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Abstract: The analysis and segmentation of articular cartilage magnetic resonance (MR) images
belongs to one of the most commonly routine tasks in diagnostics of the musculoskeletal system of
the knee area. Conventional regional segmentation methods, which are based either on the histogram
partitioning (e.g., Otsu method) or clustering methods (e.g., K-means), have been frequently used
for the task of regional segmentation. Such methods are well known as fast and well working in the
environment, where cartilage image features are reliably recognizable. The well-known fact is that
the performance of these methods is prone to the image noise and artefacts. In this context, regional
segmentation strategies, driven by either genetic algorithms or selected evolutionary computing
strategies, have the potential to overcome these traditional methods such as Otsu thresholding or
K-means in the context of their performance. These optimization strategies consecutively generate
a pyramid of a possible set of histogram thresholds, of which the quality is evaluated by using the
fitness function based on Kapur’s entropy maximization to find the most optimal combination of
thresholds for articular cartilage segmentation. On the other hand, such optimization strategies
are often computationally demanding, which is a limitation of using such methods for a stack of
MR images. In this study, we publish a comprehensive analysis of the optimization methods based
on fuzzy soft segmentation, driven by artificial bee colony (ABC), particle swarm optimization
(PSO), Darwinian particle swarm optimization (DPSO), and a genetic algorithm for an optimal
thresholding selection against the routine segmentations Otsu and K-means for analysis and the
features extraction of articular cartilage from MR images. This study objectively analyzes the per-
formance of the segmentation strategies upon variable noise with dynamic intensities to report a
segmentation’s robustness in various image conditions for a various number of segmentation classes
(4, 7, and 10), cartilage features (area, perimeter, and skeleton) extraction preciseness against the
routine segmentation strategies, and lastly the computing time, which represents an important fac-
tor of segmentation performance. We use the same settings on individual optimization strategies:
100 iterations and 50 population. This study suggests that the combination of fuzzy thresholding
with an ABC algorithm gives the best performance in the comparison with other methods as from the
view of the segmentation influence of additive dynamic noise influence, also for cartilage features
extraction. On the other hand, using genetic algorithms for cartilage segmentation in some cases
does not give a good performance. In most cases, the analyzed optimization strategies significantly
overcome the routine segmentation methods except for the computing time, which is normally lower
for the routine algorithms. We also publish statistical tests of significance, showing differences in the
performance of individual optimization strategies against Otsu and K-means method. Lastly, as a
part of this study, we publish a software environment, integrating all the methods from this study.

Keywords: medical image segmentation; articular cartilage; regional segmentation; ABC; PSO; DPSO;
Otsu thresholding; K-means clustering
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1. Introduction

Medical image segmentation represents one of the essential procedures in medical
image analysis. The methods, belonging in the area of medical image segmentation, play
an important role for the image area decomposition with the focus image understanding.
Such methods enable two important issues: (1) the extraction of morphological features of
objects of interest and (2) the consequent extraction of various features of such objects with
the aim of the quantification of biological tissues [1–7]. In this context, we are routinely
focused on either geometrical parameters of image regions such as the area, perimeter,
diameter, or curvature parameters or intensity parameters, including a statistic estimation
of the intensity spectrum to quantify the image surface [8,9]. Not having automated
image segmentation methods, clinical experts would have to perform medical tissues
segmentation manually by contouring objects of interest. Such a procedure would be
surely linked with subjective error depended on the skills of the individual physician.
On the other hand, manual contouring plays an important role in the objectivization of
automated image segmentation methods, where manual annotation normally serves as
a gold standard to objectively evaluate the segmentation performance based on selected
evaluation parameters such as the index of correlation, the mean squared error (MSE), the
structural similarity index (SSIM), and many others [10–14].

Image segmentation includes a lot of methods varying in their mathematical strategy
and the aim of the segmentation. Edge detection represents one of the most conventional
methods for the automatic contouring of objects of interest. Here, we recognize multiple
principles such as the maximum of the first derivative, or the zero crossing detectors [15–17].
These methods are normally linked with two main limitations. Firstly, they perform the
segmentation of the whole image regardless of the focus on a particular object of interest
and mainly they are prone to intensity variations as the impact of image noise, which
may significantly influence the segmentation quality. Therefore, these methods are often
completed with smoothing filters to improve the segmentation quality. More sophisticated
segmentation techniques represent active shape models such as active contours or level
set methods, which are capable of focusing on a particular object of interest and within
a predefined number of iterations perform the gradual detection of geometrical features
of objects of interest. One of the major limitations of these methods is its computing time,
because they use a higher number of iterations, and the computing time is also depended
on image resolution [18,19].

The most extensive area of the medical image segmentation is regional image segmen-
tation. These methods normally enable medical image decomposition into a predefined
number of regions [20,21]. Such a region is perceived as a finite number of image points
(pixels or voxels) that mutually share similar features. This predetermines that such re-
gionally oriented methods are able to well recognize biological tissues of interest within
individual regions. Regarding the nature of regional segmentation, we recognize so called
noninterpreted methods, which normally utilize conventional segmentation strategies and
only enable a decomposition of the image points into individual regions without inter-
preting the content of individual regions [22–24]. Nowadays, the recent trends in medical
image regional segmentation are mainly focused on so called interpreted methods, enabling
the interpretation of individual detected objects. Such methods normally use semantic
segmentation [25,26]. Among the benefits of such methods, it is important to mention that
these methods require training on huge datasets, which may be a limitation in the context
of medical image availability [27–30].

In this paper, we provide a comprehensive insight in the form of a comparative analy-
sis of selected evolutionary optimization algorithms and genetic algorithms performances,
which are used for the tuning of conventional segmentation strategies to achieve a maximal
performance under various image conditions and deterioration by image noise. In this
study, we compare the performance of optimized segmentation strategies with the elements
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of artificial intelligence (evolutionary and genetic algorithms) with conventional strategies
based on the hard thresholding (Otsu method) and nonhierarchical clustering (K-means).
This analysis should objectively point out on the performance and impact of modern opti-
mization methods with artificial intelligence as from the view of segmentation performance
and robustness under additive noise and also computing time, which is an important factor
of each segmentation procedure regarding complex effectivity. This objectivization analysis
investigates the robustness and computing requirements of individual segmentation strate-
gies provided under the influence of various types of additive deterministic noise with
dynamical intensity. That enables the study of the performance of individual optimization
techniques and its determining parameters along gradually deteriorated conditions and
shows the dynamical features of robustness of individual methods. Besides the analysis of
performance, we also publish the application of regional segmentation for cartilage features
extraction. As a part of our research, we publish a testing software environment, integrating
individual methods of regional segmentation with the possibilities to select individual
steering segmentation parameters. The software application enables the application of vari-
ous deterministic noise generators with the settings of the noise parameters, which control
noise intensity to simulate image degradation for the testing of individual segmentation
strategies robustness. This application also enables the segmentation accuracy evaluation
based on selected objectivization parameters, which are also used in this study to evaluate
the segmentation performance.

The organization of the paper is following. In Section 2, we provide recent notes and
advances in the area of medical image segmentation. In Section 3, we introduce individual
segmentation strategies, guidelines for testing of these methods, and datasets of MR images
of articular cartilage used in this study. Section 4 is aimed on quantitative results, providing
a comprehensive insight on the effectivity, robustness, and limitations of segmentation
methods. Section 5 is aimed on complex conclusions, discussion, and future trends of
this study.

2. Recent Work

In this section, we outline the conventional procedures, serving for a spatial image
domain decomposition, which is routinely used as a fundamental tool for medical tissues
identification. There are various mathematical approaches, which may be used for the
aforementioned image decomposition, including mainly techniques based on histogram
partitioning, edge detectors, contours tracing, analysis pixel’s relationships, methods of
artificial intelligence, and others [30–38].

One of the most popular techniques, and it is also the aim of this paper, is the regional
image segmentation bases on the histogram thresholding. These methods normally allow
for a histogram decomposition bases on either one, or multiple thresholds, defining indi-
vidual image regions [37,38]. Here, one of the most popular methods is historically Otsu
segmentation, which defines individual thresholds based on the minimization of intra-class
intensity variance and the maximization of inter-class variance [39–41].

Other popular areas for regional medical image segmentation is clustering analysis.
Here, the most popular methods are based on the nonhierarchical clustering such as K-
means or fuzzy C-means (FCM) segmentation [42,43]. These methods usually measure
distance-based parameters between individual pixels and cluster (region) centroids for the
pixel’s classification [44,45]. Such methods are capable of performing image decomposition
into various isolated classes based on their features as a level of similarity between the pixel
intensity and the centroid [46–50]. Of course, apart from the mentioned approaches, there
are plenty of others, which are normally used for medical image segmentation, including
edge detectors, outlining image boarders, the methods for consecutive regions forming,
such as region growing, or splitting methods, watershed or wavelet transformation, and
others [51–53]. Of course, in recent times, one of the most popular segmentation methods
deals with various applications of machine and deep learning, enabling semantic segmenta-
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tion instead of the segmentation without interpretation as it is typical in many conventional
approaches [54–68].

These routine approaches, as we outlined earlier, are usually easily implemented with
a reasonable computing time, on the other hand they normally suffer from certain limita-
tions, which may have a significant influence on their effectivity and robustness as well.
In the comparison with conventional segmentation methods such as Otsu thresholding,
which is based on the hard selection of individual thresholds in histograms, we proposed
schemes on thresholding strategies utilizing optimization techniques for optimal thresholds
selection from various thresholds combinations. This is supposed to be a more effective
approach, which better reflects a pixel’s distribution inside defined regions. Furthermore,
we provide analysis of robustness of each tested method upon dynamic various noise
influence to objectively show dynamic features of performance when an image domain is
gradually deteriorated by additive noise. On the other hand, we are aware that evolution
strategies and a genetic algorithm may have a significant influence on the computing time.
Therefore, we also publish time complexity analysis, showing their complexity. All the
optimized methods we put in a contrast with the conventional approaches such as Otsu
thresholding and the K-means method to objectively point out differences in segmentation
performance in the context benefits and limitations of using evolutionary and genetic
algorithms for various numbers of thresholds and other steering optimization parameters
of these optimization techniques.

3. Materials and Methods

Recently, various implementations of evolutionary and genetic optimization strategies
have increased in popularity for solving various engineering problems in the area of
optimal settings of steering parameters of various procedures. The main aim of this paper
is to objectively point out on the effectivity and robustness (a level of stability in various
image environment) of selected thresholding-based regional segmentation strategies, being
optimized with evolutionary computing methods (ABC and PSO with its variants: FPSO
(fuzzy particle swarm optimization) and DPSO (Darwinian particle swarm optimization))
and genetic algorithms as from the view of their effectivity of segmentation, features
extraction, and also time complexity. On the other hand, ABC algorithm is used in the
combination with fuzzy thresholding, which forms individual segmentation regions based
on the membership functions for each region, where pixels are classified into regions based
on the membership values as we describe further. This is also an important issue of this
study as shows the impact of fuzzy thresholding besides conventional hard thresholding
histogram partitioning.

In the contrast of the optimized methods, we put two selected conventional segmen-
tation approaches, which have been considered for a long time as standards for medical
image segmentation, as they were used in plenty of research studies, dealing with var-
ious object detections from medical images. The first one is Otsu thresholding, which
is the implementation of so-called hard histogram thresholding, and the second method
is K-means, which defines segmented regions based on the nonhierarchical clustering.
Implementation of these routine segmentation strategies, which utilize various principles
for image segmentation, point out on differences in performance between non-hierarchical
clustering and thresholding for regional image segmentation. In a general way, we define
the optimization problem of a set of thresholds:

T = {T1, T2, . . . , Tn} (1)

In such configuration, we search for an optimal combination of individual thresholds
(T1, T2, . . . , Tn), defining individual segmented regions, which the best satisfies optimiza-
tion criteria, which in evolutionary and genetic algorithms is given by fitness function,
which is described further. As the definition of fitness function, we use a measure of entropy
(Kapur entropy), which well defines pixel’s distributions in segmented regions.
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3.1. Segmentation Methods

In this section, we introduce individual segmentation strategies. Here, we describe the
evolutionary strategies based on the ABC and PSO (and its variants) and genetic algorithms
for histogram-based thresholding. In contrast with these strategies, we put the conventional
methods based on the hard thresholding (Otsu thresholding) and K-means, which classifies
pixels into regions based on a similarity (Euclidean distance) with region’s centroid. These
conventional methods do not contain any optimization elements, so it would be interesting
to compare the performance of optimization strategies with these segmentation routines.

In order to objectively report the effectivity and robustness of individual methods, we
employ selected deterministic noise generators with dynamic noise intensity (controlled by
their steering parameters). Dynamical noise impact is manifested by gradual deterioration
and modification of pixel’s intensity distribution, which supposedly should have impact
on the segmentation robustness as we provide modeling in the section results. In order
to provide such analysis, we employ Gaussian, salt and pepper, speckle, and Rician noise
generators with dynamical range of their noise impact.

In order to objectively measure the noise impact of the segmentation performance of
individual studied methods, we employ selected evaluation parameters, which are focused
on measuring a level of similarity or difference between the native segmentation (with
a zero level of added noise) and respective noise level. This approach enables objective
performance evaluation of studied segmentation strategies. For this analysis we use the
following objectivization parameters: structural similarity (SSIM), mean squared error
(MSE), correlation coefficient (CORR), and signal noise ratio (SNR). Figure 1 represents a
whole testing environment, which is the main aim of this paper, including application of
noise generators, segmentation strategies, and parameters for evaluation.

3.1.1. Otsu Thresholding

Otsu method [66] is one of the sophisticated thresholding methods, which is based on
the number of regions selected, Otsu method algorithm determines the optimal thresholds
according to the histogram. Image segmentation uses the classification of pixels into
segmentation regions. The basis of the method is the statistical parameter of variance,
which characterizes the variability of individual pixels in the image. The criteria for this
classification include minimizing the intra-class variance or maximizing the inter-class
variance. Otsu method uses histogram thresholding to define the number of regions. It
searches for the segmentation class with the smallest variance, i.e., the optimally chosen
threshold. This technique is classified as a statistical method because it works based on the
statistical parameter of variance, which characterizes the variability of the distribution of
individual pixels in the image. The equation for calculation of the within-class variance at
any threshold is:

σ2(t) = ωbg(T)σ
2
bg(T) +ωfg(T)σ

2
fg(T), (2)

where ωbg(t) and ωfg(t) are the probability of number of pixels for each class at threshold
T and σ2 is variance of color values (pixels). The variance is represented by equation:

σ2(t) = ∑(xi − x)2

N− 1
, (3)

where xi presents pixel value in group of bg or fg and x presents the mean pixel value in
group of bg or fg and N represents the number of pixels.
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Figure 1. Complex general flowchart of testing environment for segmentation evaluation.
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ωbg andωfg are calculated by:

ωbg =
PBG(T)

Pall
, (4)

ωfg =
PFG(T)

Pall
, (5)

where PBG is count of background pixels at threshold T, PFG is count of foreground pixels
at threshold T, and Pall is the total count of pixels in image.

Otsu method can be extended for a multiregional segmentation scheme [67], where
more thresholds are defined. In this configuration, the image histogram is divided into
equal areas, and for each such area the own threshold is defined. Finally, the original image
is segmented by using all these thresholds. Supposing we have L image intensities in the
range: [0, 1, 2, . . . , L] and the parameter p stands for the number of thresholds. A width of
one area is defined as the ratio:

a =
L
p

(6)

Optimal thresholds (P) for individual areas are defined as the maximization of inter-
class variance:

Pp = maxp

(
σ2(t)

)
(7)

3.1.2. K-Means

K-means method [68] is classified as a non-hierarchical clustering method. K-means
method allows assigning individual pixels into segmentation classes to which they belong
based on distance. It uses nonhierarchical clustering for pixels assignment and searches for
the minimum distance between the pixel and the selected center of gravity (centroid). A
given pixel is then assigned to the region to which it has the smallest distance. The most
commonly used metric is Euclidean, which measures the distance of pixels in the feature
space according to the following equation:

D(
→
x ,
→
y ) =

√
∑n

i=1(xi − yi)
2, (8)

where
→
x ,
→
y are the feature vectors, D(

→
x ,
→
y ) is the resulting distance, n is the dimension of

the space, x and y are the pixel coordinates.
Pixel xi is assigned to class yi according to the following relation:

yi = argminj
∥∥xi − µj

∥∥ (9)

The following vector recalculation calculates the new values of the vectors µj as the
mean values from the pixels xi that were classified into the class determined by the vector
µj. The new value of µj is calculated according to equation:

µj =
1
nj

∑n
i=1,y1=j(xi), (10)

where nj denotes the number of pixels and xi classified in the second step into the class
determined by the vector µj. The vector classification and recalculation steps are repeated
until at least one vector xi is classified into a different class than it was classified in the
previous step. The pixel in each class that possesses the maximum frequency is determined
as the centroid. The disadvantage of this method is that by assigning objects to each class,
it can only determine whether the object belongs to the cluster or not. Therefore, K-means
is classified as a hard approach technique.
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3.1.3. ABC Evolutionary Optimization

ABC algorithm or artificial bee colony is an algorithm that belongs to the algorithms
based on the swarming behavior of animals. Specifically, it is the behavior of bees looking
for food. The principle of the algorithm is that it tries to provide the best approximate
solution with low computational requirements. The bees function as a whole in a certain
way and the allocation of the different roles in the community is automatic. These are the
employed bees (EB), the onlooker bees (OB), and the scouts (SB) whose task is to improve
the overall food resources. The basic parameters of ABC include the number of food
sources, the limit, and the number of iterations. The limit determines after how many
iterations a worker will abandon their solution if they have not been able to improve it.

The total population (SN) consists of an equal number of EBs and OBs, with each EB having one
temporary solution Ri adjacent to the solution Xi. Parameter Xi = {Xi, 1, Xi, 2, . . . , Xi, p} represents
the i-th solution in the swarm of bees, where p represents the number of parameters that
are optimized. In the first stage of the algorithm, these two solutions are compared using
the fitness function and if the solution of the fitness function Ri is better, it is kept as the
new solution from this pair. Otherwise, no change occurs. This is done for each of the pairs
Xi and Ri. It is necessary to apply a selection limit Lv specifying the maximum number of
attempts in selecting a solution Xi in case an optimal solution Ri cannot be found.

However, if an optimal solution cannot be found even after exhausting Lv, we consider
it as a burnt-out solution. The second stage is essentially an extension of EB. It works with
OB in which the existing individual solutions are tested from different perspectives. The
more optimal solution should have a higher value of Pi. After selecting the food source Xi,
a neighboring food source Ri is determined and their fitness values are compared. The last
part is the scouts searching for new food sources instead of depleted sources. The process
of evaluating solutions is iterative, in most cases 100 cycles are applied. The output of
this optimization method is the set of all admissible solutions, where in the final step the
solution possessing the maximum value of Pi is selected.

3.1.4. PSO Evolutionary Optimization

PSO, or particle swarm optimization, is an evolutionary optimization computing
technique inspired by the social behavior of birds and fish swarms. This method uses a
population of particles that fly in an irregular motion through a given space at a certain
speed. The position of each agent is given by the vector xi, and its movement corresponds
to the velocity vi. The particle velocity is determined as follows:

vi(t) = vi(t − 1) + c1 ∗ rand1(pi − xi(t − 1)) + c2 ∗ rand2 (pg − xi(t − 1)), (11)

where c1 and c2 are positive numbers, rand1 and rand2 denote random numbers from
the range 0 to 1. Equation is composed of three parts. The inertia and attraction to the
best-found position of a given particle pi, and we denote the value of the fitness function
at this position by pbest. This attraction is multiplied by a random weight c1 ∗ rand1 and
is called the memory of the particle. The third part of the equation is the attraction to the
best-found position of the particle pg, and we denote the corresponding fitness value by
gbest. The aforementioned attraction is again multiplied by a random weight c2 ∗ rand2 and
is called shared information, or also shared knowledge. Each individual remembers their
previous best value and the best value of their neighbors. The agents therefore use the
information from the best particle, and therefore this algorithm is more memory efficient
than the genetic algorithm.

3.1.5. FPSO Evolutionary Optimization

FPSO stands for fuzzy particle swarm optimization. It is a modified PSO algorithm
using fuzzy logic theory. The position and velocity of the particles in this algorithm are
defined to represent the relationship between the fuzzy and the variables. Fuzzy logic
controller with two inputs and one output improves the performance of PSO. The two
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input variables represent current best performance evaluation (CBPE) and current inertia
weight. The output variable is change in inertia weight. CBPE needs to be normalized
according to the following formula:

NCBPE =
CBPE−CBPEmin

CBPEmax −CBPEmin
, (12)

where CBPEmin is the true minimum and CBPEmax represents the suboptimal CBPE. CBPE
normalization is used to make the algorithm applicable to a wide range of optimization
processes. A non-optimal CBPE is considered to be any solution with a CBPE greater than
or equal to CBPEmax. These fuzzy variables are defined as fuzzy sets with nine rules for a
fuzzy system.

3.1.6. DPSO Evolutionary Optimization

DPSO is a Darwinian algorithm extending the PSO algorithm by natural selection and
survival of the fittest to increase the ability to escape from local optima. Darwinian particle
swarm optimization (DPSO) allows many swarms of test solutions to exist at any point in
time. Each swarm works like a regular PSO algorithm, except that it uses natural selection
(Darwinian survival of the fittest) to enhance the ability to escape from a local optimum.

The principle of the solution search is that if it is heading towards a local optimum,
then the search for a solution in that region is terminated, and the search for another area
begins. Each swarm is monitored at every step. If swarms improve, they are rewarded. The
reward is to extend the lifetime of the particles or to produce offspring. If swarms stagnate,
they are punished. The punishment consists of shortening the lifetime of the swarm or
removing particles. After the removing the particle, instead of being set to zero, the counter
is reset to a value approaching the threshold number, according to:

SCC(Nkill) = SCmax
C

[
1− 1

Nkill+1

]
, (13)

where Nkill represents a number of deleted particles from the swarm, SCmax
C represents

that the maximum number of swarms must not be exceeded. Whereas the new swarm is
created with a probability based on the equation:

p =
f

NS
, (14)

where p is the probability, f is a random number in the interval 0 to 1, NS represents the
number of swarms. Each swarm is evaluated using the fitness function of all particles. In
this way, it is possible to analyze the overall state of the swarms separately and thus update
the neighborhood and individual best positions of each particle. New particles are created
if a new global solution is found. Conversely, particle extinction occurs if the swarm does
not find a more suitable state in a defined number of steps.

3.1.7. Genetic Algorithms-Based Optimization

Genetic algorithms are based on natural processes with gradual elimination and
subsequent selection of the most suitable solutions. It is a combination between biology
and mathematics. Patterns from living nature are used, which initially work by chance
and gradually produce better solutions. These patterns are then applied using a math-
ematical model to a variety of technical applications, including image processing using
segmentation techniques.

Genetic algorithms use special procedures to find the optimal solution using selection,
crossover, and mutation operations. They start with random selection and search for new,
better solutions; the most optimal solution is then selected from the results. All algorithms
include a fitness function that provides information about the quality of the solution. Each
approach has specific parameters that must be set. Examples are the number of regions, the
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number of initialization solutions, the parameters of the fitness function, or the possible
number of iterations, which means how many steps the algorithm will take to find the best
solution. For GA, the number of crossovers from each iteration, the so-called crossover,
is also set. At the beginning, the structure of an individual is proposed to express its
quality and to make the crossover and subsequent procedures easier. This process is known
as initialization.

The selection operator is used to select individuals for further reproduction, it copies
the selected strings from the old generation to the new one. Mathematically, it can be
expressed as follows:

pi =
fi

∑N
1 fi

, (15)

where pi is the probability of selecting the i-th individual from the population and fi
corresponds to the fitness value of the i-th individual. The crossover operator is analogous
to biological reproductive crossbreeding and can therefore be described as the combination
of two parents producing an offspring.

The final stage in the creation of a new generation is mutation, which also plays an
important role. It ensures diversity and increases the probability of escaping from the local
optimum. It can discover a trait in each generation that no individual has had before and
therefore could not pass on to its offspring.

3.1.8. Application of Optimization Strategies for Image Segmentation

In a general way, we define the search for optimal combination of thresholds to
separate pixels into predefined number of segmentation regions. In order to do this task,
we must specify the criteria, based on which, any optimization strategy recognizes an
optimal configuration of segmentation model. This task is performed by using fitness
function (fit), which is capable of evaluating each possible solution within optimization
strategy. In our study, we use a unified version of fitness function to all the techniques were
comparable. We define the fitness function based on the Kapur entropy [69,70]. By this
way, we can compute and quantify an amount of information, which is presented in each
segmented region. We take advantage of this fact to maximize Kapur entropy measure
to obtain the segmented regions, containing concentrated intensity distributions without
outlying values, causing inhomogeneities. Based on this optimization definition, we define
a set of Kapur entropies (H0, H1, . . . , Hn) for n regions, defined by the set of thresholds
T1, T2, . . . , Tn in the following form:

H(T1, T2, . . . , Tn) =
n

∑
i=0

Hi (16)

In this configuration, we compute Kapur entropy for each region by the following way:

H0 = −
T1−1

∑
j=0

pj

ω0
ln
( pj

ω0

)
, ω0 =

T1−1

∑
j=0

pj (17)

H1 = −
T2−1

∑
j=T1

pj

ω1
ln
( pj

ω1

)
, ω1 =

T2−1

∑
j=T1

pj (18)

Hn = −
L−1

∑
j=Tn

pj

ωn
ln
( pj

ωn

)
, ωn =

L−1

∑
j=Tn

pj (19)

In these equations (Equations (15)–(17)), the parameters ω0, ω1, . . . , ωn stand for the
probabilities for each segmentation class. Based on the definition of Kapur entropy, we
build the fitness function (Equations (18)), which quantifies Kapur entropy to recognize
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worse and better threshold selection, where we suppose the best threshold configuration
maximizes the fitness function.

f it(T1, T2, . . . , Tn) = argmax{H(T1, T2, . . . , Tn)} (20)

In the following text, we summarize the basic concept of soft thresholding for medical
image segmentation. To justify the situation of the application of the evolution algorithms
for hard and soft thresholding, we provide the example of usage PSO algorithm (Figure 2)
for the definition of hard thresholding-based segmentation and ABC algorithm, which is,
in this study, used for the optimization of an optimal location of vertexes of membership
functions in soft thresholding, as we describe further in the text.

Supposing we have a monochromatic image with 8-bit depth (256 gray intensities),
which may be described by the intensity function I(x, y), where I stands for the monochro-
matic image and x, y represents the pixels’ coordinates in 2D image raster. To simplify
this image definition, we use the notation I(r) for the image definition. Supposing that
I(r) should be decomposed into L regions, which should be extracted with using of soft
thresholding by the way to obtain the segmented image, denoted as M(r) with the definition:

M(r) = gs{I(r)}, (21)

where gs{.} stands for a segmentation method (soft thresholding), which may be considered
as a function, providing mapping NI levels of monochromatic image into L regions, that
means: gs: NI → L, where L < NI. After performing the segmentation, is it supposed that
each pixel I(r) is given by a membership level in each of L regions. In this definition, the soft
thresholding utilizes fuzzy triangular membership functions, which assign a membership
level for each pixel in each fuzzy-based region. We use the notation: µl(x), l = 1, . . . , L for
the fuzzy membership function in lth region.

The soft thresholding particularly utilizes a pseudo trapezoid-shaped (PTS) function.
This function may be defined directly based on the centroid’s definition. These centroids
could be calculated by using clustering analyses, where the image data would be decomposed
into regions, and the centroids of such regions would represent triangle vertex. Unfortunately,
such definition would not reflect the pixel’s distribution inside the regions and only rely on
clustering performance. Therefore, we employ the ABC algorithm to search for an optimal
distribution of these triangle vertex of PTS to find an optimal segmentation model. As we
defined earlier in the ABC definition, the parameter: Xi = {Xi, 1, Xi, 2, . . . , Xi, p} defines
ith possible solution for bee swarm. Here, this parameter particularly represents a set of
random combinations of triangle vertexes to be optimized using ABC optimization. Besides
the definition of the vertexes, we define the further conditions (rules) for the construction
of PTS functions:

• Complete division: ∀x, ∃µl(x), 1 ≤ l ≤ L, so that µl(x) > 0
• Consistency: i f µl(x0) = 1, then µk(x0) = 0, ∀k 6= l
• Normality: max(µl(x)) = 1

As the example (Figure 3), we provide a sequence of four vertexes (V1–V4), which
defines four segmented regions.
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Figure 2. Example of PSO and ABC algorithms for definition of optimized concepts of hard and soft
thresholding.
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Figure 3. Definition of sequence of four PTS functions for the soft thresholding-base segmentation
model (L = 4).

The membership function of the pixel r from the image I(r) in the lth segmentation class
is given by the expression µl(I(r)). By using of the PTS function, we have: ∑L

l=1 µl(I(r)) = 1.
This method basically provided transformation of the image pixels into the fuzzy space,
where each pixel is described with using of all the membership functions (segmentation
model with L regions) by the way:

µ(I(r)) = [µ1 (I(r)) µ2 (I(r)) . . . µL (I(r))] (22)

In this definition with PTS functions, only two adjacent membership functions give
non-zero membership levels for each pixel. Based on this definition of fuzzy space, we
define defuzzification to finally classify the pixels into individual classes based on the
maximal level of membership functions.

M(r) = argmaxl{µl(I(r))} (23)

Here, the expression M(r) stands for the segmented image base on the soft thresholding.

3.2. MR Datasets of Articular Cartilage

In this section, we describe the datasets that we use for the testing of the analyzed
segmentation methods. Since the musculoskeletal system plays one of the most important
roles in the human body, ensuring movement, we are focused on the MR images of articular
cartilage from various MR sequences, which are crucial for movement. The musculoskeletal
system in general contains various structures thatenable persons to move. In the main
principle, this system can be divided into muscles, which serve as the executors of motion,
and the bone supporting system with joints, ligaments, and tendons. Besides the motion
activities, this system also perform the further important tasks, including upright posture,
protective function of vital organs, and functions, ensuring communication such as the
contraction of mimic muscles and gesticulation.

Among other medical imaging methods, magnetic resonance plays an important and
indispensable role in investigating tendon and muscle traumas and disorders with the
aim to distinguish ganglia, cysts, hematomas, and early degenerative structural changes
of articular cartilages. Here, the most common MR techniques utilize T1 (longitudinal)
and T2 (transverse) relaxation times. In the examination of articular cartilage, routine
procedures including a spin-echo sequence are used. Individual tissues have various T1
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and T2 relaxation times. Therefore, it makes differences in MR signal strength, which
reflect measurable differences in grayscale intensities. Here, darker tissues are perceived
as hyposignal, contrarily lighter tissues are hypersignal. Based on this fact the obtained
MR images allow T1 and T2 weighting. This fact is frequently utilized in articular cartilage
imaging with the aim to distinguish the healthy structure from pathological disorders such
as early stage of cartilage loss in osteoarthritis.

In our study, we use three variable sequences of articular cartilage, including T2-
weighted images, proton density-weighted images, and gradient echo images. For each
mentioned group, we tested in total of 1000 MR images from the public database Os-
teoarthritis Initiative (OAI) [71,72] to provide a robust comparison among individual
segmentation approaches.

In the basic principle, the fat saturation MR sequence involves firstly the excitation
and consequently dephasing of the spinning protons in fat tissues. This process is driven
by the application of a lipid-specific radiofrequency pulse. This pulse is applied before each
repetition of each 2D or 3D sequence. A significant benefit of this approach is a substantial
contrast between non-lipid and lipid tissues.

The proton density-weighted MR imaging is able to recognize in contrast the cartilage
defects and abnormal cartilage composition in their tissues. This imaging sequence enables
a suitable investigation of the cartilage morphology, ligaments, and menisci. The fat-
saturated proton density-weighted images are suitable for the investigation of a low-signal
intensities, which is a typical case of early cartilage loss. Therefore, this technique is well
suited for the examination of osteoarthritis. As an example of the articular cartilage data,
we provide a comparison of various sequences from the same cartilage area (Figure 4).

Proton density sequence plays an indispensable role in structural investigation of
the early stage of articular cartilage loss. Here, only a weak contrast between a common
cartilage surface and such pathological findings are notable. Therefore, for our analysis
these data are substantially important. To objectivize such findings, we provide the example
(Figure 5) from our dataset, where such investigations can be observed.

In order to objectivize the acquisition parameters for the tested images, we provide
Table 1, which summarizes the important acquisition parameters for individual MR tech-
niques for articular cartilage imaging, used in this study. Here, we mainly indicate the
parameters such as FOV, matrix size, acquisition time slice thickness, interslice gap, scan-
ning mode, and findings. We use the unified settings of matrix size and FOV (Table 1) to
all the segmentation methods and were objectively comparable in the same dimension of
image domain, which is important for performance comparison of individual segmenta-
tion strategies as well as their time complexity, which should be compared for the same
image size.

Table 1. Overview of acquisition parameters for individual MR imaging sequences in this study.

Fat-Saturated Proton
Density-Weighted Sequence Proton Density-Weighted Sequence Fat Saturation Sequence

FOV (mm) 160 × 160 × 60 160 × 160 × 60 160 × 160 × 60
Matrix size 300 × 250 300 × 250 300 × 250
Acquisition time 5:60 4:30 2.55
Slice thickness (mm) 1.6 1.6 1.6
Interslice gap (mm) 0.23 0.15 0.15
Scanning mode 2D 2D 2D
Findings Cartilage lesions Cartilage lesions Early cartilage osteoarthritis
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Figure 4. Example of sagittal 2D fast SE image, which was acquired based on the various MR
sequences from the same knee’s area: (a) T1-weighted image shows a weak contrast between synovial
fluid and cartilage surface. A significant limitation is not providing the information for a proper
assessment of focal cartilage defect (arrows), (b,c): T2-weighted image (b) and weighted proton
density (c), image provides a better contrast between the cartilage surface and synovial fluid, enabling
the identification of a full cartilage defect (tip of arrow) in medial femoral condyle.
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Figure 5. Example of proton-dense sequence for investigation of articular cartilage with early cartilage
loss. The first row shows a sequence of three native images from the MR dataset and the second row
represents image RoIs, focusing on cartilage area, where the red squares point out MR signal change
in cartilage structure that indicate the early cartilage loss.

3.3. Deterministic Artificial Noise Generators

In order to provide the analysis of robustness of individual segmentation techniques,
we employ various image noise generators, which simulate gradual deterioration of spatial
image area by using their steering parameters, as we describe further. For our analysis, we
use the following noise generators: Gaussian noise, speckle noise, salt and pepper noise,
and Rician noise.

3.3.1. Gaussian Noise

Gaussian noise represents white statistical noise. This type of noise is due to natural
sources such as ambient temperature. The distribution of Gaussian noise is uniform in the
image and affects all pixels with the same intensity. It is a normal distribution of noise
distribution in the image. Gaussian noise can be defined using the following formula:

G(x) =
1

σ
√

2π
e
(x−µ)2

2σ2 , (24)

where x represents the luminance of the noise, σ2 is the variance, and µ represents
the mean.

3.3.2. Speckle Noise

Speckle noise is a common noise that occurs in all coherent imaging systems (lasers,
acoustic systems, ultrasound). The cause of this noise is the interference of a signal that
has a different phase when returning from the target. This noise is displayed in the image
as dark pixels with a higher brightness value. The input parameter is the speckle noise
variance. Speckle noise can be described by the formulation:

J = I + n ∗ I, (25)

where I presents the input image, J is the noise distribution in the input image, and n
presents unified zero mean value of the noise in input image.
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3.3.3. Salt and Pepper Noise

Salt and pepper represents impulse noise. The image degradation takes place at several
pixels in the image, with the pixel carrying no information about the original value. The
pixel values in the image are replaced by values of 255 or 0. Thus, this noise is represented
in the image as white and black dots resembling salt and pepper. The input parameter for
setting the noise is the density. This noise is most often noticeable during data transmission.

3.3.4. Rician Noise

Rician noise represents the most typical noise in images taken by magnetic resonance.
Rician noise is based on Gaussian noise in that the real and imaginary parts of the signal are
corrupted by an uncorrelated zero mean. The magnitude of Rician noise can be expressed
using the following formula:

M =
√
(I + n1)

2 + n2
2, (26)

where M represents the signal magnitude, I represents the original image with negligible
noise intensity, and n1 and n2 are Gaussian noise variables with zero mean and equal
variance σ2

n . Here, we can define the probability density function (PDF) for an image, which
is corrupted by Rician distribution by the following way:

p
(

M|I, σ2
n

)
=

M
σ2

n
exp
(
−M2 + I2

2σ2
n

)
I0

(
IM
σ2

n

)
u(M) (27)

In this definition, I0(.) depicts the 0th order of modified Bessel function of the first
kind, and the parameter u(.) stands for Heaviside step function [56].

3.4. Application and Settings of Noise Generators

Firstly, we introduce the settings of noise deterministic generators, which are used in
this study. Each of the noise generators is determined by its steering parameters, which
determine the noise intensity. We use a gradual ascended sequence of the noise intensities
to effectively simulate the segmentation performance degradation upon increasing the
level of the noise-based image deterioration. In the Gaussian noise (G), we use a constant
dispersion (σ2 = 0.01) and variable mean value of the noise (µ), in the salt and pepper (SaP)
noise we provide testing for variable noise density (d) and for speckle (Sp) and Rician noise
(Ric), we control the noise intensity via the parameter variance (σ2). For the purposes of
testing, we use 20 noise levels to simulate the segmentation performance (Table 2).

Table 2. Definition of noise generators for segmentation performance analysis.

Noise Generator

Number of Regions G: (σ2 = 0.01), (µ) SaP: (d) Sp: (σ2) Ric: (σ2)

4 0.01–0.2 0.17–0.33 0.01–0.2 0.02–0.4
7 0.01–0.2 0.17–0.33 0.01–0.2 0.02–0.4
10 0.01–0.2 0.17–0.33 0.01–0.2 0.02–0.4

We gradually applied the noise generators with the range of the noise intensity pa-
rameters to artificially simulate the noise impact on the pixel’s distribution. As we stated
earlier, for each noise, we set 20 levels on the noise intensity. That means each native
MR image contains in total 21 images for testing of segmentation algorithms (1 native
image + 20 noise levels). For each image, we defined a multidimensional array, where
all these noisy images are stored. In the following outputs: Figures 6–9, we provide
the examples of gradual deterioration of individual noise generators, which we used for
the testing.
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Figure 6. Application of Gaussian noise on native MR cartilage image with intensities (from left):
native image, σ2 = 0.01, µ = {0.005, 0.01}.

Figure 7. Application of Rician noise on native MR cartilage image with intensities (from left): native
image, σ2 = {0.2, 0.4}.

Figure 8. Application of salt and pepper noise on native MR cartilage image with intensities (from
left): native image, d = {0.2, 0.4}.
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Figure 9. Application of speckle noise on native MR cartilage image with intensities (from left):
native image, σ2 = {0.2, 0.4}.

3.5. Evaluation Parameters

All the performance characteristics are constructed by the way we use the segmenta-
tion of native MR images as a gold standard against individual segmentation in individual
noise levels. This approach enables objective measurement of the noise influence for each
noise level. This finally shows dynamical features of performance within continuous degra-
dation by image noise with variable intensity. The following parameters are considered for
this study.

SSIM or structural similarity index [59] is a parameter that allows us to objectively
express the similarity of two images x and y using a metric. This parameter is defined by
the following formula:

SSIM (x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x σ2
y C2

) , (28)

where Ci = (k, l)2, where l represents the dynamic range of pixel values, k << 1 are small
constants with values usually 0.02, µ represents the weighted average of the x and y
images, and σ represents the covariance of x and y. These components in the formula
allow to compare between x and y images: brightness (l), contrast (c), and texture (s). The
comparison method extracts structural information from the scene. This parameter takes
values from −1 to 1, with 1 representing the absolute match between the x and y images.
Here, we consider that x represents the segmentation with zero level of additive noise and
y represents the segmentation output with respective level of the noise.

Correlation coefficient represents the linear correlation between two images x and y.
The correlation coefficient is defined as the ratio of the covariance of the variables x and y
multiplied by their standard deviations. The Pearson pairwise correlation coefficient r can
be expressed using the following equation:

r = ∑(xi − x)·(yi − y)
(n− 1)sxsy

, (29)

where sx and sy represent standard deviations and x and y represent the arithmetic mean for
each of the variables x and y. The correlation coefficient takes values from −1 to +1, and the
closer the absolute value of the correlation coefficient r is to one, the closer the relationship
between the variables x, y. The higher the value, the better the segmentation performance.
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SNR or signal to noise ratio is a parameter that allows us to express the ratio of
useful power to useless power of a signal (image). This parameter is defined by the
following equation:

SNR = 10 log10 ·
∑M

i=1 ∑N
j=1

(
g2

i,j − f2
i,j

)
∑M

i=1 ∑N
j=1

(
gi,j − fi,j

)2 (30)

SNR or signal to noise ratio is a pair where gi,j represents the original (gold stan-
dard) segmentation (without additive noise) and fi,j is the segmented image with respec-
tive additive noise level. The SNR quantity is decibels (dB). SNR values can be inter-
preted in the form the higher SNR values we achieve for respective segmentation, the
better agreement with the gold standard we have, and better segmentation performance
we achieve.

MSE, or mean squared error, is a parameter that can be used to objectively eval-
uate image quality. This parameter expresses the degree of mean squared error be-
tween the original image and the segmented image. This parameter is defined by the
following formula:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(
xi,j − yi,j

)2
, (31)

where M represents the image size in the horizontal direction, N represents the image size
in the vertical direction, xi,j corresponds to a pixel in the segmented image at coordinates i
and j, and yi,j corresponds to a pixel in the original image at coordinates i and j. For this
parameter, the lower the value, the greater the similarity between the images. Practically,
we compute the squared differences between the pixels, having the same coordinates in
the segmentation matrixes. Consequently, these differences are summed up, and lastly, its
mean value is computed. By this way, we compute the mean quadratic difference between
the gold standard segmentation and respective noise level segmentation.

The segmentation results (multiregional segmentation) are evaluated via labeling
matrix, where each region has a unique number. This number represents an interval of
intensity values, which are classified into a specific region. Thus, this can be interpreted as a
transformation of a set of intensity values from the image spatial area into the region index.
The evaluation parameters reflect pixel reclassification among individual such regions
by the influence of additive noise. By adding additive noise with gradually increasing
intensity, a respective pixel will have significantly different intensity value when comparing
with the situation without additive noise. Therefore, such pixels may be reclassified in
a different region. The evaluation of pixel-wise parameters such as SNR or MSE, reflect
the impact of change of pixels assignment among individual regions. The main aim of
these parameters is reflecting the impact between change of pixel’s assignment in adjacent
regions (this is only small change on noise impact) and the shift between more regions,
where we can suppose a higher noise impact. This situation firstly reflects the change of
pixel region reassignment, but also the shift of pixel intensity by additive noise. Finally,
the evaluation parameters quantify the impact of a pixel’s assignment change and thus
objectively evaluate a robustness of a respective pixel’s classification upon the image noise
with gradual intensity. The higher shift between regions is registrable, the bigger impact on
evaluation parameters is, which quantify the performance and robustness of the regional
segmentation upon dynamic noise intensity.

4. Results

In this section, we introduce quantitative results of testing analyzed thresholding-
based segmentation strategies. Here, we provide several types of characteristics to provide
an objective view of the segmentation performance and limitations. We provide examples
of graphical comparisons of the segmentation methods, which show the influence of the
variable image noise of segmentation maps. For the generation of the segmentation maps,
we use an artificial color coding. Where each single color represents one region of the
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segmentation model. To provide a complex view on the segmentation performance, we pro-
vide this testing for a variable number of segmentation classes because this parameter has
a substantial effect on the segmentation performance. One of the important performance
features is the time complexity, thus we provide time requirements of individual segmen-
tation methods. This aspect is substantially important when performing a simultaneous
segmentation of a stack of MR images. In order to show a statistical significance between
the routine methods and optimized segmentation models, we provide the statistical testing
of significance of p-values for median tests. The last quantitative analysis deals with the ex-
traction of clinically important cartilage features including the area, perimeter, and cartilage
skeleton. Here, we show differences of automatic segmentation and the gold standards.
Lastly, we provide a presentation of the software environment, which integrates individual
reported segmentation strategies with the possibility of selecting steering parameters of
segmentation.

4.1. Quantitative Segmentation Evaluation

Gradual noise dynamics has a substantial effect on the pixel’s distribution as we
mention in the previous examples. In our study, we utilize this fact to test the robustness of
segmentation strategies to justify the impact of optimization elements for the performance
of regional segmentation as we describe further.

The first analysis, which we provide is aimed on the graphical evaluation of the
analyzed segmentation methods under gradual increasing noise influence. Based on such
results, we can subjectively observe clearly visible notable differences in individual methods
in segmentation maps. As the example, we provide the comparison (Figures 10 and 11) for
all the methods for salt and pepper noise with three levels of density: 0.1, 0.5, and 0.7 and
Rician noise with three settings: σ2 = {0.1, 0.5, 0.7}.

The segmentation results are interpreted in the form of segmentation maps in the
color spectrum (Figures 10 and 11). The interpretation of these color maps is that each
segmentation region in the segmentation map is represented by a single value. Thus, the
number of colors corresponds with the number of regions. Each such regional model can
be interpreted as a transformation of the scale of intensity values to the number of regions.
For instance, 8-bit images (256 intensity values) are transformed into four intensities
(segmentation model with four regions). The main aim of this analysis is to objectively
report how the distribution of a pixel’s assignment into individual regions are modified
under the influence of additive noise against the gold standard (segmentation without
additive noise influence).

Based on such experimental results, it is noticeable that an increasing noise intensity
can significantly impair the quality of the segmentation results. For lower noise levels the
segmentation results point out on a good performance, for example the ABC algorithm does
not exhibit more significant signs of the noise. On the other hand, higher levels of noise
cause significant impairment of the segmentation model consistency. In order to objectively
justify this fact, we further provide a robust testing of these segmentation methods based
on the mentioned evaluation parameters, to objectively show the change of segmentation
performance among individual methods, and also how the number of regions influence the
dynamic of segmentation performance. To better justify the testing scheme, we provide
testing on routine approaches of Otsu thresholding and K-means clustering. Here, we
only set the number of the segmentation regions. Contrarily, in the evolutionary strategies,
including ABC, PSO, DPSO, and FPSO, we use a unified number of iterations, 100 (PSO1,
GA1 and ABC1) and 500 (PSO2, GA2 and ABC2), and a population size of 50 (PSO1, GA1
and ABC1) and 200 (PSO2, GA2 and ABC2).
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Figure 10. Comparison of regional segmentation models with four regions, which are interpreted by
four various single colors for three levels of salt and pepper noise: from left native image and noise
density d = {0.1, 0.5, 0.7}. All the evolution strategies (ABC, PSO, DPSO, and FPSO) have the same
settings: 100 iterations and 50 populations.
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Figure 11. Comparison of regional segmentation models with four regions, which are interpreted
by four various single colors for three levels of Rician noise: from left native image and noise
density σ2 = {0.1, 0.5, 0.7}. All the evolution strategies (ABC, PSO, DPSO, and FPSO) have the same
settings: 100 iterations and 50 populations.

Here, we provide the quantitative comparison of individual optimization techniques
for image thresholding-based regional segmentation against selected conventional seg-
mentation approaches, including Otsu hard thresholding and K-means nonhierarchical
clustering for regional segmentation. We provide dynamical feature extractions of these
methods, reporting effectivity for each noise level and robustness in the form of the trend
of the evaluation parameters upon additive noise with dynamic intensity, measured by the
mean squared error (MSE), the index of correlation (CORR), the structural similarity index
(SSIM), and the signal to noise ratio (SNR). As the example, we provide these characteristics
(Figures 12–15) for the segmentation models with four regions. The provided characteristics
are constructed for 1000 images, where the results for each level of each noise are averaged.
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Figure 12. Dynamical features of Gaussian noise influence for regional segmentation effectivity and
robustness based on the MSE, SSIM, CORR, and SNR.

Figure 13. Dynamical features of Rician noise influence for regional segmentation effectivity and
robustness based on the MSE, SSIM, CORR, and SNR.
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Figure 14. Dynamical features of salt and pepper noise influence for regional segmentation effectivity
and robustness based on the MSE, SSIM, CORR, and SNR.

Figure 15. Dynamical features of speckle noise influence for regional segmentation effectivity and
robustness based on the MSE, SSIM, CORR, and SNR.

Judging by the experimental results, significant differences in effectivity among in-
dividual methods are notable. The trends of the parameters of similarity (SSIM, CORR,
and SNR) for Otsu and K-means exhibit significantly lower values when comparing with
the evolutionary algorithms. That indicates the notable worse results of these routine algo-
rithms in the comparison with the optimization techniques. The higher these parameters
are, the better the performance of respective segmentation is achieved. On the other hand,
these routine approaches from the view of MSE exhibit the most rapid increasing trend
when comparing with optimization techniques. This is also a sign of the much worse
effectivity of Otsu and K-means against the elements of artificial intelligence.
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Besides these characteristics, we also publish the averaged results of individual pa-
rameters for individual methods. Note that the individual results are average for each
parameter and the type of noise. These characteristics (Tables 3–6) well reflect a global view
on the respective segmentation performance. All these comparisons are provided for four
segmentation classes. Red values represent the worst results for each test; contrarily, green
values represent the best results for each test.

Table 3. Averaged quantitative results for all the noise levels in Gaussian noise.

Segmentation SSIM MSE CORR SNR

Otsu 0.115 0.306 0.889 −0.643
K-means 0.104 0.3549 0.884 −1.308

ABC 0.515 0.1689 0.944 −0.712
GA 0.106 0.0522 0.431 −1.624

PSO 0.125 0.0152 0.904 1.894
DPSO 0.129 0.0131 0.905 −1.112
FPSO 0.128 0.0191 0.871 −1.135

Table 4. Averaged quantitative results for all the noise levels in salt and pepper noise.

Segmentation SSIM MSE CORR SNR

Otsu 0.0831 0.861 0.556 −0.152
K-means 0.113 0.745 0.671 −0.611

ABC 0.749 0.211 0.955 1.281
GA 0.631 0.0517 0.613 −0.0312

PSO 0.141 0.0517 0.633 −2.331
DPSO 0.138 0.0526 0.631 −2.266
FPSO 0.191 0.0612 0.644 −2.241

Table 5. Averaged quantitative results for all the noise levels in speckle noise.

Segmentation SSIM MSE CORR SNR

Otsu 0.691 0.204 0.917 −0.675
K-means 0.695 0.182 0.911 −0.432

ABC 0.744 0.0972 0.955 −0.179
GA 0.712 0.0191 0.721 −0.411

PSO 0.711 0.0999 0.881 −0.284
DPSO 0.711 0.0998 0.884 −0.205
FPSO 0.715 0.0995 0.883 −0.201

Table 6. Averaged quantitative results for all the noise levels in Rician noise.

Segmentation SSIM MSE CORR SNR

Otsu 0.138 1.157 0.645 −1.272
K-means 0.168 0.972 0.669 −1.441

ABC 0.271 0.0841 0.794 −1.921
GA 0.162 0.0701 0.261 −1.822

PSO 0.175 0.0501 0.688 −1.288
DPSO 0.175 0.0579 0.699 −2.741
FPSO 0.114 0.0574 0.645 −2.441

Based on the provided statistical results, we have an insight on a global behavior of
the segmentation strategies. Judging by these experimental results, it is notable that the
highest performance is achieved in most cases by the ABC algorithm. This is expected
due to its enhanced segmentation strategy because it used the fuzzy soft thresholding
instead of hard defined thresholds. The further expected fact is the methods with the
lowest performance. Here, in most cases are Otsu and K-means, which are comparably
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worse than the genetic and evolutionary algorithms. The last interesting fact is that PSO
and its variants achieve relatively similar results without more significant differences. It
is notable that the SNR parameter reports relatively small values. This fact is caused by
applying SNR on segmentation maps in the form of index matrixes (for each region we
have one unique value) instead of intensity values, where we would have a distribution of
256 intensity levels (in the case of 8-bit images). The MSE parameter achieves small values
as well. Here, it is expected, due to the nature of MSE. The lower the MSE is, the higher the
agreement between the gold standard and the respective segmentation results we have.

Tables 3–6 provide the descriptive characteristics of averaged values from all the
noise settings for the individual evaluation parameters (SSIM, MSE, CORR, and SNR).
These results indicate a better performance of the segmentation strategies, which are
optimized with evolutionary or genetic algorithms. On the other hand, these results do
not report a statistical significance of testing. Therefore, we further publish statistical
testing of the optimized methods against the conventional methods: Otsu thresholding
and K-means clustering. Here, we aimed to provide the testing of statistical significance
of the mean value for each optimized segmentation strategy against the methods Otsu
and K-means for all the evaluation parameters and types of noise. Using paired t-tests for
mean values assumes that the tested data come from the normal distribution of probability.
We tested all the distributions of SSIM, MSE, CORR, and SNR whether they come from
the normal distribution. We used the null hypothesis (H0) that the data come from the
normal distribution and against the alternative hypothesis (HA). We place the alternative
hypothesis (HA), which expresses that the data do not come from the normal distribution:
HA = ¬H0. For the testing, we use the chi-square test (χ2 test) with the level of significance:
α = 0.05 and the confidence interval: 1− α = 95%. In all the tested parameters SSIM, MSE,
CORR, and SNR for the noise: Gaussian, salt and pepper, speckle, and Rician, we found
out that the p-value is less than α (5%). Therefore, we reject the null hypothesis on the
given significance level of 5% that the data come from the normal distribution. Since the
data do not come from the normal distribution, we cannot use a paired t-test, but we use
statistical testing of the median with the Wilcoxon rank sum test. We provide testing for
the same significance level: α = 0.05 and confidence interval: 1− α = 95%. For all the
median tests apart from the MSE, we define the null hypothesis as that the median value
for the respective evaluation parameter for ABC, GA, PSO, DPSO, or FPSO is greater than
the median for Otsu or K-means (H0 : (∗̃) > Ã, (∗̃) > B̃). In the case of MSE, we use the
hypothesis: H0 : (∗̃) < Ã, (∗̃) < B̃, here, we supposed that a lower median represents
less significant differences in segmentation effectivity. Here, (*) stands for the median
value of the respective method and parameter, A is the median of Otsu thresholding, and
B is the median of K-means. Against H0, we put the alternative hypothesis as follows:
HA = ¬H0. In the Tables 7–10, we present the p-values for each test. For each parameter,
we report two p-values, where the first indicates the test against the Otsu method ((∗̃) > Ã
or (∗̃) < Ã—for MSE) and the second against K-means ((∗̃) > B̃ or (∗̃) < B̃—for MSE).
The cases when we reject the null hypothesis (p < α) are indicated as red.

Table 7. Results of statistical significance (p-values) for individual segmentation strategies against
Otsu and K-means segmentation based on Wilcoxon rank sum test for Gaussian noise.

p-Value

Segmentation SSIM MSE CORR SNR

ABC 0.39|0.48 0.35|0.48 0.39|0.44 0.31|0.35
GA 0.21|0.29 0.22|0.41 0.04|0.03 0.21|0.28

PSO 0.26|0.27 0.31|0.36 0.36|0.36 0.33|0.35
DPSO 0.24|0.28 0.29|0.33 0.31|0.33 0.33|0.31
FPSO 0.19|0.22 0.33|0.33 0.19|0.28 0.32|0.33
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Table 8. Results of statistical significance (p-values) for individual segmentation strategies against
Otsu and K-means segmentation based on Wilcoxon rank sum test for salt and pepper noise.

p-Value

Segmentation SSIM MSE CORR SNR

ABC 0.31|0.42 0.31|0.33 0.39|0.44 0.33|0.35
GA 0.22|0.27 0.19|0.18 0.19|0.15 0.15|0.17

PSO 0.22|0.29 0.33|0.33 0.20|0.15 0.44|0.41
DPSO 0.21|0.26 0.27|0.39 0.19|0.22 0.03|0.04
FPSO 0.22|0.24 0.21|0.19 0.14|0.19 0.17|0.16

Table 9. Results of statistical significance (p-values) for individual segmentation strategies against
Otsu and K-means segmentation based on Wilcoxon rank sum test for speckle noise.

p-Value

Segmentation SSIM MSE CORR SNR

ABC 0.37|0.39 0.31|0.27 0.32|0.39 0.31|0.33
GA 0.27|0.27 0.19|0.17 0.04|0.03 0.16|0.19

PSO 0.23|0.19 0.31|0.33 0.22|0.14 0.32|0.33
DPSO 0.23|0.25 0.21|0.29 0.24|0.27 0.21|0.27
FPSO 0.27|0.28 0.19|0.21 0.31|0.26 0.18|0.19

Table 10. Results of statistical significance (p-values) for individual segmentation strategies against
Otsu and K-means segmentation based on Wilcoxon rank sum test for Rician noise.

p-Value

Segmentation SSIM MSE CORR SNR

ABC 0.44|0.48 0.48|0.41 0.33|0.49 0.42|0.40
GA 0.41|0.39 0.29|0.33 0.01|0.02 0.41|0.37

PSO 0.48|0.43 0.37|0.38 0.29|0.29 0.34|0.41
DPSO 0.27|0.41 0.35|0.36 0.31|0.42 0.40|0.35
FPSO 0.29|0.42 0.33|0.42 0.27|0.33 0.41|0.38

Statistical testing of significance based on the Wilcoxon rank sum test of comparing
medians was supposed to declare a level of significance between the respective optimized
segmentation strategy and Otsu- or K-means-based segmentation. In order to report this
statistical significance, we provide the p-values for each test, where its value declares the
power of the test (Tables 7–10). In the context of the employment of genetic algorithms in
some cases, we reject the null hypothesis, which means the routine segmentation strategies
achieved a significantly higher median. From the global view, in most cases, the evolution-
ary strategies achieved a higher median than routine algorithms (p-value > α). In these
cases, we fail to reject the null hypothesis. The p-value also enables measuring the power of
the test. The higher it is, the more significant differences we achieved based on the test. In
this context, in the case of the ABC algorithm, we normally achieved higher p-values in the
comparison with other methods. That shows that the combination of fuzzy thresholding
with the ABC algorithm appears as the best segmentation strategy in this study.

In the last part of quantitative comparison, we compare variable numbers of segmen-
tation regions to justify this effect on the segmentation performance. Here, we provide a
comparison of 4, 7, and 10 regions of the ABC algorithm for Rician noise (Figure 16). As it is
obvious, the number of regions plays an important role in the context of segmentation per-
formance. Based on these results, we can objectively conclude that the segmentation with a
lover number of regions mostly achieves a better segmentation performance, contrarily,
10 segmentation regions exhibit the least segmentation performance. The last comparison
(Figure 17) that we provide is a detailed insight on the performance of the ABC algorithm
with two various settings (ABC1, ABC2) as we indicated earlier. Here, we show the com-
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parison of these two ABC alternatives for 4, 7, and 10 regions. Furthermore, here, we can
observe significant differences in the algorithm’s performance. Mostly, the higher number
of regions are set, the worse segmentation results we achieve.

Besides the quantitative characteristics in this section, we also publish a comparison
of time requirements. We provide testing (Tables 11 and 12) of the time complexity for each
analyzed method for the simultaneous computing of 100 MR images of articular cartilage
(same images were used for all the methods). We provide testing on the following hardware
configuration: Intel(R) Core(TM) i5-10300H CPU@2.50 GHz, RAM: 16.0 GB. Based on the
achieved results, the significant differences among the methods are notable. Otsu and
K-means have the lowest time complexity in all the cases. This is expected due to not
requiring optimization techniques. Thus, the main benefit of these methods would be
their speed. On the other hand, the use of genetic and optimization algorithms is time
demanding, as we declare in the following tables. By this comparison, the slowest method
appears to be the genetic algorithm.

Figure 16. Comparison of various settings of number of regions: 4, 7, and 10 for dynamic influence of
Rician noise.
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Figure 17. Comparative analysis of ABC algorithm performance for various segmentation settings
(4, 7, and 10 regions) for Gaussian noise for two various ABC settings: iterations and population size
(ABC1, ABC2).

Table 11. Analysis of time complexity for native and noisy images for methods Otsu, K-means,
and ABC.

Method Otsu K-Means ABC

Regions 4 7 10 4 7 10 4 7 10

Native images 32 s 51 s 76 s 10 s 11 s 12 s 10 min 15 min 20 min
Gaussian 27 s 37 s 44 s 4 min 7 min 10 min 191 min 303 min 416 min

SaP 26 s 36 s 44 s 3 min 6 min 12 min 191 min 291 min 401 min
Speckle 24 s 36 s 41 s 5 min 8 min 12 min 191 min 293 min 398 min
Rician 50 s 58 s 63 s 5 min 8 min 17 min 190 min 302 min 408 min

Table 12. Analysis of time complexity for native and noisy images for methods GA, PSO, and DPSO.

Method GA PSO DPSO

Regions 4 7 10 4 7 10 4 7 10

Native images 13 m 25 m 35 m 84 s 87 s 96 s 8 m 11 m 11 m
Gaussian 280 m 621 m 938 m 26 m 30 m 33 m 178 m 210 m 250 m

SaP 394 m 661 m 1027 m 26 m 29 m 33 m 190 m 210 m 254 m
Speckle 472 m 740 m 1140 m 27 m 32 m 35 m 191 m 213 m 254 m
Rician 558 m 829 m 1239 m 27 m 30 m 33 m 181 m 213 m 254 m
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4.2. Software Environment for Optimized Regional Segmentation Models

In this subsection, we introduce the software environment (Figure 18), which is aimed
on the testing of the segmentation methods performances. We integrated analyzed segmen-
tation methods into the SW application, providing user-friendly testing of segmentation
performance. This software application includes the conventional methods Otsu and K-
means, where users can specify the number of regions for the regional segmentation. As
the main functionalities, this SW contains procedures for computing segmentation mod-
els based on the ABC, PSO, DPSO, FPSO, and genetic algorithms. In these optimization
techniques, users are supposed to specify besides the number of regions, the number of
iterations and the population size. The SW contains the functions for computing individual
noise models, as we introduce in this study, including salt and pepper, speckle, Rician, and
Gaussian noise. Users can interactively set the steering parameters for individual noise gen-
erators to be consequently applied on the tested image. After applying the segmentation,
users will obtain the segmentation performance in the form of list evaluation parameters,
including SNR, MSE, SSIM, and CORR. This SW also enables the export of segmentation
results (Figure 19).

Figure 18. Design of SW environment for testing performance of segmentation algorithms from this
study. Here, we show the example of Otsu, K-means, and PSO algorithms with different settings of
segmentation under speckle noise influence.
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Figure 19. Example of report from the SW for regional segmentation testing. This report contains the
segmentation results of all the integrated segmentation techniques under salt and pepper noise with
density 0.1.

4.3. Clinical Important Features Extraction of Articular Cartilage

Based on the reported analysis of the segmentation performance, mostly the com-
bination of fuzzy thresholding with the ABC evolutionary algorithms appeared as the
best segmentation strategy, judging by reported objectivization parameters and mainly
provided statistical tests of significance. In this subsection, we would like to provide the last
analysis of selected features extraction of articular cartilage from MR images based on the
fuzzy thresholding with the ABC algorithm. The aim of this analysis is firstly computing a
multiregional segmentation model, allowing for a decomposition of the MR image into a
finite number (in this case five) segmentation regions. Consequently, a region, representing
the articular cartilage, is selected (Figure 20) as the region of interest, while the rest of
the segmentation regions are suppressed from the segmentation model (Figure 20). By
this selection scheme, we obtain a binary segmentation model, exclusively classifying the
articular cartilage from the rest of the tissues in the MR images. Figure 20 also presents
a multiregional segmentation of a part of articular cartilage (femoral cartilage) affected
by osteoarthritis of I. grade, which is notable by two segmented lobes of the articular
cartilage, and between them is a gap, where the cartilage is missing. To objectize the
quality of the articular cartilage extraction and the preciseness of the reported features,
we extracted the same features for the gold standard manual segmentation of articular
cartilage. Consequently, the feature differences are compared to quantify the segmentation
effectivity of articular cartilage detection. Note that we used the following settings for the
ABC algorithm: 100 iterations and population size 50. The following cartilage features are
considered for evaluation:

• Cartilage area—a total count of the pixels, belonging to the model of articular cartilage.
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• Cartilage perimeter—a perimeter of the cartilage model. Here, we used Sobel edge
operator for the detection of cartilage borders, and consequently counted the border
pixels.

• Skeleton of cartilage—the detection of cartilage skeleton and computing its length.

Figure 20. Example of segmentation results for articular cartilage and its features extraction based
on fuzzy thresholding with ABC optimization: (a) gold standards by manual annotation, (b) binary
segmentation, (c) native MR image with area of interest indicated by the green square (top) and
multiregional segmentation with 4 regions (bottom), where yellow contours reflect two lobes of
articular cartilage from region of interest, and (d) binary extraction of articular cartilage fused with
the gold standard (red contour).

Based on the segmentation form as binary images, representing extracted articular
cartilage and its respective features, we compute descriptive statistics, pointing out on
individual distribution’s error functions, which show percentual differences of individual
features, and a distribution of values for the individual parameters of segmentation perfor-
mance (SSIM and index of correlation). Here, the evaluation parameters were computed
between the gold standard binary image and the results of the fuzzy thresholding with
the ABC algorithm. Figure 21 provides a graphical representation of the distributions of
differences for cartilage features and the distribution of values for performance parameters
for fuzzy soft thresholding with ABC optimization.

Based on the results of the quantitative analysis of difference function for the extracted
features, we did not achieve significant differences between the gold standard images and
fuzzy soft thresholding with the ABC algorithm. Mostly the distributions of difference
function are kept under 6% of difference. Based on this analysis, we provide the descriptive
characteristics (Table 13), which reports the median and standard deviation for each param-
eter. Based on these results, the best result in median difference is achieved for the feature
of skeleton length (2.42%); contrarily, the worst median difference is achieved for the area
(4.12%). From the view of measuring variability (standard deviation) of the difference
function, the lowest difference is achieved for the skeleton (1.38%) in the contrast with the
parameter area, where the difference was the worst (2.44%). The second studied aspect is
the performance parameters: the index of correlation and the SSIM. Here, we achieved a
higher median for correlation (0.94), where the median for the SSIM was 0.89. Furthermore,
from the view of standard deviation, representing the concentration of values is better than
the index of correlation (0.017), while in SSIM we achieved 0.028.
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Figure 21. Evaluation of percentage difference distributions for fuzzy soft thresholding with ABC
algorithm (against manual segmentation) for cartilage features: area, perimeter, and skeleton and
distributions of performance parameters: index of correlation and SSIM.

Table 13. Descriptive statistic of difference functions for extracted features, where the best results are
indicated as green and the worst as red.

Cartilage Features Median Diff (%) Standard Deviation Diff (%)

Area 4.12 2.44
Perimeter 3.51 1.85
Skeleton 2.42 1.38

5. Discussion and Conclusions

Based on the provided results, significant differences among individual methods
can be observed. In such comparisons, routine methods show significantly worse results
when comparing with the evolutionary algorithms. Along these characteristics, we also
provide the average values for all the noise levels to provide a global view on all the
studied methods. By this statistical comparison, in most cases the ABC algorithm seems
to be the most effective. On the other hand, the use of the genetic algorithm for medical
image segmentation strategies does not give satisfactory results. Furthermore, this strategy
is enough time demanding. We also studied the time complexity for all the studied
methods for three different number of segmentation regions. Here, we can conclude that
the increasing number of regions increases the time complexity. These comparisons also
bring notable differences among routine methods and optimization strategies. The routine
methods are less time demanding in the contrast with the optimization strategies, which is
predictable because the evolution strategies usually represent complex procedures. The
interesting notable fact from this study is the comparison between the hard thresholding-
based approaches with PSO and its variants and soft thresholding with the ABC algorithm.
Mostly, soft thresholding overcame the concept of hard thresholding. In this view, the soft
thresholding appears as more efficient. On the other hand, the hard thresholding strategies
in this study are less time demanding. It is important to mention that the quantitative
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characteristics of the segmentation performance are represented by the trend characteristics
(Figures 14–17) of the evaluation parameters, including the index of correlation, SSIM,
MSE, and SNR. Ideally, these characteristics would be represented by a monotonous trend
clearly defining a progress of the segmentation performance upon dynamic noise. The
real results sometimes show certain variations in the form of local oscillations where the
complex trends do not have to be always monotonous. This may be caused by the fact that
upon various noise intensities, individual segmentation regions are differently affected by
additive noise, which contributes to the total effectivity. This phenomenon is connected
with the fact that the noise generators work on the principle of random definition of noise.

Although this study reveals a complex view of selected aspects of the employment of
evolutionary computing methods and genetic algorithms for medical image segmentation,
there are still open issues for further research in this area. In the future research, it would
be worth studying in detail various settings of population size and the number of iterations
in the context of their impact on the segmentation accuracy. The further important aspect is
the definition of criteria for the evaluation of the most suitable threshold settings. Here,
we use Kapur entropy as the fitness function. Nevertheless, other alternatives may be
plausible. For instance, using a local statistic of variability of pixel’s distribution inside of
regions appears to be a reasonable alternative. Based on these open issues we would like to
build future research in this area.
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