image is con-
verted to 8 bpp greyscale. In addition, we perform image enhancement by means of
Contrast Limited Adaptive Histogram Equalization, to normalize image brightness and to
acquire the same mean and variance.

3.2.2. Feature Extraction and Matching

We extract about 2000 Accelerated Segment Test (FAST) [26] features on the pre-
processed stereo image, and an eight-level pyramid is used to produce multiscale features
for the sake of scale invariance. In order to obtain a homogeneous distribution of the
features, we divide the stereo image into a two-dimensional grid (e.g., 60 × 60 pixels).
Features are extracted and matched independently over each grid cell. Harris corner
response function is used to rank the features in descending order, and the top ten are
retained. In practice, we use an adaptive threshold to ensure a fixed number of features.
This step enables the parallel operation of feature detection and description in an efficient
manner using a multicore architecture. For every retained FAST feature, we calculate
its orientation (Intensity Centroid) and Fast Retina Keypoint (FREAK) [27] descriptor
at each level of the image pyramid correspondingly. The FREAK descriptor adopts a
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retinal sampling pattern that has the overlapping receptive fields, which results in more
information and more discriminative power.

After successful extraction of FREAK features, the next step is to perform stereo
matching, as shown in Figure 2. For each FREAK feature in the left image, we search
for its correspondences in the right image along the same row as the input stereo images
are rectified. In order to generate more landmarks, a large disparity search range of
half of the image width resolution is implemented. We use the Hamming distance to
compute the dissimilarity measures of two descriptors. Similar textures frequently cause
issues with accurate matching. We apply the right–left consistency check to eliminate
mismatching. Furthermore, the distance ratio test [28] is used to reject all ambiguous
correspondences when

D(i, p)
D(i, q)

> τ (1)

where D(i, p) denotes the Hamming distance of the best match and D(i, q) is the second-
best match. An appropriate threshold can be used to reject false positives (empirically,
τ = 0.9). Once stereo correspondences are obtained, stereo triangulation is carried out
to calculate the depth of the landmark. The coordinates of landmarks P = [X, Y, Z]T are
obtained as follows:

X = ul
B
d

, Y = vl
B
d

, Z = f
B

ul − ur
= f

B
d

, (2)

where f is the focal length and B is the baseline of the stereo camera. The inverse of the depth
Z of a pixel is denoted as d = Z−1, which has been proved to be favorable when visual
measurement errors are modeled as Guassian distributions. For subsequent tracking of the
landmarks, associated descriptors (left image descriptor) are stored for subsequent tracking.
It is worth noting that only map points with a depth of less than 15 m are considered
reliable for dense mapping.
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Figure 2. A total of 2000 FREAK features were extracted and 257 pairs were successfully matched.

Next, we establish 3D–2D correspondences by means of projecting those 3D landmarks
into the current frame and searching for their 2D features. A constant velocity motion
model is adopted to expedite matching, under the assumption that large motions between
successive frames are prohibited because of the inertia of the harvester. The search range
for each landmark is constrained to a circle of radius pixels (rs = 8), with the centre of the
circle determined by the velocity of the previous frame. The 3D–2D correspondence is
established following the same strategy as the stereo matching procedure, as shown in
Figure 3.
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Figure 3. 3D–2D correspondence; the crosses denote a sparse set of landmarks, the green dots
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3.2.3. Ego-Motion Estimation

Due to similar and repetitive textures or moving objects in an agricultural environment,
the 3D-to-2D correspondences still contain outliers, i.e., mismatched points. A popular
and effective strategy, RANSAC [29], is employed to reject outliers. Next, we estimate the
pose of harvesters under the condition that a set of landmarks whose 3D coordinates in the
world coordinates are known, and their corresponding 2D projections in the current frame
are also known. To achieve high accuracy and robustness of pose estimation, a two-stage
coarse-to-fine calculation procedure is introduced. The first stage is used to obtain a coarse
estimation of a pose using an EPnP algorithm [30], which is a non-iterative solution with
better accuracy and less computational cost. In the second stage, the coarse estimation is
used to initialize a motion-only bundle adjustment to refine the vehicle pose iteratively
using all 3D–2D correspondences. As shown in Figure 4, the pose of the combine harvester

in the current frame (blue rectangle) is T ∈ SE(3), T =

[
R t
0T 1

]
, R ∈ SO(3) and t ∈ R3

are a rotation matrix and translation vector, respectively. Motion-only BA minimizes the
reprojection error (red segment) between the projections π(·) of the landmarks Pi ∈ R3

in the current frame and the corresponding measurements Zi
(·), including monocular

Zi
m = [ul vl ]

T ∈ R2 and stereo Zi
s = [ul vl ur]

T ∈ R3. i ∈ x denotes the set of all 3D–2D
correspondences. Pose refinement can be expressed as:

{R, t} = argmin
R,t

∑i∈x ρ
(
‖ Zi(·) − π(·)(RPi + t) ‖2

∑

)
, (3)

where ρ is the robust Huber cost function and ∑ is the covariance associated with Zi(·). We
employ a pin-hole camera projection function π defined as follows:

πm




X

Y

Z


 =

 fxX
Z + cx

fyY
Z + cy

 =

[
ul

vl

]
, (4)

πs




X

Y

Z


 =


fxX
Z + cx

fyY
Z + cy

fx(X−b)
Z + cx

 =


ul

vl

ur

, (5)
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where ( fx, fy) is the focal length and (cx, cy) is the principal point obtained from calibration.
We minimize Equation (2) by performing the well-known Levenberg–Marquardt algorithm
in general graph optimization (g2o) [31].

3.2.4. New Keyframe Decision and Landmark Creation

Consecutive frames contain redundant information, especially with the slow motion
and occasional stopping of a combine harvester. We use keyframes to cope with data
redundancy, which also facilitates the nonlinear optimization in the back-end thread.
Furthermore, keyframes are used to expand the map as the vehicle explores new areas. A
frame is selected as a keyframe when the pose of the frame is refined successfully and the
number of tracked landmarks drops below 90% of a fixed level M (typically M = 200). After a
new keyframe is created, the newfound FREAK feature pairs are triangulated to create new
landmarks, and both of them are added to the local map for the subsequent optimization.
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the current frame, the red rectangles denote the keyframe, the crosses denote a sparse set of landmarks,
the green dots represent the projection of landmarks π(·), the black dots represent visual measurement
Zi(·), and the red segment between green dots and black dots represents reprojection error. Motion-
only BA only refines the latest vehicle pose, whereas local BA jointly optimizes keyframes and
landmarks in the form of a factor graph. Both operations refer to minimizing the reprojection error.

3.3. Back-End

In this section, we seek to maintain and refine a local consistent map, which is an active
working region around the combine harvester, consisting of a set of sparse landmarks and
keyframes. When the last keyframe is inserted, the pose of keyframes and coordinates
of all active landmarks are jointly optimized. This is a non-linear optimization problem
tackled by least squares estimation called “Local Bundle Adjustment”, which minimizes
the reprojection error between all the observed landmarks and their projection in recent
neighboring keyframes. In addition to having an initial estimate relatively close to the real
solution, a reasonable selection mechanism is crucial to reduce the number of parameters to
be optimized. A sliding window solution is implemented to obtain K f active keyframes (we
use K f = 6) and landmarks M visible from these keyframes, thereby achieving a constant
time computational cost and real-time performance.

When a new keyframe is inserted and new landmarks triangulated from the keyframe
are added, we proceed to a local bundle adjustment, which can be formulated as a
Pose–Points graph, whose nodes represent the keyframe poses

{
K1, . . . , K f

}
and the land-

marks P = {P1, . . . , PM}, while the edges symbolise the measurement Zij of the pi landmark
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observed in the Kj keyframe. Those parameters, embedded in a metric constraint space, are
optimized in Equation (6) as:{

Pi, Rj, tj
}
= arg min

Pi,Rj,tj
∑i∈M ρ

(
‖ Zij(·) − π(·)(RPi + t) ‖2

∑

)
, (6)

Figure 4 illustrates the local BA process, as we have done in motion-only BA, where
only the latest pose at the current frame is adjusted. The Huber norm is used to refine the
adjacent keyframe poses and 3D positions of the landmarks in the local area. Landmarks
with large reprojection errors or non-convergences are removed from the Pose–Points graph.
In addition, the old keyframes and landmarks that leave the field of view of the camera
are marginalized. The Pose–Points graph is updated as the vehicle moves and inserts a
new keyframe.

4. Experimental Results

Our proposed method was tested in terms of accuracy, robustness, and real-time
performance on large-scale and realistic agricultural scenarios data. In this section, details
of our experimental implementation and data collection are presented, and a numerical
analysis is carried out to demonstrate its capabilities and limitations.

4.1. Experimental Setup

The proposed method was developed for combine harvesters based on a real agri-
cultural scene. A data acquisition platform was developed for our research, as shown
in Figure 5. A wheeled combine harvester (Model: HaoLong, World Co., Ltd., Danyang,
China) was employed to reproduce the trajectory, and a stereo camera (ZED, Stereolabs Inc,
San Francisco, CA, USA) was mounted on top of the cabin, in the middle of the combine
harvester, with a forward-looking setup at the height of 3.06 m. The image was acquired at
10 Hz with the resolution of 1280 × 720 pixels. Table 1 shows the technical specifications
of the ZED. A localization unit was equipped on our platform, mounted about 10 cm
behind the stereo camera on the top of the harvester, which included an RTK-GPS (Model:
UM220- IV NV, PENA ELECTRON, Shenzhen, China) and an IMU (Model: MTi-10, XSENS,
Enschede, The Netherlands). The accompanying location and orientation data of the
GPS/IMU allowed us to compare the performance of our method. All experimental data
collection was carried out by a laptop. Image data and GPS/IMU data were timestamped
according to the system clock and synchronized.
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employed as a mobile platform.
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Table 1. ZED technical specifications.

Image Format 2K/1080P/720P

Frame rate 60/30/15 (Hz)
Lens FOV 110◦

Pixel size 2 µm
Sensor size 1/3”

Shutter Sync. Rolling Shutter
Baseline 120 mm

Connection USB3.0

The experimental dataset consisted of six stereo sequences, with a total length of
1093.8 m and a total time of around 1362 s, collected in a rice field in a farm in Danyang
during the harvesting season. In order not to damage the crop and to obtain a smoother
trajectory, sequences 3 to 6 were collected on stubble fields. The combine harvester was
controlled manually, traversing the field in a predetermined path with an average speed of
0.8 m/s. The trajectory was recorded by the RTK-GPS/IMU sensor as the trajectory ground
truth, as shown in Figure 9. Table 2 details the particularities and challenges (from easy to
difficult) of our dataset.

Table 2. Sequence description.

Sequence # Difficulty Length (m) Duration (s) Frames Particularities

Seq. 01 easy 96.4 116.3 3489 Straight Line
Seq. 02 easy 126.3 152.8 4584 Curved Line
Seq. 03 medium 157.9 186.3 5586 Intersecting Line
Seq. 04 medium 178.6 229.4 6882 Rectangle
Seq. 05 difficult 161.9 248.6 7458 U-shape
Seq. 06 difficult 372.7 429.4 12,882 R-shape

4.2. Implementation Details

The proposed method was developed in C++ under Ubuntu 16.04 and ROS Kinetic,
running on a standard laptop with an Intel Core i7-8550 (4C8T @ 2.60 GHz) and 16 Gb RAM.
Each processing module runs over a ROS node. ROS [32] is an open-source framework
that provides a flexible software architecture to allow integration of various sensors and
algorithms, combined with open-sourced algorithms in computer vision and the robotics
community, which led to fast and simplified development of our method. The ZED stereo
camera was calibrated using the method proposed by Zhengyou Zhang [33] to obtain
intrinsic and distortion parameters. Image I/O operations, feature-related operations, and
EPnP were performed using the OpenCV library. Nonlinear optimization was applied
using the general graph optimization (g2o) library.

4.3. Accuracy

The Absolute Pose Error (APE) and Relative Pose Error (RPE) [34] were used as
evaluation metrics to quantify the accuracy of the estimated pose in our proposed method.
Each sequence was run 10 times to alleviate the randomness of the multithreading system
in the results. We used EVO (GitHub—https://github.com/MichaelGrupp/evo) (accessed
on 16 June 2018) for computation and visualization. The Absolute Trajectory Errors are
shown in Figure 6, and measure the overall performance of our method by computing
the Euclidean distances between the estimated pose and the corresponding ground truth.
Figure 7 exhibits the Relative Pose Errors of Seqs. 01 to 06, which calculate the cumulative
drift over the fixed travelling distance. Our proposed method achieved favorable results
on the regular harvesting paths (Seqs. 01 to 03). However, our method still encountered
challenges in long-term and large-scale operations (Seqs. 04 to 06). We also compared the

https://github.com/MichaelGrupp/evo
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performance of our method with ORB-SLAM2 (GitHub—https://github.com/raulmur/
ORB_SLAM2) (accessed on 22 Dec 2016), and plotted the boxplot shown as Figure 8.
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Trajectories were aligned and depicted by EVO tools for both methods along with GPS
ground truth, as shown in Figure 8. Our proposed method outperforms the ORB-SLAM2
on most sequences, except Seq. 06 (Figure 9). The results also show that loop closure has
little effect on reducing drift, which is explained in Section 5.
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4.4. Runtime

Achieving real-time performance is equally stringent in autonomous driving. We
used Seq. 02 for timing statistics. As the self-motion estimation and local optimization
are parallelly implemented in two threads, the average runtimes are given for each part
separately in Table 3, given in milliseconds. By inspection of Table 3, our method outputs the
pose at frame-rates of around 10 Hz, which is sufficient for online localization of combine
harvesters. The front-end thread is based on detection and description computation of
features with a fixed number, which has a constant computational cost per frame. In the
back-end thread, the most time-consuming task is local BA, which is proportional to the
number of keyframes and varies as the vehicle explores a rapidly changing scene.
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Table 3. Timing of main components of our method.

Thread Operation Median (ms) Mean (ms) Std (ms)

Front-end

Pre-processing 11.6 12.2 2.3
FREAK Extraction 43.8 45.3 4.2
Stereo Matching 26.5 29.1 2.8

RANSAC 3.2 3.5 1.2
EPnP + Motion-only BA 8.3 10.3 3.5

Keyframe Selection 1.8 2.1 0.6
Total 95.2 101.5 8.7

Back-end

Keyframe Insertion 10.8 10.6 2.8
landmarks Creation 53.1 44.5 18.7

Local BA 203.7 215.3 81.2
Local map refinement 5.3 6.6 1.5

Total 272.9 297.0 94.5

5. Discussion

From Figures 6 and 7, it can be seen that our method achieved state-of-the-art per-
formance when the combine harvester travelled on a straight path (Seq. 01) and a curved
path (Seq. 02) in a crop field. Seq. 03 contains a smooth turn, and our method obtained
acceptable results. Seqs. 04, 05, and 06 contain fast and successive 90◦ or 180◦ turns, in
addition to a long travelling distance, which poses a formidable challenge for accurate
tracking. In these sequences, both our method and ORB-SLAM2 achieved poor results.
The front-end thread of our system processes the successive stereo images to compute the
incremental motion of combine harvesters, which will inevitably accumulate positional
drift in long-term navigation tasks, making the estimated trajectory deviate from the actual
trajectory. The back-end thread is used to refine a series of adjacent poses based on locally
consistency, which is good for small or smooth scene changes. The loop closure module
(place recognition) is an important component used for drift correction in SLAM [35],
which is a global optimization mode. However, in the actual implementation for combine
harvesters, due to the continuous change in the working environment after harvesting,
along with similarity and repetitiveness of the visual appearance, it is impossible for the
loop closure module to recognize places that have already been visited. Furthermore, the
rotation invariance of the binary descriptor is approximated in discretized space, so the
same landmarks that are observed from the opposite travel direction or a large viewing
angle occasionally cannot be recognized. Further efforts are required to limit the drift.

Regarding Seq. 06, the image data were collected in a stubble field (harvested field),
and contain a small amount of loop closure that can be used for ORB-SLAM2 to reduce
the drift. This indicates that the result of our proposed method was not as good as that of
ORB-SLAM2 in Seq. 06.

6. Conclusions

In this paper, we presented a system that was carefully designed to estimate the 6DOF
motion of combine harvesters merely using a stereo camera, which has great advantages in
terms of cost, hardware setup, and power consumption. Our method combines numerous
recent advances in computer vision and robotics with a well-designed two-threaded archi-
tecture to maintain real-time performance. The key idea of our method is to continuously
track and manage a sparse set of landmarks, which in turn are used to estimate the motion
of the harvester. Quantitative evaluations illustrate that our method can provide an accu-
rate and reliable estimation of the harvesters’ pose on regular harvesting paths. We expect
our method will be valuable for other autonomous vehicles in agriculture.

The main drawback of our proposed approach is that pose drift accumulates over a
long distance due to the absence of a loop closure module. The measurements of sequences
5 and 6 illustrate some limitations of our method. The proposed approach is a purely visual



Sensors 2022, 22, 6394 13 of 14

perception system, using a stereo camera as the sole external sensor. Future work will focus
on fusing IMU or GPS data to eliminate drift. The robustness and accuracy of the presented
method still needs to be verified in adverse weather conditions, such as wind, rain, and fog.
A by-product of our method is a sparse point cloud (landmarks) map. This can be used for
localization but has little use for high-level tasks such as path planning, navigation, and
collision avoidance. Future work will be devoted to building a 3D dense map to represent
the environment with as much detail as possible.
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