
Citation: Meas, M.; Machlev, R.;

Kose, A.; Tepljakov, A.; Loo, L.;

Levron, Y.; Petlenkov, E.; Belikov, J.

Explainability and Transparency of

Classifiers for Air-Handling Unit

Faults Using Explainable Artificial

Intelligence (XAI). Sensors 2022, 22,

6338. https://doi.org/10.3390/

s22176338

Academic Editor: Jianbo Yu

Received: 12 July 2022

Accepted: 19 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Explainability and Transparency of Classifiers for Air-Handling
Unit Faults Using Explainable Artificial Intelligence (XAI)
Molika Meas 1,2 , Ram Machlev 3 , Ahmet Kose 1 , Aleksei Tepljakov 4 , Lauri Loo 1 , Yoash Levron 3 ,
Eduard Petlenkov 4 and Juri Belikov 2,*

1 R8Technologies OÜ, 11415 Tallinn, Estonia
2 Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia
3 The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion—Israel Institute of

Technology, Haifa 3200003, Israel
4 Department of Computer Systems, Tallinn University of Technology, 12618 Tallinn, Estonia
* Correspondence: juri.belikov@taltech.ee

Abstract: In recent years, explainable artificial intelligence (XAI) techniques have been developed to
improve the explainability, trust and transparency of machine learning models. This work presents a
method that explains the outputs of an air-handling unit (AHU) faults classifier using a modified
XAI technique, such that non-AI expert end-users who require justification for the diagnosis output
can easily understand the reasoning behind the decision. The method operates as follows: First, an
XGBoost algorithm is used to detect and classify potential faults in the heating and cooling coil valves,
sensors, and the heat recovery of an air-handling unit. Second, an XAI-based SHAP technique is used
to provide explanations, with a focus on the end-users, who are HVAC engineers. Then, relevant
features are chosen based on user-selected feature sets and features with high attribution scores.
Finally, a sliding window system is used to visualize the short history of these relevant features
and provide explanations for the diagnosed faults in the observed time period. This study aimed to
provide information not only about what occurs at the time of fault appearance, but also about how
the fault occurred. Finally, the resulting explanations are evaluated by seven HVAC expert engineers.
The proposed approach is validated using real data collected from a shopping mall.

Keywords: buildings; HVAC; fault detection and diagnosis; machine learning; explainable artificial
intelligence; XAI; SHAP; XGBoost

1. Introduction

In recent years, we have witnessed an increasing interest in explainable AI (XAI)
research in transportation, healthcare, legal, energy, finance, cybersecurity and other engi-
neering domains [1–7]. With artificial intelligence dominating in major fields, it becomes
imperative to create AI models that are transparent in the sense that the user is presented
with an explanation of why the model generated a certain output or made a specific
decision, all while preserving the high performance and accuracy of the model.

In building energy system applications, data-driven approaches have gained popular-
ity as high-performing methods for the fault detection and diagnosis of HVAC systems [8].
The techniques include statistical-based approaches [9,10] and machine-learning-based ap-
proaches [11–19]. Table 1 provides a summary of fault diagnosis methods for air-handling
units used in the literature, along with the fault classes and the numerical performance
results. Machine learning approaches have received increasing interest for FDD problems
due to their ability to capture non-linear relationships in multi-dimensional data, and they
have outperformed traditional methods in the same task [8,20]. In Ref. [5], convolutional
neural networks were applied to detect faults in the power system. XGBoost was used in
the fault detection of the photovoltaic panels [21], and the result was significantly improved
when an explainable method was added. In electric vehicle applications, deep learning
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was adopted for the fault diagnosis task [20], and it has been proven that diagnosing faults
using the deep learning method shows better accuracy than the traditional fault diagnosis
method. Another data-driven model was introduced in [22], which studied the intelligent
fault detection system for microgrids. The authors of [23] developed a fault detection
approach with an application in wind turbines, with a focus on data-driven techniques to
overcome the problems of non-linearity, unknown disturbances, and noise in the wind tur-
bine measurements. In building HVAC systems, data-driven methods have already become
prevalent in the industry due to the ability to leverage large amounts of raw data [6]. While
data-driven FDD models have ample potential when applied to complex HVAC systems,
they may lack the ability to convince users to take actions towards energy efficiency. They
have the ability to recognize patterns in the data and can make accurate predictions [8].
However, it is often the case that the models are trained to maximize their performance
and accuracy over the training set. It becomes difficult to tell whether the high accuracy
is due to over-fitting problems. The black-box nature of such models, combined with
false-positive results, could potentially hinder users from trusting the system. Therefore,
the improvement of model accuracy and the analysis of the model should work in parallel
to increase reliability.

Table 1. The summary of FDD methods, fault classes, and the numerical results of the best-performing
methods for each study for air-handling units in the literature.

Ref. Application AI Model XAI Technique Number of
Fault Classes

Evaluation Metrics Fault Classes F1-Score Year

This
work

Detecting
AHU faults

XGBoost,
RF, Logistic
Regression

SHAP 5 Accuracy,
precision, recall,
sensitivity,
specificity,
F1-score

Heating coil valve leak 0.978 2022
Heat recovery fault 0.997
Cooling coil valve stuck 0.986
Fan pressure sensor failure 0.998
Cooling coil valve closed 1.00

[18] Detecting
AHU faults

Rule and
1D-CNN

N/A 4 F1-score Cooling coil valve stuck 0.987 2021
Fan circuits broke down 0.995
Outdoor air excessive 0.993
Unit air leakage 0.985

[24] Detecting
AHU faults

Multiscale
convolu-
tional neural
networks

N/A 4 F1-score Duct air leakage 1.00 2021
Fan efficiency decrease 0.999
Cooling coil valve stuck 0.994
Outdoor air excess 1.00

[25] Detecting heat
recycler faults in
the AHU

SVM and NN LIME 1 Accuracy, recall, pre-
cision, sensitivity,
specificity, F1-score

Heat recycler failure 1.00 2019

[26] Detecting
AHU faults

Decision tree N/A 8 F1-score Heating coil valve leakage 0.90 2016
Cooling coil valve stuck 1.00
Cooling coil valve stuck at 65% 0.98
Return fan fixed at 30% 1.00
Return fan failure 1.00
Outdoor air damper stuck 1.00
Exhaust air damper stuck 0.90
Duct leakage before supply fan 1.0

Several recent papers on fault detection and diagnosis for building energy systems
have focused on explainability in order to gain user trust. XAI methods have been adopted
to visualize the model output predictions of individual samples. Fault samples are classified
using machine learning models, and XAI methods are used to explain individual samples
by visualizing the contribution of each feature to the final output. This can help users to
understand whether the prediction should be trusted. In work [6], the local interpretable
model-agnostic explanations (LIME) framework was adopted to explain cases of incipient
faults, sensor faults, and false-positive results from the diagnosis model for the chiller
system, which is based on the XGBoost model. The general XAI-FDD workflow was
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validated using several real test cases. The proposed approach allowed a reduction in
the manual fault-detection time, the analysis of the sources and origins of the problems,
and the improvement of maintenance planning. The authors of [25] used the LIME method
to explain the fault classification results of the support vector machine and neural network
models developed for the diagnosis of heat-recycling systems. The method was able to
explain the diagnosis of the component faults using examples of individual instances. In
work [18], a new absolute gradient-weighted class activation mapping (Grad-Absolute-
CAM) method was proposed to visualize the fault diagnosis criteria and provide fault-
discriminative information for the explainability of the 1D-CNN model, applied to the
detection of faults in chiller systems. The developed method was validated with an
experimental dataset of an HVAC system, showing high diagnosis accuracy for seven
chiller faults. The proposed method was able to successfully explain all of the fault criteria.
In work [27], the Shapley additive explanation (SHAP) framework was adopted to explain
four types of faults in the air-handling unit. The method, validated using real building
data, explored the potential of adopting XAI methods in real-life building applications.

Although state-of-the-art explainable frameworks [6,18,25] have been applied to im-
prove reliability in the fault detection domain, their concepts are still designed for AI
researchers instead of non-AI experts [4]. Since the algorithm was developed for AI pur-
poses, the concept may still be difficult to grasp by non-AI users. There remains a gap in the
delivery of sufficient explanations, which impedes the adoption of XAI methods. State-of-
the-art XAI techniques are designed for machine learning engineers across various domains.
They are beneficial for machine learning developers in understanding whether there is
any bias in the training data or whether the model learns to capture the correct feature
relationships. The XAI outputs can provide insights into the black-box models, but they are
still used to communicate with AI experts [4]. Excessively complicated explanations may
cause end-users to use the system less. Therefore, outputs needs to be processed further
before useful information can be extracted and delivered to target users. Another challenge
in XAI is the creation of explanations that are trustworthy and accurate. A misleading
explanation can cause users to misunderstand or lose confidence in using the system. If the
machine learning model is developed using noisy data, the explanations generated from
the model may also be of similar usefulness. Therefore, developing a machine learning
model and understanding the reasoning behind the model should be addressed in parallel.

This paper presents a method to explain the decisions of an XGBoost-based classifier
using SHAP as the interpreter. The method could benefit end-users by requiring justification
and reasoning behind the fault predictions. For interpretability in the context of HVAC fault
detection with time-series data, we visualized a sliding window to provide explanations
for the observed faults. The aim was to provide insights into not only what happens in a
single time step, but also to understand what has happened prior to the observation that
leads to the fault occurring. To keep the explanation information focused, we only showed
the user-defined sets of features corresponding to the observed fault and the features with
high contribution scores. The experiment was conducted on the real-world data of an
air-handling unit containing normal and faulty samples. The explanations were applied to
samples of each fault type and then assessed by HVAC experts. To summarize, the main
contributions of this work to the field of explainable fault detection and diagnosis methods
for building energy systems are outlined as follows:

1. A method to explain the fault diagnosis output of an XGBoost-based model using
Shapley values for HVAC expert users. A sliding window system is used to visualize
the short history of the relevant features and provide explanations for the diagnosed
faults in the observed time period. This allows users to understand not only what
happens in each individual time step but also to monitor the progress history of the
fault. The fault detection and diagnosis pipeline is conducted using real-world data
obtained from the air-handling unit of a commercial building.
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2. A method to incorporate human users into the decision-making process by allowing
the selection of relevant features to be explained for each fault type. The method
explains the features with high Shapley values and features corresponding to each fault
type. This can provide a practical value by keeping the explained features relevant.

3. An analysis for the XAI explanations of each fault type in the AHU dataset by using
domain expert evaluation to obtain feedback on the generated explanations. This
helps us understand the effects of the explanations on the users’ decision-making
process, and how well the users can understand the explanations.

2. Technical Background: XGBoost and SHAP
2.1. Extreme Gradient Boosting

XGBoost is an ensemble model based on gradient tree boosting that works by integrat-
ing several basic classifiers together, usually decision tree models, to form a more robust
model [28]. The model learns through an additive manner or a cumulative learning process.
First, the starting tree is fitted with the entire training dataset. Then, the learning result
of the tree is passed to the next tree to update the weights and the process is repeated.
The final result is obtained by accumulating the results from all the trees. The prediction
function in step t is denoted as:

f (t)i =
t

∑
k=1

fk(xi) = f (t−1)
i + fi(xi), (1)

where fi(xi) is the tree model at step t, and f (t)i and f (t−1)
i are the predicted values in steps

t and t− 1, respectively. To learn the sets of functions, XGBoost seeks to minimize the
following objective:

L(φ) =
n

∑
i=1

l(ŷi, yi) +
m

∑
k=1

Ω( fk), (2)

where
Ω( f ) = γT +

1
2

λ‖w‖2. (3)

Here, n is the number of training samples, l(ŷi, yi) is the loss function, Ω( fk) is the
regularization term on the kth decision tree, w is the score from leaf nodes, λ is the hyper-
parameter of the regularization term, and γ is the minimum loss that the leaf node needs to
make further splits. The regularization term Ω penalizes the complexity of the model and
smooths the final learned weight to avoid over-fitting. Without the regularization term,
the objective function falls back to traditional gradient tree boosting [28].

For a faster calculation of the objective function, XGBoost uses the second-order
Taylor’s expression in the loss function

L(t) '
n

∑
i=1

[
l(yi, ŷ(t−1)) + gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft). (4)

2.2. Shapley Additive Explanation

SHAP is a game-theory-based approach to explain the individual predictions produced
by machine learning models [29]. SHAP was applied in various fields such as medicine,
energy systems, and the fault detection domain [30–32]. It can be conveniently applied
to any black-box machine learning model and to different types of data, e.g., tabular,
image, or text data, since it is model-agnostic. It is used to show the contributions of the
input features using the computed Shapley values, where each feature works together
in a coalition. The Shapley value is calculated for each feature in the input samples that
needs to be explained. Based on the aggregated Shapley values, it can also provide global
interpretations of the black-box models. SHAP describes three desirable properties, namely
local accuracy, missingness, and consistency, as follows [29]:
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1. Local accuracy: When approximating the original model f for an input x, local accu-
racy is the ability of the explanatory model to represent the output of the simplified
model f ′ for the simplified input x′:

f (x) = g(x′) = φ0 +
M

∑
i=1

φix′i . (5)

2. Missingness: Missingness requires that the features that are missing from the input
to have zero impact on the model output:

x′i = 0 =⇒ φi = 0. (6)

3. Consistency: Let fx(z′) = f (hx(z′)) and z′\i denote setting z′i = 0. For any two
models f and f ′, if

f ′x(z
′)− f ′x(z

′\i) ≥ fx(z′)− fx(z′\i) (7)

for all inputs z′ ∈ {0, 1}M with M being the number of simplified features, then
φi( f ′, x) ≥ φi( f , x). The consistency property states that if a model changes, so that
the marginal contribution of a feature increases or stays the same, regardless of the
other inputs, the attribution of that input feature should also increase or stay the same.

The author of SHAP also proposed TreeSHAP as a fast and model-specific method
to calculate SHAP values from tree models such as decision trees and other ensemble
tree models. Given a data instance X with features x1, x2, . . . , xn, and a classifier model f ,
TreeSHAP receives f as the input to obtain the explanatory object. Then, such an object
takes X as the input and generates the SHAP values. The process is depicted in Algorithm 1.

Algorithm 1. Calculating SHAP values

Input: X: instance for which the explanations are generated
f : classification model for fault diagnosis

Output: shapVal: SHAP values for all features
1: explainer← shap.TreeExplainer( f )
2: shapValue← explainer.shapvalues(X)

3. Methodology

This section describes the method for communicating the explanation to the end-users
and the human evaluation of the explanation. The major steps in the process include the
following: data collection and preprocessing; the implementation of XGBoost; domain
requirements for the explanations; SHAP explanations; and the expert evaluation of the ex-
planations. First, an FDD model based on the XGBoost classifier is implemented. The FDD
process is completed in a single step, with the diagnosis model classifying the five types of
faults and the normal operation state. We conducted a case study using real data collected
from a commercial building (a shopping mall). Then, the classification result is summarized
using various performance metrics. Next, the samples of five different types of faults in
the AHU are selected to provide explanations. The SHAP method is integrated as the
explanation algorithm. The output of SHAP is visualized for each fault type based on
sliding window observation using the most relevant features. Finally, fault samples are
randomly chosen to generate SHAP explanations, using different visualization techniques.
The generated explanations are assessed by HVAC engineers, who give feedback and assess
the effect of the explanations on their decision-making process.

Figure 1 outlines the proposed methodology, which can be summarized as follows:

1. Offline model training stage:

(a) Data are collected for faulty and fault-free operations and labeled according to
fault type. Samples that do not belong to any fault class are labeled as normal.
Data are preprocessed by removing records with null or non-existing values.
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Samples collected during the off-state and during the first hour of operation
are also removed.

(b) Prior knowledge related to all fault types is gathered. This includes the map-
ping of feature sets that correspond to each type of fault. The feature sets can
be input by end-users, who decide which relevant features they want to see
for each type of fault; otherwise, the default feature sets are chosen.

(c) An XGBoostClassifier model is implemented for the FDD problem. The model
is a multi-class multi-label classification model, which is used to classify which
fault class(es) each sample belongs to. One sample can belong to multiple
fault classes.

(d) The SHAP method is used to generate explanations for the fault diagnosis
model. A Tree SHAP explanatory object is fit using the developed model to be
able to generate explanations during the online monitoring stage.

2. Online fault monitoring stage:

(a) Real-time measurements are obtained from the system. The new observation is
preprocessed and input into the trained XGBoost model to distinguish between
the fault classes and the normal class.

(b) If the sample represents a faulty operation, the interpreter module is trig-
gered to generate the explanation. If no fault is detected, the following steps
are skipped.

(c) Using the fitted SHAP explanatory object from the previous offline training
stage, SHAP values are generated for the observed faulty samples and the
samples from a number of time steps prior to observation, to provide a short
history of fault occurrence.

(d) A visualization is created for relevant features using a sliding window graph.
(e) A user gives feedback on the explained feature choices, which is used to update

the sets of relevant features.

3.1. Description of the System

In this paper, we consider the data obtained from a shopping mall that was renovated
over a decade ago. The facility has three floors that are mostly heated by a group of air-
handling units. The building is heated with district heating while the cooling is provided
by two chillers.

Almost every large commercial building has a building management system (BMS),
which contains thousands of data points that are presented through a user interface in real
time. A BMS is usually devoted to information flow and communication with the HVAC
equipment. In addition to monitoring, it also provides custom reactive alarms to notify
the operators at different levels. Data acquisition in the facilities is accomplished through
the dedicated BMS. Data reading and writing is conducted through the API connection,
supported by the BMS. Remote connection via APIs varies depending on the deployed
software, each of which requires custom solutions for reliable data communication. Finally,
the data transmission is secured through encrypted virtual private network tunnels. Data
through the BMS are read every 15 min, and samples of an air-handling unit were collected
during the period from 1 February 2020 to 31 March 2021. This includes measurements
obtained from an air-handling unit during the winter, spring, summer, and autumn seasons
in Estonia. In commercial buildings, AHUs usually follow an operating schedule that
commands that the system be switched on during an occupied period and off during an
unoccupied period. Before the analysis, the data were filtered to exclude extreme outliers
and samples taken during non-operating periods. The data were further processed and the
faults were labeled by a dedicated HVAC engineer.
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Dataset (faulty and
fault-free data)

Data preprocessing

Training diagnosis
model


(Multilabel XGBoost
Classifier)

Fault class

New observation

Data pre-processing

Fault Diagnosis

(Fault class)


Fit SHAP 

explainer

Knowledge-mining

Offline 

Model Training

Feature selection for
explanation

(Algorithm 2)

Present sliding-window
observations of only
relevant features and

features with high
SHAP values


Online

Monitoring

Present fault
probabilities and

percentage attribution
per each relevant

feature


User Feedback

Calculate SHAP  values
for all features
(Algorithm 1)

Figure 1. Proposed explainable fault detection and diagnosis pipeline. The left-hand side repre-
sents the offline model training stage, while the right-hand side corresponds to the online fault
monitoring stage.

The dataset includes 10 input features, as shown in Table 2. This contains the samples
of an air-handling unit under normal operating conditions and five types of faults, as listed
in Table 3. The fault cases are taken from real scenarios and operating conditions.

Table 2. Description of the used features in the AHU dataset.

No. Feature Short Description Unit

x1 AAT Fresh air intake temperature ◦C
x2 ACCVO Cooling coil valve opening %
x3 AHCVO Heating coil valve opening %
x4 AHRS Heat recovery rotation speed %
x5 AHRST Supply air temperature after heat recovery ◦C
x6 ARAT Return air temperature ◦C
x7 ASAT Supply air temperature ◦C
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Table 2. Cont.

No. Feature Short Description Unit

x8 ASATCSP Supply air temperature calculated setpoint ◦C
x9 ASFPE Supply fan static pressure Pa
x10 ASFS Supply fan speed %
x11 tempDiffHC Temperature difference before and after heating coil ◦C
x12 HREfficiency Heat recovery efficiency %
x13 deltaSupplyTemp Difference between supply air temperature and sup-

ply air temperature setpoint

◦C

Table 3. List of AHU faults used in the analysis.

No. Abbreviation Fault Type Component Sample Size

Fault 1 FPES_M Fan pressure sensor mal-
function

Fan pressure sensor 894

Fault 2 HR_NW Heat recovery not working Heat recovery 1146
Fault 3 HCV_L Heating coil valve leakage Heating coil 794
Fault 4 CCV_S Cooling coil valve stuck Cooling valve 434
Fault 5 CCC_V Closed cooling coil valve Control 768
– Normal – – 20,925

3.2. Air-Handling Unit

Figure 2 shows a schematic diagram of one of the variable-air-volume (VAV) air-
handling units utilized in this study. The AHU consists of fans, dampers, cooling and
heating coils, sensors, controllers, and heat recovery units. The supply fan draws fresh air
from outside, and the air is passed through a fan filter to filter dust or objects that could
cause damage or inefficiency inside the system. Then, the heating coil and cooling coil
valves are either opened or closed in order to maintain the desired setpoint temperature of
the supply air. For example, when the supply air temperature is excessively low, the heating
coil valve opens to allow hot water to flow through the heating coil and heat up the supply
air until the setpoint is reached. The conditioned supply air is then distributed to different
zones or rooms in the building. Several factors can affect indoor air quality. If the room
is occupied, heat might radiate from the body and cause a high room temperature. This
occupation may also affect the CO2 and humidity levels, and the room may become
uncomfortable again. Therefore, the air in the room needs to be circulated back while
letting fresh air in. The return fan draws the air from the zone back to the unit. Then,
the return air is either recirculated and mixed with the fresh air in the mixing box, or is
drawn away as exhaust air [10,11,33].

Supply
Fan

Return
Fan

Heating 

Coil

Cooling 

Coil

Recirculating 

Air

Outside 

Air

Mixed Air

Exhaust 

Air

Supply 

Air

Return 

Air

Figure 2. Schematic diagram of an air-handling unit.
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In order to maintain energy efficiency, the heat recovery system is utilized to recycle
the return air by mixing it with the fresh intake air in the mixing box. That way, some
energy can be recovered without having to activate the heating system every time heating
is required, since using the heating system is more energy-demanding than using heat
recovery. In the ventilation unit used for this study, the heat recovery system used is a
rotary system. The efficiency of the heat recovery process is an indicator of the amount of
energy that it manages to recycle [25,33].

3.3. Data Preprocessing

The dataset includes 13 input features, as shown in Table 2. These include samples of
an air-handling unit under normal operating conditions and five types of faults, as listed in
Table 3. The fault cases are taken from real scenarios and operating conditions.

The input data are split into 66% and 34% for the training and test sets, respectively.
Randomly stratified sampling is applied in the data partitioning process to maintain the
balance of fault classes for both sets.

Table 3 shows that the number of samples of normal operation (majority class) exceeds
that of faulty cases (minority class), with an extreme imbalance. Having such imbalanced
classes for classification problems can lead to biased predictions towards the majority class.
This problem is tackled with random under-sampling techniques to transform the class
distribution in the training set and eliminate the extreme data imbalance.

3.4. Description of Faults under Observation

Five faults representing failures in the sensor, heat recovery, heating coil, and the
cooling coil valve of the AHU are described. The faults are introduced when the system is
supposed to be operating under steady-state conditions and the symptoms of dominant
features that correspond to the fault occur. All faults described here are representations of
actual fault scenarios from an air-handling unit of a commercial building.

Fault 1 is a malfunction of the fan pressure sensor. The fan pressure sensor measure-
ment is used to calculate the control value for the supply or return fan speed. The fault
causes the control signal for the supply fan speed to fall in an undesirable range.
Thus, the important features in this fault include the fan pressure (ASFPE) and the
fan speed (ASFS).

Fault 2 is the failure of the heat recovery. During normal operation, the heat recovery
should operate at 70% efficiency or above. The heat recovery is utilized before the heating
coil is used. The important features in determining this fault include heat recovery speed
(AHRS), return air temperature (ARAT), ambient temperature (AAT), and supply air
temperature (ASAT).

Fault 3 is the heating coil valve leakage. The fault indicates that the heating coil
valve is not closing completely when there is a command to close it. Regardless of the
fact that the valve should be closed, the hot water flows through the coil and heats up the
supply air. This results in an extra heating cost and may even lead to extra cooling costs
and the undesired temperature of the supply air. The leak can be detected by checking
the temperature sensors in the supply air channel, or comparing the work of the heat
recovery and cooling coil with other ventilation machines or this machine’s typical actions.
The important features of this fault include the heating coil valve opening (AHCVO),
supply air temperature (ASAT), and supply air temperature after heat recovery (AHRST).

Fault 4 is the stuck cooling coil valve. The fault indicates that the cooling valve is
stuck at a lower value and the ventilation unit is not fully utilizing the cooling capacity.
The important features in this fault include the cooling coil valve opening (ACCVO), supply
air temperature (ASAT), and calculated supply air temperature setpoint (ASATCSP).

Fault 5 is the closed cooling coil. This fault implies that the ventilation unit controller is
not sending a command to fully utilize the cooling capacity. This might indicate a problem
with the controller. The important variables in this fault type include the cooling coil
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valve opening (ACCVO), supply air temperature (ASAT), and the supply air temperature
setpoint (ASATCSP).

Based on the complete feature set, which includes original features and extracted
features, it is possible to generate a feature map, as shown in Table 4, which maps the
features to their corresponding fault types using domain knowledge. This will serve as
crucial information in a later step when communicating the fault prediction to end-users.

Table 4. Mapping features to their corresponding faults.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Fault 1 X X

Fault 2 X X X X X

Fault 3 X X X X

Fault 4 X X X X

Fault 5 X X X X

X indicates that the feature is used for predicting the fault.

3.5. XGBoost and Hyperparameter Tuning

In this study, the model aims to predict whether the AHU is operating in a normal or
faulty condition at specific timestamps, and to determine which fault type(s) are present.
For training the fault diagnosis model, the problem is formulated as a multi-label clas-
sification problem, where the labels are binary vectors (value of 0 or 1 for each of the
five fault classes, plus the normal class), and more than one fault type(s) can be present
simultaneously. The training set is used to train the XGBoost model. The hyperparameter
is tuned as follows: the number of estimators used is 10. In order to reduce the over-fitting
problem, the column subsample ratio is set to 0.9 and the alpha regularization term is set
to 0.005.

3.6. Explaining the Fault Predictions

Our challenge is to design explanations and deliver relevant information that can
help target users to identify faults. The target users in our case are the HVAC engineers,
as opposed to the machine learning engineers. We implemented a fault diagnosis model
to classify the faults in the AHU using a supervised learning approach. If a fault exists,
the SHAP explanatory object is triggered to provide an explanation using the sliding
window method. Here, we use Tree SHAP to generate the SHAP values, which describe
the attribution score for each feature in predicting the fault classes.

The overall fault detection, diagnosis, and monitoring steps are shown in Figure 1. We
focused on the XAI layer, which is applied to visualize the fault decision in the monitoring
stage after the fault diagnosis model outputs the fault class. The explanations are given
for any selected individual fault instance. First, the SHAP values are calculated for each of
the features in the fault instance, as specified in Algorithm 1. Next, we performed feature
selection to narrow the features down to only the most relevant, which will be visualized
in the explanatory graph in the next step. The feature selection process is described in
Algorithm 2. The authors of [31] described the process of selecting features used to explain
an autoencoder-based anomaly detection model. In our work, the feature selection for
explanations is based on:

• Features that have SHAP values higher than mean SHAP values.
• Features that are pre-selected by users or features that are mapped to each correspond-

ing fault type using prior knowledge.
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Algorithm 2. Feature selection for providing explanations

Input: userSelectedFeatures: user-selected features,
shapValue: SHAP values for all features (see Algorithm 1),
features: list of all features

Output: relevantFeatures: relevant feature list
1: avgShapVal← shapValue
2: shapFeatures← {}
3: for feature ∈ features do
4: if shapValue[feature] > avgShapVal then
5: shapFeatures← feature
6: end if
7: end for
8: relevantFeatures← shapFeatures∪ userSelectedFeatures
9: return relevantFeatures

After we obtained the set of relevant features and their corresponding SHAP values,
we presented the results to the end-users using a sliding window visualization technique.
We plotted the actual values of the obtained relevant features into the sliding window graph,
which allows users to view the equipment conditions over the observed time window.

For the selected fault, we present its class, the corresponding fault probability, and how
much each relevant feature contributes to the presence of the fault. Since the obtained raw
SHAP values are not easily comprehensible, the values are rescaled into percentage contribu-
tions using a logistic transformation and the percentage attributions are displayed instead.

3.7. Domain Requirements

We conducted a survey with seven HVAC engineers (E1–E6) who are actively working
with HVAC systems. We provided a survey form which contains a list of criteria that fault
diagnosis explanations may contain. The complete list can be found in the Appendix A.
The participants were asked to rate how important these criteria are, and to add more
criteria that they think are necessary. First, we will cover some of the feedback from
the participants.

E1 and E5 are interested in viewing the fault impact in terms of the cost. More
specifically, both participants mention that the cost factor is convincing when it comes to
fault diagnosis. Knowing how many financial consequences will be created from not fixing
the fault will motivate the users to take action. Other types of fault impact analysis, such as
indoor climate impact, could also be convincing factors. However, this can be regarded as
a topic for future work, since it is out of the scope of this thesis. E2 would like the option to
choose more variables to visualize the explanations, on top of visualizing only the most
important variables. E5 would like to view the measured data in a graph with the relevant
variables within one hour prior to the fault and one hour after the fault occurs. The idea
is to observe when the fault probability changes and to visualize in what condition the
fault is detected. E6 feels that it is important to know how often the fault has occurred
previously in order to identify whether the problem is instead a result of other problems.
E7 would like to see the fault-free sample to compare it with the faulty sample, in order to
understand the expected value.

We compiled the following requirements from the feedback and the rating of each criteria:
R1: Option to choose variables: E2, E3, E5, and E6 would like to have the option to choose
variables. E2 thinks that this option becomes less important if the result shows the most
relevant variables by default. Important
R2: Visualizing the short history of faults: E1, E5, E6, and E7 think that viewing the short
history of faults is important. E2 thinks that this option is different from one fault type to
another. In real life, some faults occur so suddenly that in this case, the short history of the
fault is useful. Important
R3: Visualizing only relevant variables: E1, E2, E3, E4, and E7 would like to view only
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the most important features that impact the fault likelihood. In addition to R1, they only
want to view the variables that influence the fault, and to have the option to select more
variables. Critical
R4: Visualizing each feature’s attribution to the fault: E2, E4, and E5 think it is good to view
how much each feature affects the fault likelihood in terms of probability. In addition, E2
also specifies that the probability of the diagnosed fault is also a convincing factor for users.
For example, if the probability is 1.00, then it is more convincing than when the probability
is only 0.97. E3 and E4 do not think that this is very important. E5 would like to observe
the change in probability when the fault occurs. Optional

4. Results and Analysis

In this section, we discuss the numerical results obtained from the trained model.

4.1. Performance Results

The performance is evaluated using the test set for the trained models—logistic regres-
sion, random forest, and XGBoost. The accuracy, precision, recall, sensitivity, specificity,
and F1 scores are displayed in Table 5. The XGBoost method achieves the highest overall
performance for most fault types.

Table 5. Performance matrix of the used models in the fault diagnosis task.

Model Fault Class Accuracy Precision Recall Sensitivity Specificity F1

LR HCV_L 0.981 0.731 0.828 0.828 0.987 0.776
HR_NW 0.995 0.932 0.971 0.971 0.996 0.951
CCV_S 0.997 0.888 0.972 0.972 0.997 0.928
FPES_M 0.999 0.996 1 1 0.999 0.998
CCV_C 0.985 0.791 0.748 0.748 0.993 0.769
Normal 0.883 0.954 0.889 0.889 0.861 0.920

Weighted 0.859 0.943 0.900 0.900 0.893 0.887

RF HCV_L 0.997 0.955 0.988 0.988 0.988 0.971
HR_NW 0.999 0.997 0.997 0.997 0.999 0.997
CCV_S 0.999 0.960 0.986 0.986 0.999 0.973
FPES_M 0.999 0.996 1 1 0.999 0.998
CCV_C 0.999 0.999 0.989 0.989 0.999 0.993
Normal 0.995 0.996 0.994 0.994 0.998 0.997

Weighted 0.993 0.996 0.994 0.994 0.998 0.994

XGB HCV_L 0.998 0.974 0.982 0.982 0.998 0.978
HR_NW 0.999 0.997 0.997 0.997 0.999 0.997
CCV_S 0.999 0.973 1 1 0.999 0.986
FPES_M 0.999 0.996 1 1 0.999 0.998
CCV_C 1 1 1 1 1 1
Normal 0.997 0.998 0.997 0.997 0.996 0.998

Weighted 0.996 0.997 0.997 0.997 0.997 0.997
LR—logistic regression; RF—random forest; XGB—XGBoost.

Table 5 shows that the overall F1 score for logistic regression is 0.88, random forest is
0.994, and XGBoost is 0.997. Logistic regression scores 0.85 in terms of the overall precision
score, while random forest and XGBoost score 0.996 and 0.997, respectively. Logistic
regression makes the prediction with an overall recall score of 0.90, random forest of 0.994,
and XGBoost of 0.997. The confusion matrix for the model prediction of each fault type is
shown in Figures 3–5. For each matrix, the vertical axes represent the true labels, and the
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horizontal axes represent the predicted labels for the corresponding fault classes. It can
be observed that the number of misclassifications for the XGBoost model is 25, that for
random forest is 38, and that for the logistic regression model is 363.
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Figure 3. Diagram of the confusion matrix of different fault classes for the logistic regression model,
for five fault types. The vertical axes represent the actual labels, and the horizontal axes represent the
predicted labels for the corresponding fault classes. The total number of correctly predicted samples
is the sum of all actual samples labeled as true and classified as true, and the actual samples labeled
as false and classified as false.
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Figure 4. Diagram of the confusion matrix of different fault classes for the random forest model and
for five fault types.
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Figure 5. Diagram of the confusion matrix of different fault classes for the XGBoost model and for
five fault types.

4.2. Comparative Study

As shown in the confusion matrix and the performance matrix, XGBoost outperformed
both of the baseline models. Random forest performance is also comparable to the XGBoost,
with minimal differences in the score. However, in fault detection and diagnosis tasks,
it is crucial to minimize the number of false positives by as much as possible. We chose
XGBoost as our method of fault diagnosis in this study because of its high performance.
In this section, we will study the model interpretability using SHAP. The interpretations of
the baseline model, random forest, and XGBoost will also be analyzed and compared.

Two types of faults are selected in this comparative study. Figures 6–9 show SHAP
summary plots for XGBoost and random forest models in predicting the two types of fault
classes. The features are ranked by their importance in the model prediction. The x axis
indicates the SHAP value where a positive SHAP value means a higher contribution to the
fault and a negative value means a negative impact on the fault. For SHAP, the summary
plot is made up of SHAP values from each individual sample. Therefore, this interpretation
also represents the local interpretation. The red color indicates the high value of the variable.
The red-colored dots most concentrated on the positive side of the SHAP value axis denote
the higher values of the corresponding features, having a positive influence on the fault
class. The opposite applies to the blue color. If the features are represented by blue dots
concentrated on the positive side of the SHAP value axis, this indicates that the low values
of these features contradict the fault instead.

Figures 6 and 7 show the SHAP summary plot of the model prediction of the heating
coil valve leakage fault type from the XGBoost model and random forest model, respectively.
The plot shows that the two most important variables from both models are the same:
tempDiffHC (temperature difference before and after the heating coil) and AHRS (heat
recovery speed). In the XGBoost SHAP plot, the deltaSupplyTemp (difference between
the supply air temperature and its setpoint) is among the top five features. Based on the
plot, the greater the difference is, the more likely a heating coil valve leak is. The random
forest explanation also indicates the same. The random forest gives more importance to
heat recovery efficiency (HREfficiency). From the domain knowledge, the heat recovery
status also gives some indication of the fault heating coil valve leakage since heat recovery
should be working at full speed to recycle the heat before the heating system in the heating
coil should be activated. The variable AHRS (heat recovery speed), as the second most
important variable, should also be somewhat correlated with the HREfficiency.
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Figure 6. Summary of the effects of all the features on the XGBoost model prediction of the fault type
“Heating coil valve leak”. The SHAP values show the impact of each feature on the model output.
The color represents the feature value (red shows a higher impact while blue shows a lower impact).
For example, we can observe that the higher the deltaSupplyTemp (difference between supply air
temperature and its setpoint), the more likely it is to indicate a heating coil valve leak.
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Figure 7. Summary of the effects of all the features on the random forest model prediction of the fault
type “Heating coil valve leak”.
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Figure 8. Summary of the effects of all the features on the XGBoost model prediction of the fault type
“Heat recovery not working”.
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Figure 9. Summary of the effects of all the features on the random forest model prediction of the fault
type “Heat recovery not working”.

The SHAP summary plot of the XGBoost model for predicting the fault “Heat recovery
not working” is shown in Figure 8, and the random forest model SHAP summary plot for
the same fault class is shown in Figure 9. Based on the figures, the top five most important
features are the same between the two models. This includes the HREfficiency (heat
recovery efficiency), AHRS (heat recovery speed), AHCVO (heat recovery valve opening),
AAT (ambient temperature), and AHRST (supply air temperature after heat recovery).
There are very slight differences in the pattern, but the overall feature effects share many
similarities. For both of the models, the most important feature is HREfficiency. Domain
knowledge confirms that HREfficiency is an important indicator of the fault malfunction
of heat recovery. The rest of the features in the top five list fit into this fault description.
In both summary plots, high AHRS and low HREfficiency are signs that there is a chance of
malfunction in the heat recovery. For example, the high heat recovery fan speed suggests
that it is rotating, but the low efficiency indicates that it fails to recycle any heat. The plots
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also imply that the high HREfficiency has a negative influence on the fault. This correlates
with domain knowledge, since higher efficiency means that the fan is working properly.

This comparative analysis provides us with insights into what is taken into account
by the model in predicting the fault classes. For data with very high dimensions, it can
give useful information regarding how the change in value of the most important features
can affect the model output. We observe from our two fault examples that the generated
global explanations for both models share some similar patterns and feature importance.
In the first fault case, three out of the five most important features are the same between
both models. Furthermore, in the second fault case, five out of the five most important
features are the same. Nonetheless, it is inconclusive to evaluate the models based on XAI
explanations. One of the reasons is that there is a possibility that the generated explanations
might not be fully representative of the actual model. Another reason is that there can be
other underlying problems, such as inaccuracies in the dataset, over-fitting, or inadequacy
in the hyperparameter tuning.

4.3. Explaining Faults

In this section, SHAP is used as the explainable method. Explanations are provided
for the XGBoost model output of randomly chosen samples from each type of fault in
the dataset. The visualization design is based on the domain requirements collected from
the previous sections. The figures below visualize the explanations in a sliding window
format. Instead of plotting the SHAP values, actual values are provided. To show the
contributions of each feature to the fault, the SHAP value for each relevant feature is
converted to a percentage and is added in the annotation. Fault probability is also provided
for the instances that the user wants explanations for. The areas in which a fault is present
are highlighted with a light red background to allow for an understanding of where the
fault begins.

4.4. Case Studies
4.4.1. Case 1: Fan Pressure Sensor Malfunction

Figure 10 shows the explanation for the “Fan pressure sensor malfunction” fault of the
observed sample, which occurred at 18:00 on November 2003. To understand the progress
history of the fault, the measurement values for a number of time steps, starting from 10:00
on 3 November, are shown. In this observed instance, the variables ASFS (supply fan speed)
and ASFPE (supply fan pressure) have a positive impact on the fault prediction. The supply
fan speed is 30% and the supply fan pressure is at 3.59 Pa during the hour of operation.
The fault starts multiple time steps prior to the observed sample. Before the fault occurs,
the fan and fan pressure measurements, which are 75% and 44.51 Pa, respectively, show
normal operation up until the values of both variables suddenly drop to very low values,
which indicate that the fan is barely operating. The low value of the ASFS contributes
68.26% to the fault probability, and the ASFPE contributes 12.9%. Based on the domain
knowledge, the fan pressure and fan speed are two correlating features where the pressure
measurement is a variable used for calculating the air volume. Therefore, the malfunction
of the pressure sensor may also cause failure in the air volume control.

4.4.2. Case 2: Heat Recovery Not Working

Figure 11 shows samples for the diagnosis of the heat recovery fault. The fault becomes
very likely when the AHRS (heat recovery fan speed) is 100% and the HREfficiency (heat
recovery efficiency) is only 0.01%, meaning that it fails to recover heat from the return air
to heat up the supply air. When the air is not sufficiently heated by the heat recovery unit,
the heating coil valve opens to produce the heat. The AHRST (air temperature after heat
recovery) is very low at that point, although the heat recovery is working at full speed.
The heat recovery efficiency contributes approximately 16% to the fault, the heat recovery
speed contributes 12%, the air temperature after heat recovery contributes 26% and the
temperature difference before and after the heating coil influences 13%.
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Figure 10. Visualization of explanations using a sliding window for the fault type “Fan pressure
sensor malfunction” during an observation period from 10:00 to 22:00. Tags labeled in green represent
a healthy state, whereas those highlighted in red represent the presence of the fault. The sample
evaluated at 18:00 shows an overall fault probability of 97.73% with two main contributing features,
ASFS and ASFPE.
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Figure 11. Explanation visualized as a sliding window for the fault type “Heat recovery not working”
during an observation period from 15:00 to 22:00.

4.4.3. Case 3: Heating Coil Valve Leakage

Figure 12 represents the explanation for the fault “Heating coil valve leakage”. The heat-
ing coil opens for some time, from 09:00 to 11:45, to heat up the supply air before closing
again. However, the temperature difference before and after the heating coil (tempDiffHC)
increases, although the heating coil valve is 0. The heat recovery rotation is not utilized
at 100% when the fault occurs. This could also indicate that the supply air is sufficiently
heated and does not require much heat to be recycled. The low heat recovery rotation
speed adds 27% to the fault. The high-temperature difference before and after the heating
coil adds another 50%. Through the domain knowledge, this information is enough to
determine the fault.
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Figure 12. Explanation visualized as a sliding window for the fault type “Heating coil valve leak”
during an observation period from 08:00 to 16:00.

4.4.4. Case 4: Cooling Coil Valve Stuck

Figure 13 shows the explanation for the “cooling coil valve stuck” fault. When the
supply air temperature becomes higher than the setpoint at 19:00, the cooling coil valve
opens in order to cool down the supply air. The cooling coil valve control signal shows
100%. However, the supply air temperature stays the same. Furthermore, by the time
of observation at 21:30, the supply air temperature is 5.13 ◦C higher than the setpoint.
The high temperature of the supply air adds 7.57% to the fault. The difference between
the supply air temperature and setpoint temperature (deltaSupplyTemp) contributes 29%,
and because the cooling coil valve is 100%, the fault probability increases by a further
53.64%. In contrast to the non-faulty sample shown at 12:45, the deltaSupplyTemp is only
0.11, which means that the supply air temperature achieves the setpoint.
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Figure 13. Explanation visualized as a sliding window for the fault type “Cooling coil valve stuck”
during an observation period from 10:00 to 22:00.
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4.4.5. Case 5: Cooling Coil Valve Closed

The example of a “cooling coil valve closed” fault is given in Figure 14. From the
graph, the temperature difference between the supply air and setpoint (deltaSupplyTemp)
increases as the ambient temperature (AAT) increases. The supply air temperature (ASAT)
becomes higher. The system should send the command to open the cooling coil valve and
regulate the supply air temperature to the setpoint level. However, the valve remains closed
for some time steps, which could indicate a problem with the BMS sending commands.
The increasing deltaSupplyTemp causes the fault to become approximately 35% more likely.
The cooling valve being closed contributes another 5%. Ambient temperature adds to the
“cooling coil valve closed” type of fault, which could be a result of the effect that ambient
temperature has when the cooling coil should be utilized.

06-05 08 06-05 09 06-05 10 06-05 11 06-05 12
0

20

40

60

80

100

Va
lv

e
 o

p
e
n
in

g
 [

%
]

ACCVO = 0.0
ACCVO = 0.0
fault  +5.2%

deltaSupplyTemp = 0.12

deltaSupplyTemp = 1.9
fault  +35.78%

COOLING_COIL_VALVE_CLOSE
97.48%

ACCVO
COOLING_COIL_CLOSED

5

0

5

10

15

20

25

30

35

40

Te
m

p
e
ra

tu
re

 [
°C

]

ASATCSP = 18.0 ASATCSP = 18.0
fault  +2.07%

ASAT = 18.12

ASAT = 19.9
fault  +8.91%

AAT = 13.83

AAT = 19.57
fault  +29.41%

ASATCSP
deltaSupplyTemp
ASAT
AAT

Figure 14. Explanation visualized as a sliding window for the fault type “Cooling coil valve closed”
during an observation period from 08:00 to 12:45.

4.5. Expert Survey

We conducted a survey with seven HVAC engineers, who had also previously pro-
vided input about the domain requirements to evaluate the fault diagnosis explanations
and visualization techniques. In the experiment, participants were shown three different
types of graphical representation for fault explanations:

(a) Standard SHAP plot for individual instances;
(b) Standard SHAP stacked plot for a specific time period;
(c) Modified version of the SHAP explanation.

The experiment was conducted as a written survey. The complete questions can be
found in the Appendix A. Two types of faults were tested: “fan pressure sensor malfunction”
and “heating coil valve leak”.

First, the SHAP standard plot for individual instances is shown to explain one fault
sample. Then, the SHAP standard plot for explaining multiple instances is shown for a
similar fault sample. Furthermore, our version of the SHAP explanation is then provided,
where the relevant sets of features are shown. The participants were asked to confirm
whether the explanations represented the actual fault and to rate their satisfaction with
each type of visualization technique. They were also asked for their opinion on what the
important criteria were to help in the fault diagnosis decision-making process.

Expert Insights

Explanation assessment: In general, the participants rated the modified SHAP expla-
nation plots (c) the highest, and they also showed the most satisfaction with the visual
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representation from (c). Table 6 shows the explainability score and user satisfaction score
obtained from the survey. The mean and median ratings are provided. Since users were
asked to rate the explanations using a 5-point Likert scale, the explainability score was
converted into values from 1 to 5 to obtain a numeric metric. For both fault types, partici-
pants typically agreed more with explanation (c) than they did with (a) and (b). For user
satisfaction, explanation (c) was ranked higher than (a) and (b) on average for both of the
fault cases.

Table 6. Mean and median values of explainability score and user satisfaction for the fault types
“fan pressure sensor not working” (FPES_M) and “heating coil valve leakage” (HCV_L) using three
different types of visualization.

FPES_M HCV_L

Measures (a) (b) (c) (a) (b) (c)

Explainability score
mean 3 2.71 3.71 3.14 2.28 4.71

median 4 2 5 4 1 5

User satisfaction
mean 5.71 6.57 9 5.71 5.85 7.85

median 6 7 9 6 6 9

Expert Feedback: From the numeric results obtained in the previous section, partici-
pants also had extra comments to help improve the results:

• E2 thinks that different types of faults should have their own methods of representa-
tion. Faults are different in terms of how they develop. As an example, the heating
coil fault appears gradually. Therefore, an explanation for one single instance may
be enough to determine the fault at the current state. The opposite case applies to
faults that occur very suddenly. For example, in the case of the malfunction of the fan
pressure sensor, the fault appears abruptly, and so only a short history of the fault can
help identify the problem. In the case of fan pressure sensor failure, the fan pressure
measurement drops so suddenly that the users are able to see the obvious change in
the pattern, where the fan speed becomes very low. In comparison, the faults that
develop gradually may not always be obvious from only a short history.

• E1 would like further improvement in the visualization. The participant also mentions
that the plot contains a lot of visual noise. This is not a problem with measurement
values that are more static. However, it may become a problem if there are too
many values that change over the short visualization history. Currently, all of the
annotation labels for each variable are highlighted with the same color, either green or
red. Therefore, more colors would help to distinguish between different variables and
make it easier to follow.

• E5 gives positive feedback, but would also like to see more related variables that
would help validate the impact of the fault. The cost impact, thermal comfort impact,
and component lifespan impact would help in understanding the importance of the
fault and allow the HVAC engineers to prioritize maintenance activities accordingly.

• E4 commented on the fault type “fan pressure sensor malfunction” for which the
features shown are relevant. However, the participants pointed out that the supply
fan pressure should receive more weight than the supply fan speed itself, the opposite
of which is given in the explanation graph. However, this can take the form of either
the auto-generated feature importance from the model itself or the representation of
the samples in the dataset. This is important, as users can immediately determine
whether the system can be trusted. If the model gives the correct weight to the correct
features, then it will build trust.

• E6 commented on the “heating coil valve leakage fault” to say that the explanations
given are sufficient, but there are further uncertainties. It is difficult to say with
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confidence that it is a fault in the heating coil, since there can also be design problems
that cause the temperature increase. It may be that the temperature measurement
locations are not taken exactly before and after the coil fails; therefore, the temperature
increase may instead be due to heat transfer through the long ducts. For the fault type
“fan pressure malfunction”, E6 was also uncertain after looking at the short history
and would also like to view the history from the previous day in order to understand
whether the fault was caused by the building’s schedule.

Analysis of the Explanation: For both types of fault in the questionnaire, when
presented with plot (c) and asked to assess the explainability, most participants picked
the answer “Strongly Agree”, while they picked “Neutral” or “Somewhat Agree” for
plots (a) and (b). After further analysis of the participants’ feedback from the survey, we
summarize the findings as follows:

1. Users would like to visualize relevant features. This includes the most important
features impacting the fault and the features that would further aid in confirming or
rejecting the fault.

2. Users want to see how frequently the fault has appeared. Therefore, more flexibility
in the sliding window graph is required, i.e., an option to view the history from the
day before the fault occurs, or even earlier.

3. Users want to have a reference point, i.e., expected values, which they can compare
with the values of the faulty sample.

5. Discussion

In this paper, we presented an approach for explaining some common air-handling
unit faults identified by an XGBoost Classifier using SHAP. We demonstrate the potential
of SHAP as an explainable method to aid in the user decision-making process in the field of
building energy systems. We adopted XAI into the data-driven fault detection and diagnosis
pipeline and explored different ways to communicate the faults to end-users, who were
HVAC engineers. We defined relevant sets of features for each type of fault using domain
knowledge. Then, we integrated pre-defined features into the explanation visualization
and removed features with low SHAP values to reduce the visual noise. From a survey with
domain experts, we learnt that some faults require an understanding of what has happened
at earlier time steps in order to identify the problems. In this regard, fault diagnosis was
explained based on sliding window observations. Then, we evaluated the influence of the
generated explanation on the users’ decision-making process as compared to the standard
SHAP explanation plots. The survey findings indicate that, on average, the confidence
that users have in the fault diagnosis improved with the generated explanations, as did
user satisfaction. In our work, we integrated domain knowledge to guide the design of the
fault detection and diagnosis pipeline and to analyze the feature attributions of the model
for each type of fault. This provided us with further insights into how the fault diagnosis
information is perceived by HVAC engineers.

Limitations

This paper presents an approach for communicating fault explanations to end-users in
the HVAC domain to help build trust in the decision-making process. However, this study
has limitations, as follows:

1. The current work is limited to a dataset from a single air-handling unit. It may be
possible to use the model to diagnose the specific AHU used to train the model.
However, aggregating datasets from multiple AHUs would be useful in generalizing
the faults, and would also help in studying the practicality of the data-driven method
for large-scale fault diagnosis systems. Then, its usage will not be restrained to only
one machine.

2. Related to the previous point, our dataset contains only the minimum number of
variables. Because of sensor costs, building owners tend to install the minimum
number of sensors necessary for control. Therefore, not all of the sensors required



Sensors 2022, 22, 6338 23 of 29

for fault detection tasks are available. Features such as meter values that may pro-
vide valuable information on the “heating coil valve leakage” fault are not always
measured. Although the faults can be identified based on the fault symptoms that
appear, it is still difficult to pinpoint with full certainty what the causes of the fault
are in the case that a crucial sensor is missing. Thus, the explanation capability is
limited, and users are not convinced of the predicted fault after being provided with
the explanation.

3. This work is only limited to one type of sensor fault, which is available in the dataset.
Sensor faults are very common for building systems. Examples may include sensor
bias and sensor drift. This problem may cause uncertainties in fault diagnosis since
the system may read the wrong measurement and classify the samples as anomalies.
Therefore, identifying sensor faults would mitigate the risk of incorrect diagnoses and
false alarms. Further analysis of sensor faults is crucial for fault diagnosis tasks.

4. In this work, the definition of a good explanation is limited to only the scores from user
evaluation. However, a more systematic approach would produce a more accurate
evaluation and make the tasks less manual. Human users may make mistakes in the
evaluation process, and one user may also perceive the fault explanations differently
from another user.

5. The AHU samples used in this study were collected during the COVID-19 period.
During this period, the ventilation units of the shopping mall experienced unusual
loads, due to changing government regulations that impacted building occupancy
rates. Therefore, the faults may have appeared more frequently and may not reflect
the typical conditions of the AHU of the building.

6. Conclusions and Future Work

Advanced machine learning techniques have recently demonstrated excellent perfor-
mance in fault detection and diagnosis problems. Nevertheless, building personnel may
find it hard to evaluate and understand the reasoning behind the produced outputs. In this
light, we developed an approach that utilizes the game-theory-based SHAP method to
explain the output of an XGBoost classifier for fault detection and diagnosis tasks. We
tackled the challenge of communicating the fault diagnosis information to HVAC engineers
using the feature selection technique and sliding window analysis. The survey results
from seven HVAC engineers show that with our method, the visual perception and fault
diagnosis confidence were improved compared to the default explanations generated by
SHAP. The study offers a general-purpose framework applicable to fault detection and
diagnosis. It can be generalized to different scenarios in a broad range of areas, such as
the building domain and the energy system domain. The presented work, demonstrated
using real commercial building data, can give us more confidence to adopt explainable
methods in real-life applications. As we only adopted one XAI method in the current study,
in future work, we may involve a domain expert to evaluate and compare the explanations
generated by multiple different XAI methods, such as LIME, and confirm their contextual
importance and utility by using different HVAC datasets.

Future Work

From the research findings and limitations addressed in the previous sections, the fol-
lowing research directions are suggested for future study:

1. The explanation and visualization methods should be further improved to cover more
types of faults in a more extended dataset. For example, different types of faults,
such as gradual faults and abrupt faults, may require different methods in order
to be explained. For some faults, a longer history should be visualized, while for
others, an explanation from only an individual instance is sufficient. More extensive
involvement from HVAC engineers is necessary in order to provide explanations
that suit various types of faults and that are effective in communicating information
to end-users.
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2. We aim to strengthen the definition of a good explanation for fault detection in the
HVAC systems of buildings. In addition to user evaluation, we should adopt a further
systematic approach that is less reliant on manual evaluation.

3. A larger dataset is required in order to test the scalability of the fault diagnosis method.
The dataset may include samples from the AHU of different buildings and under
different climate conditions. Other HVAC components, such as chillers or heat pumps,
may also be explored. Ideally, more types of faults will be covered, including sensor
faults and component faults.

4. Other challenging possibilities also include the development of an unsupervised
model for fault detection tasks, and the application of an explainable method to
understand the output.
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Appendix A. Explainable Fault Detection and Diagnosis Methods for Air-Handling
Units: Research Survey

Goal: The goal of the survey was to assess the explanations’ influence on the decision
making for fault diagnosis tasks and to compare various visualization techniques. The focus
is on the delivery of the explanations.
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Domain Requirements

This is a sample of an auto-generated explanation for AHU faults, where the variables
highlighted in red and blue are variables that have a positive and negative influence on the
fault likelihood, respectively.
Time: “03-25 15:45”
Predicted fault: Heating coil valve leak
Fault probability: 1.00

Figure A1. Heating coil valve leakage. Standard SHAP plot for individual explanations.

Based on the above plot, please rate, on a scale of 1 to 10, how important these criteria are
in helping to understand whether a fault explanation actually represents a fault.
CR1: I want to be able to choose and view more variables (i.e., AHCVO) in addition to the
auto generated features as shown in the plot above (AAT, tempDiffHC, AHRS). /10
CR2: I want to be able to visualize the short history of fault to understand what has
happened prior to the fault. /10
CR3: I want to be able to view only the most important variables that influence the
likelihood of the fault. /10
CR4: I want to view in terms of probability how much each feature affects the fault
likelihood. /10
Other important criteria you would like to add:

Visualization Design

The following are the sample explanations for AHU faults visualized in three different
ways to explain each type of fault. Please indicate if the explanation is convincing and rate
on the scale of 1 to 10 your satisfaction with each type of visualization.
* All the samples shown here are observations only when AHU is switched on.

Predicted Fault: Fan Pressure Sensor Malfunction

(a).
Time: “03-11 16:00”
Fault probability: 1.00

Figure A2. Fan pressure sensor malfunction. SHAP explanation for fault at a specific timestamp.

Does the above plot explain fan pressure sensor malfunction? (Strongly Agree / Somewhat
Agree / Neutral / Somewhat Disagree / Strongly Disagree)
Your satisfaction with the graphical representation: /10
(b).
Time: “03-11 19:45”
Fault probability: 0.99
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Figure A3. Fan pressure sensor malfunction. SHAP plot for sliding window explanation visualized
from “03-11 10:00” to “03-11 22:00”; x axis represents 15 min time instances.

Does the above plot explain fan pressure sensor malfunction? (Strongly Agree / Somewhat
Agree / Neutral / Somewhat Disagree / Strongly Disagree)
Your satisfaction with the graphical representation: /10
(c).
Time: “03-11 18:00”
Fault probability: 97.73%
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Figure A4. Fan pressure sensor malfunction. Modified SHAP plot for sliding window explanation; x
axis represents 15 min time instances.

Does the above plot explain fan pressure sensor malfunction? (Strongly Agree / Somewhat
Agree / Neutral / Somewhat Disagree / Strongly Disagree)
Your satisfaction with the graphical representation: /10

Predicted Fault: Heating coil valve leakage

(a).
Time: “03-25 15:45:00”
Fault probability: 1.00

Figure A5. Heating coil valve leakage. Standard SHAP plot for individual explanations.

Does the above plot explain fan pressure sensor malfunction? (Strongly Agree / Somewhat
Agree / Neutral / Somewhat Disagree / Strongly Disagree)
Your satisfaction with the graphical representation: /10
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(b).
Time: “03-25 15:00”
Fault probability: 0.99
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Figure A6. Heating coil valve leakage. SHAP plot for sliding window explanation, visualized from
“03-25 08:00” to “03-25 16:00”.

Does the above plot explain fan pressure sensor malfunction? (Strongly Agree / Somewhat
Agree / Neutral / Somewhat Disagree / Strongly Disagree)
Your satisfaction with the graphical representation: /10
(c).
Time: “03-25 13:45”
Fault probability: 97.53%
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Figure A7. Heating coil valve leakage. Modified SHAP plot for sliding window explanation.

Does the above plot explain fan pressure sensor malfunction? (Strongly Agree / Somewhat
Agree / Neutral / Somewhat Disagree / Strongly Disagree)
Your satisfaction with the graphical representation: /10
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