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Abstract: The study of understanding sentiment and emotion in speech is a challenging task in human
multimodal language. However, in certain cases, such as telephone calls, only audio data can be
obtained. In this study, we independently evaluated sentiment analysis and emotion recognition from
speech using recent self-supervised learning models—specifically, universal speech representations
with speaker-aware pre-training models. Three different sizes of universal models were evaluated
for three sentiment tasks and an emotion task. The evaluation revealed that the best results were
obtained with two classes of sentiment analysis, based on both weighted and unweighted accuracy
scores (81% and 73%). This binary classification with unimodal acoustic analysis also performed
competitively compared to previous methods which used multimodal fusion. The models failed
to make accurate predictionsin an emotion recognition task and in sentiment analysis tasks with
higher numbers of classes. The unbalanced property of the datasets may also have contributed to the
performance degradations observed in the six-class emotion, three-class sentiment, and seven-class
sentiment tasks.

Keywords: affective computing; sentiment analysis; speech emotion recognition; sentiment analysis
and emotion recognition; universal speech representation

1. Introduction

Humans communicate not only by exchanging linguistic information with others but
also through paralinguistic and non-linguistic information [1]. Para-linguistic information
includes intention, attitude, and style (which are not inferable directly from linguistics).
Non-linguistic information includes sentiment and emotion. Sentiment can be regarded
as a sub-category of emotion. It is close to (or the same as) valence in dimensional emo-
tion. Nevertheless, previous studies of sentiment and categorical emotion have been
performed independently.

An attempt to include sentiment information in the task of speech emotion recognition
was undertaken in [2]. In that study, the authors accommodated the sentiment-aware
method to improve speech emotion recognition performance by training a dataset with
the automatic speech recognition (ASR) loss and cross-entropy sentiment loss functions.
The model was then fine-tuned using the concordance correlation coefficient loss function
(CCCL) to predict valence, arousal, and dominance. CCCL has been proven to lead to
better scores than other loss functions [3]. The results showed an improvement in valence
prediction in speech emotion recognition, highlighting the connection between sentiment
analysis and valence prediction.

As in human–human communication, machines (computers) should be able to rec-
ognize non-linguistic information in human–machine communication, particularly in
sentiment analysis and emotion recognition (SAER). This ability is important for more
natural human–machine interactions. Suppose that a robot is able to detect the affective
states of humans. In that case, a robot will also be able to show empathy and sympathy to
humans by acting, speaking, or showing different reactions.
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SAER entails the use of artificial intelligence (AI) to extract sentiment and emotion
information from modalities such as text, audio, and video [4]. Although there is no
consensus in distinguishing between the two, the majority of researchers view sentiment
as part of emotion, as explained previously. This view is backed by an argument that
sentiment analysis uses a simplified binary or three-class categorization, whereas emotion
recognition relies on a deeper analysis of affective states and sensitivities. However,
differentiation matters when these terms are used in marketing, e.g., in feedback from
customers, responses may include statements such as “I hate your product” (emotion) or
“Your service is bad” (sentiment). Nevertheless, the similarity between the two can be used
as a starting point to evaluate the use of AI models in sentiment analysis (SA) and emotion
recognition (ER) tasks.

Instead of studying sentiment analysis and categorical emotion recognition separately,
we performed an integrated study of sentiment analysis and emotion recognition from
speech using the same model trained on a sentiment and emotional speech corpus. This
method enabled the evaluation of a model employed in different tasks, instead of a single
task. On the other hand, we were able to track which task gained the most benefit from the
model by using different variants of the model with different evaluation metrics.

Research on spoken sentiment analysis is derived from natural language processing
(NLP). In NLP, the main object of research is text; hence, in early spoken sentiment analy-
sis research, speech was transcribed into text to analyze the sentiments of transcriptions
(e.g., [5,6]). Nowadays, the advancements in deep learning have shortened the paths for
extracting sentiment information from speech by bypassing transcription and learning
directly from acoustic features [7,8]. The use of acoustic features instead of text is advanta-
geous because speech is richer in affective information than plain text. Other researchers
have fused multimodal information (video, text, speech) to improve the performance of
speech sentiment analysis [9,10].

Research on speech emotion recognition is a step ahead of spoken sentiment analysis.
One of the reasons and indicators for this argument is the availability of the speech emotion
recognition (SER) corpus, which contains a greater quantity of datasets than the available
speech or spoken sentiment analysis corpus. For a comparison, Zadeh et al. [11] listed nine
speech sentiment analysis datasets and 13 SER datasets. Furthermore, Atmaja et al. [12]
listed 19 SER datasets for acoustic-linguistic emotion recognition.

In this study, we aimed to contribute to affective computing research by evaluating
three variants of universal speech representations for three sentiment analysis tasks and an
emotion recognition task independently. Since sentiment and emotion are close (sentiment
is often represented as valence, which is an emotional attribute), it is reasonable to evaluate
the use of the same model for both problems. This case is not a multitask learning case
but four single-task learning cases. The same model, except for the output layer, was
built for the evaluation of four different tasks of speech sentiment analysis and emotion
recognition. The input used for the models consisted of universal speech representations.
Recent research on self-supervised learning has shown the benefit of using universal speech
representations with speaker-aware pre-training (UniSpeech-SAT) [13] for analyses of non-
linguistic information, particularly in emotion recognition tasks, over other self-supervised
learning (SSL) techniques including wav2vec, HuBERT, and WavLM. By employing this
recent SSL model, we expected to gain insights into the performance of the same model on
different paralinguistic information extraction tasks from speech.

2. Related Work

Research on speech sentiment analysis and emotion recognition is not new. Previous
studies have focused on building feature extraction methods or classifiers for general
speech processing or specific cases. In this section, we highlight the previous research on
sentiment analysis and emotion recognition from speech and emphasize the key differences
in our approach in this study compared to those of the previous studies.
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Bertero et al. [14] performed speech emotion and sentiment recognition for interactive
dialogue systems. The authors annotated the TED-LIUM release 2 corpus for emotion
recognition and employed Movie Review and Twitter corpora for sentiment analysis. Those
authors utilized raw speech for emotion recognition and word2vec for sentiment analysis.
It is clear that although the authors proposed to undertake both sentiment analysis and
emotion recognition, they used two different models for each task (using different datasets).
For emotion recognition, the authors evaluated the use of the SVM and CNN methods.
For sentiment analysis, the authors evaluated the use of the CNN and LIWC (Linguistic
Inquiry and Word Count) methods.

In [15], the authors proposed a method to extract features from visual and textual
modalities using a deep CNN for emotion recognition and sentiment analysis. The method,
which is called multiple kernel learning, is a feature selection method to combine data
from different modalities effectively. The multimodal data consisted of audio, video,
and text. The proposed method with feature selection slightly improved the performance
of multimodal fusion without feature selection. The gap in the performance of multimodal
fusion over any single modality was large, highlighting the benefit of the use of multimodal
fusion over the feature selection method.

The authors of [7] trained a robust wav2vec 2.0 system for dimensional emotion
recognition, including sentiment recognition. In that work, the sentiment was treated the
same as valence. The authors reported significant improvements in valence prediction
by fine-tuning the robust wav2vec 2.0 for a dimensional emotion recognition task. This
method of acoustic-only emotion recognition closed the gap between valence and other
emotion dimensions (arousal and dominance), in which the previous methods suffered
from low performance in valence predictions. Before that study, SER employed linguistic
information from transcriptions to improve predictions of valence.

Compared to these previous studies, in this study we focus on the evaluation of the
same model for different sentiment analysis and emotion recognition tasks. The mod-
els’ performances were evaluated based on weighted and unweighted accuracies. Our goal
was to find feasible tasks that were performed well and consistently by a specific model.

3. Methods
3.1. Dataset

We employed (and also motivated by the freely available) CMU-MOSEI dataset [11,16].
Although the dataset was intended for the study of expressed sentiment and emotions
in multimodal language, we only utilized the audio data. The target application was
audio-based applications such as telephone calls, customer services, and virtual assistants.
The raw CMU-MOSEI contains 23,259 utterances (Table 1) for each task. There are three
sentiment tasks and an emotion task. The sentiment tasks are divided into two-class
tasks (2-c, positive and negative), three-class tasks (3-c, positive, neutral, and negative),
and seven-class tasks (7-c, [−3, −2, −1, 0, 1, 2, 3]). The emotion task was derived from
Ekman’s six basic emotions, consisting of happiness, sadness, anger, surprise, disgust,
and fear. Note that the data reported in this paper were different in terms of the number
of samples from the original reported in [16]; the original authors split the samples into
a fixed length of sequences. For instance, the number of samples for fear in the original
reference [16] was close to 1900, whereas the authors only obtained 452 samples.
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Table 1. Distribution of samples for each sentiment and emotion label for different classes (c).

Sentiment Emotion

Labels # 2-c # 3-c # 7-c Labels # 6-c

−3 - - 821 happiness 14,567
−2 - - 2253 sadness 3782
−1 6683 6683 3609 anger 2730
0 - 5100 5100 surprise 437
1 16,576 11,476 7576 disgust 1291
2 - - 3225 fear 452
3 - - 675 - -

Total 23,259

3.2. UniSpeech-Sat Models

Pre-trained models were used to extract acoustic features for the input of the classifier.
The models were three variants of UniSpeech-SAT [13], which were trained on Librispeech,
Librivox, VoxPopuli, and Gigaspeech datasets. The Base model was trained in 400k steps
on LibriSpeech 960 h audio. The Base+ and Large models were trained in 400k steps
on 94k large-scale diverse data (10k Gigaspeech + 24k VoxPopuli + 60k Librivox) [13].
Both Base and Base+ have 94.68M parameters while the Large has 316.61M parameters.
The models were built on top of HuBERT models [17] by integrating contrastive-loss with
the self-supervised learning objective function and utilizing an utterance-mixing strategy
for data augmentation. The models showed higher performance than other SSLs in cases of
non-linguistic information tasks, including emotion recognition.

Figure 1 shows our method for evaluating different tasks using the same dataset
(CMU-MOSEI) and similar methods. For each task, the configuration is different only in
terms of the number of nodes in the output layer of the transformers. These numbers of
nodes depend on the number of classes in the task, e.g., two nodes for two-class sentiment
analysis and six nodes for six-class emotion recognition. Note that all tasks were performed
independently in a single-task manner; the method does not involve multitask learning
that predicts all four tasks simultaneously.

Transformers

UniSpeech-SAT

CMU-MOSEI
dataset

Task #1:
2-class sentiment
analysis

Task #2:
3-class sentiment
analysis

Task #3:
6-class emotion
recognition

Task #3:
7-class sentiment
analysis

Speech
representations

classification

Raw
speech

Figure 1. Flow diagram of the data processing method from the dataset to each classification task.
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4. Experiments

We used the S3PRL toolkit [18] for experiments with our methods.The upstreams
consisted of three variants of UniSpeech-SAT models: UniSpeech-SAT Base, UniSpeech-SAT
Base+, and UniSpeech-SAT Large. The downstream was the ‘mosei’ task with “num_class”
values of either 2, 3, 6, or 7. The configuration “num_class:6” was used for emotion
recognition, whereas other configurations were used for sentiment analysis. Table 2 shows
the details of the hyperparameters used in the experiment. The values of these parameters
were placed in the config.yaml file inside the MOSEI downstream directory.

Table 2. Hyperparameters used in the experiments.

Hyperparameter Value

Optimizer AdamW
Learning rate (LR) 0.0002

LR scheduler Linear
Batch size 2

#Total steps 10,000
#Eval/save steps 250
#Warm up steps 1000
#Workers (CPU) 10

#GPU 4
#Transfomer dim 128

#Head 2
#Encoding layers 2

5. Results and Discussion
5.1. General Results

We present our evaluation of spoken sentiment analysis and emotion recognition
with universal speech representations in terms of weighted and unweighted accuracies.
Weighted accuracy (WA) refers to the overall accuracy determined by dividing the number
of correct predictions (true positive and true negative) by the number of total predictions.
The unweighted accuracy (UA) is the average accuracy per class (average recall). Table 3
shows the results of our experiments in all tasks.

Comparing the sizes of the UniSpeech-SAT models, it is clear that the large model
learned better from the larger data set than the other two smaller models. The improve-
ments from Base, Base+, and Large models were about 1%–2% for both WA and UA.
Comparing each task, for the lowest number of classes, i.e., two-class sentiment analysis,
we observed feasible performance (WA and UA). There are two possible reasons for these
results. The number of the classes was small, and it is possible that the nature of sentiment
lacks a neutral class. Although the first explanation is well established, it is necessary
to confirm the second by experimenting with the same number of samples in two- and
three-class spoken sentiment analysis using other datasets.

5.2. Per Task Evaluations

For the two-task sentiment analysis, the results can be detailed by means of a confu-
sion matrix showing the performance of the model for each class, as shown in Figure 2.
The model (UniSpeech-SAT Large) recognized positive sentiments at higher rates than
negative sentiments due to the number of positive samples compared to negative samples
(16,576 vs. 6683). Nevertheless, despite the low portion of negative samples (28% of total
samples), the obtained performance results still show that the large model could learn from
these data.
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Table 3. Weighted and unweighted accuracies (WA and UA) for sentiment analysis and emotion
recognition tasks using the MOSEI dataset; Bolds indicate the highest scores.

Task WA UA

UniSpeech-SAT Base
2-class sentiment 78.68 69.46
3-class sentiment 61.33 53.75
6-class emotion 64.33 22.01

7-class sentiment 40.63 29.12
UniSpeech-SAT Base+

2-class sentiment 79.36 68.85
3-class sentiment 63.06 55.14
6-class emotion 64.52 22.15

7-class sentiment 42.64 31.12
UniSpeech-SAT Large

2-class sentiment 81.36 72.97
3-class sentiment 65.27 57.12
6-class emotion 64.95 23.39

7-class sentiment 44.85 34.20

neg pos
Predicted label

neg
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ue

 la
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0.53 0.47

0.071 0.93

0.1

0.2

0.3

0.4

0.5
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0.8

0.9

Figure 2. Normalized confusion matrix for two-class sentiment analysis.

For the three-task sentiment analysis, the confusion matrix is shown in Figure 3. It
can be observed that the performance in regard to negative sentiment improved (from 53%
to 57%), whereas the performance in regard to positive sentiment decreased (from 93% to
87%). An interesting result is the low performance in relation to neutral sentiment (27%)
with the 5100 samples. This number was included among the positive sample group in the
previous two-class sentiment analysis (here, the positive sample was split into positive and
neutral samples). There is a debate in psychological research as to whether neutral affect
exists [19] or does not exist [20]. Our results support the second theory, as indicated by
the fact that the two-class sentiment analysis gained more feasible (by WA, for practice)
and reliable (by UA, for details) results than the three-class sentiment analysis with a
neutral state.

The confusion matrix of the six-class emotion recognition task is shown in Figure 4.
In this task, the score of WA showed moderate accuracy (64%). However, the confusion
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matrix shows that the (large) model failed in the recognition of emotional categories
except for happiness, where it achieved 94% accuracy/recall. The reason for these failed
predictions was the large size of the happiness sample; more than half of the data (14,567
samples, 63%) were labeled as happy.

neg neu pos
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0.12 0.27 0.61
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0.5

0.6

0.7

0.8

Figure 3. Normalized confusion matrix for three-class sentiment analysis.
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0.94 0.033 0.017 0 0.0044 0

0.73 0.19 0.043 0 0.04 0

0.69 0.099 0.17 0 0.042 0

0.82 0.067 0.1 0 0.011 0

0.61 0.15 0.14 0 0.098 0

0.93 0.02 0.051 0 0 0

0.0

0.2

0.4

0.6

0.8

Figure 4. Normalized confusion matrix for six-class emotion recognition.
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The last task was a seven-class sentiment analysis, and its confusion matrix is shown
in Figure 5. The WA score for this task was the worst among other tasks, whereas its UA
score was only better than that of six-class emotion recognition. As shown in the confusion
matrix, the recall scores for this seven-class spoken sentiment analysis only displayed the
best results for sentiment classes “−2” and “1”, supporting the low UA score. The reason
for this UA result is the unbalanced distribution of the samples for each class. The lowest
number of samples in label/class “3” (with 675 samples in total) was mostly predicted as
having the label “2” (60%) in the test set. The recall for this label “3” was the worst, with a
percentage of only 0.91% among the others. In contrast, the label “1” with the most samples
(7576) obtained the highest accuracy (68%); this evidence supports the previous unbalanced
distribution problem.

-3 -2 -1 0 1 2 3
Predicted label

-3

-2

-1

0

1

2

3

Tr
ue

 la
be

l

0.24 0.54 0.1 0.019 0.071 0.026 0

0.027 0.49 0.22 0.08 0.15 0.022 0

0.0028 0.13 0.3 0.2 0.34 0.024 0.0014

0.0029 0.025 0.13 0.36 0.46 0.025 0

0.0013 0.02 0.081 0.13 0.68 0.089 0

0.0015 0.021 0.05 0.024 0.58 0.32 0.003

0 0.027 0.0091 0.027 0.33 0.6 0.0091
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5. Normalized confusion matrix for seven-class sentiment analysis [−3, 3].

We found in all tasks that an unbalanced distribution is a critical issue in deep-
learning-based sentiment analysis and emotion recognition. The computational load in
this study was another issue; we needed to perform the experiments in a very small batch
of two samples to avoid memory limitation errors (out of memory, OOM). The size of
the UniSpeech-SAT Large model, aside from the size of the data, was responsible for this
limitation. Future research may be directed toward overcoming these issues.

5.3. Benchmarking with Previous Studies

To gain additional knowledge, we performed a benchmark comparison with the
results of previous studies (Table 4). Although our results did not achieve the highest score,
we found that when using only unimodal acoustic information, the evaluated method
in this research achieved a competitive score with multimodal fusion methods in two-
class sentiment analysis (81.4% vs. 82.5%). Although the score obtained in two-class
sentiment analysis was competitive with others, our scores in six-class emotion recognition
and seven-class sentiment analysis were remarkably lower than the multimodal fusion
results. This issue should be addressed in future studies. Note although the dataset was
the same (the CMU-MOSEI dataset), the number of instances used may have been different.
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Some references [9,21] did not provide the number of instances, whereas references [22,23]
mentioned the use of 23,454 instances.

Within this study, we also compared UniSpeech-SAT with traditional MFCC features.
MFCC is the most common acoustic feature used in audio processing, including neona-
tal bowel sound detection. In [24] the authors employed 24 coefficients of MFCC with
a 25 ms window and 13 ms stride for bowel sound detection to assist in auscultation.
Here, the number of MFCC coefficients was 13 with their first and second derivatives.
The stride and window size were also 10 ms and 25 ms, respectively. The performance of
the UniSpeech-SAT model was remarkably higher than that of MFCC in the two-class, three-
class, and seven-class sentiment analysis (about 10% gap in WA). For six-class emotion
recognition, the gap of 2% with UniSpeech-SAT was still higher than that of MFCC.

Table 4. Comparison of accuracies (WA%) of the results of previous studies using the CMU-MOSEI
dataset; A: audio, T: text, V: video; scores in italics denote UA.

Method Modality Acc2 Acc3 Acc6 Acc7

RAVEN [9,25] A + T + V 79.1 - - 50.0
MCTN [9,26] A + T + V 79.8 - - 49.6
M.Rout [9,27] A + T + V 81.7 - 81.4 51.6
MuIT [9,22] A + T + V 82.5 - - 51.8
M3 [9] A + T + V 82.5 - - 51.9
DCCA [23] A + T 69.4 - - -
MAT [21] A + T 82.0 - - -
MFCC A 71.7 54.0 62.9 34.5

UniSpeech-SAT A 81.4 65.3 64.9 44.8

We believe that the research presented in this paper will have a broad positive impact
on the speech emotion recognition and spoken sentiment analysis communities due to the
following considerations. We adopted an open science approach, utilizing open data and
methods which are fully reproducible and replicable. The CMU-MOSEI dataset can be
downloaded freely without the need for a prior agreement. The model and toolkit, S3PRL,
are also available in an open repository. The configuration of the experiments used to
obtain the results is clearly stated in this paper. Readers can replicate our experiment and
make further improvements and modifications, e.g., by balancing the number of samples
for each class for each task and/or evaluating other pre-trained models and comparing the
results with the scores reported in this paper. The first author welcomes correspondence
from readers on any detail missing from this paper.

6. Conclusions

In this study, we independently evaluated three tasks of sentiment analysis and a
task of emotion recognition based on speech using similar methods. The methods were
universal speech representations with speaker-aware pre-training models used as acoustic
feature extractors and a transformer architecture used as the classifier. The evaluation
of large-scale pre-trained speech embeddings (UniSpeech-SAT Large) on these affective
speech tasks consistently resulted in superior performance among other variants; however,
this was only feasible for two-task sentiment analysis. The other tasks were not feasible
(UA < 60%), which could have been caused by several possible factors, mainly influenced
by the unbalanced distribution of the data.

Although in this study we conducted sentiment analysis and categorical emotion
recognition independently, future studies could merge these tasks into a multitask learning
approach, predicting both sentiment and categorical emotion simultaneously. Multitask
learning benefits from applying information from one task to the other tasks, e.g., predicting
the naturalness of speech could improve emotion and naturalness predictions in multitask
learning [28].
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