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Abstract: For the sake of addressing the issue of extracting multiple features embedded in a noise-
heavy vibration signal for bearing compound fault diagnosis, a novel model based on improved
adaptive chirp mode decomposition (IACMD) and sparse representation, namely IACMDSR, is
developed in this paper. Firstly, the IACMD is employed to simultaneously separate the distinct
fault types and extract multiple resonance frequencies induced by them. Next, an adaptive bilateral
wavelet hyper-dictionary that digs deeper into the periodicity and waveform characteristics exhibited
by the real fault impulse response is constructed to identify and reconstruct each type of fault-
induced feature with the help of the orthogonal matching pursuit (OMP) algorithm. Finally, the fault
characteristic frequency can be detected via an envelope demodulation analysis of the reconstructed
signal. A simulation and two sets of experimental results confirm that the developed IACMDSR
model is a powerful and versatile tool and consistently outperforms the leading MCKDSR and
MCKDMWF models. Furthermore, the developed model has satisfactory capability in practical
applications because the IACMD has no requirement for the input number of the signal components
and the adaptive bilateral wavelet is powerfully matched to the real fault-induced impulse response.

Keywords: compound fault diagnosis; feature extraction; IACMDSR; vibration-based analysis

1. Introduction

Rolling bearing is a widely distributed component in a plethora of rotating machinery.
As a key component, its availability and reliability are critical to ensure the effective and
safe operation of the entire mechanical system [1,2]. Bearing failure can cause not only
unscheduled downtime and economic loss but also serious injury or death. In practical
engineering applications, due to the close-coupling of mechanical parts in a rotating ma-
chine, a single fault may eventually lead to abnormal behavior of other units. Therefore,
the bearing is typically accompanied by a compound fault in which multiple faults occur at
the same time [3]. Even worse, the bearing usually operates in harsh working conditions,
leading fault-induced impulse responses that are easily disturbed by external interference
and ambient noise. Thus, the multi-feature extraction of bearing compound faults has
received widespread attention.

Vibration-based analysis has become one of the most active and valid means of
fault feature extraction for bearings, because a fault vibration signal directly transmits
dynamic information regarding not only the fault condition but also the fault type [4].
Many advanced vibration-based procedures have yielded fruitful results in fault feature
extraction, such as wavelet transform [5], recurrence analysis [6,7], maximum correlated
kurtosis deconvolution (MCKD) [8], empirical mode representation (EMD) [9], tunable-Q
factor wavelet transform (TQWT) [10], deep learning, and sparse representation [11]. More
specifically, Liu et al. [12] combined EMD with sparse representation to identify the gear
local fault feature. Firstly, the EMD is employed to obtain the prominent impact from
the resulted of the intrinsic mode function (IMF) based on the kurtosis index. Next, the
correlation filtering algorithm (CFA) was applied to obtain the dictionary parameters from
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the optimal IMF. Finally, they successfully extracted the gear local fault features. Similarly,
Wang et al. [13] put forward a method for detecting bearing early weak faults by combining
EEMD and TQWT. Moreover, Li et al. [14] utilized the improved TQWT method to select
an atom to build a self-adaptive dictionary to sparsely represent the fault features and
demonstrated that the method is appropriate for extracting bearing fault features. These
methods show outstanding performance in single-fault feature extraction but are less
satisfactory in compound fault diagnosis. Research has been conducted on improving these
methods to meet the demands of multiple feature extraction. For example, Deng et al. [15]
designed a methodology for bearing compound fault diagnosis by employing optimized
MCKD and sparse representation. Gao et al. [16] applied the MCKD with a convolutional
neural network (CNN) to detect bearing compound faults. The MCKD is used for pre-
filtering, and then the denoised signal is input to the CNN to realize fault identification
and classification. Hong et al. [17] integrated the improved MCKD with multi-wavelet
transform to diagnose compound faults in rotating machinery. Yan et al. [18] applied the
optimal variational mode representation (VMD) as the pre-filter to select two IMFs, then a
1.5-dimension envelope spectrum was employed to detect the characteristic features of the
rotating machinery compound faults. Nevertheless, the above two-step strategy used in
the compound fault diagnosis method has some drawbacks:

(1) The pre-processing and post-processing are carried out separately, making them
computationally expensive.

(2) The critical parameters of the procedures are required to be specified by humans,
demanding a certain degree of expertise and thus with some randomness.

(3) The de-noising capability of these combination methods is inadequate and thus a consid-
erable level of residual noise remains in the extracted fault-induced impulse responses.

In the case of difficult-to-separate complicated signals, the ACMD [19] employs a
greedy algorithm to accurately estimate the instantaneous amplitude (IA) and instanta-
neous frequency (IF) for each signal component individually, and thus it can simultaneously
extract multiple resonance frequencies and not require the number of signal components
to be entered in advance. However, the different signal components separated by ACMD
are still disturbed by noise. The sparse representation performs pre-eminently in bearing
fault feature extraction. It is worth pointing out that building a dictionary that matches
the fault impulse of interest and determining the coefficients with an appropriate algo-
rithm are essential for sparse representation. Li et al. [20] developed a period-assisted
wavelet dictionary and combined it with the OMP algorithm to represent the fault-induced
impulse responses of rolling bearings. Kong et al. [21] put forward an enhanced intelli-
gent recognition method based on sparse representation for planet-bearing fault diagnosis.
Yang et al. [22] introduced a multi-featured sparse representation method for gearbox fault
diagnosis on the basis of a double-dictionary and split augmented Lagrangian shrinkage
algorithm (SALSA).

Based on the foregoing analysis, an IACMD conjunct with sparse representation
known as the IACMDSR model is designed with the aim to diagnose bearing compound
fault. Firstly, the IACMD is applied to extract the multiple resonance frequencies induced by
distinct fault types, as well as to achieve the initial separation of the various fault-induced
compound signals. Furthermore, a sparse representation is employed to reconstruct the
transient impulse response of various signal components. The main contributions of
IACMDSR are described as follows:

(1) The IACMD is not only used to separate compound faults; its extracted fault-induced
resonance frequencies can be embedded in a dictionary for sparse decomposition,
saving computational cost and ensuring the accuracy of the IACMDSR model.

(2) The IACMD also enables the separation of compound signals without requiring the
number of signal components a priori, making it suitable for engineering applications
that do not know the number of signal components in advance.

(3) In contrast to popular sparse decomposition dictionaries that adopt the wavelet atoms
with a single damping ratio (for example, the Laplace wavelet [23] and the Morlet
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wavelet [24]) as the basis functions for atoms, this paper employs period-assisted
bilateral wavelets with a double damping ratio to form the atoms, which can better
match the period-occurred impulse response of bilateral asymmetric attenuation
caused by actual faults and thus improve the accuracy of sparse representation.

The remainder of this paper is arranged as follows: Section 2 briefly introduces the
IACMD and the design of the bilateral adaptive wavelet hyper-dictionary. The detailed
introduction of the IACMDSR model for multiple feature extraction is given in Section 3. In
Section 4, the simulation compound signal analysis is given to demonstrate the effectiveness
of the IACMDSR model. Two sets of experimental compound signals are further analyzed
in Section 5 to validate the outperformance of the IACMDSR model, and two leading
contrastive studies are performed to show the superiority of the IACMDSR model. Finally,
the conclusion is presented in Section 6.

2. The Framework of IACMDSR Model
2.1. The IACMD Algorithm

A non-stationary vibration signal s(t) composed of M signal components can be
modeled as [19]

s(t) = ∑M
i=1 si(t) = ∑M

i=1 Ai(t) cos(2π
∫ t

0
fi(τ)dτ + θi) (1)

where Ai, fi, and θi represent the IA, the IF, and the initial phase of the i-th signal component
si(t), respectively.

With the help of the signal demodulation technique, Equation (1) can be rewritten as

s(t) = ∑M
i=1 ai(t) cos

(
2π
∫ t

0
f̃i(τ)dτ

)
+ bi(t) sin (2π

∫ t

0
f̃i(τ)dτ) (2)

where  ai(t) = Ai(t) cos(2π
∫ t

0

(
fi(τ)− f̃i(τ)

)
dτ + θi)

bi(t) = −Ai(t) sin(2π
∫ t

0

(
fi(τ)− f̃i(τ)

)
dτ + θi)

(3)

where f̃i(τ) denotes the frequency function of the two demodulation operators cos(2π
∫ t

0 f̃i(τ)dτ)

and sin(2π
∫ t

0 f̃i(τ)dτ); ai(t) and bi(t) are the demodulated signals which are used to
recover the IA of the signal components as

Ai(t) =
√

ai
2 + bi

2 (4)

Motivated by the VMD algorithm and matching pursuit [25], the ACMD employs
a greedy approach to separate the signal components one by one. For the i-th signal
component, the representation problem can be modeled as

min
ai(t),bi(t), f̃i(t)

{
‖a′′i (t)‖

2
2 + ‖b

′′
i (t)‖

2
2 + α‖s(t)− si(t)‖2

2

}
s.t. si(t) = ai(t) cos(2π

∫ t
0 f̃i(τ)dτ) + bi(t) sin(2π

∫ t
0 f̃i(τ)dτ)

(5)

where s(t) denotes the input signal; si(t) is the objective component to be extracted.
‖s(t)− si(t)‖2

2 represents the residue signal after the objective component has been re-
moved. α denotes the weighting coefficient. In fact, the ACMD is essentially an adaptive
bandpass filter, and the corresponding signal components can be estimated as

sk
i = Gk

i uk
i (6)

Ri(t) = s(t)− s̃i(t) (7)
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where Ri(t) is the residue signal component and s̃i(t) is the i-th modal component. Accord-
ing to Equation (3), the frequency increment can be characterized as

∆ f̃i(t) = −
1

2π

d
dt
(arctan

(
bk

i (t)
ak

i (t)

)
) =

bk
i (t)×

(
ak

i (t)
)′
− ak

i (t)×
(

bk
i (t)

)′
2π((ak

i (t))
2
+ (bk

i (t))
2)

(8)

Note that the Equation (8) is expected to be sufficiently smooth. Thus, a low-pass
filter is utilized to pre-process the frequency increment in minimizing the interference
components. Finally, the IF is shown as

f k+1
i = f k

i +

(
1
β

ΩTΩ + I
)−1

∆ f̃ k
i (9)

where f k
i =

[
f̃ k
i (t0), L, f̃ k

i (tN−1)
]T

, ∆ f̃ k
i =

[
∆ f̃ k

i , L, ∆ f̃ k
i (tN−1)

]T
, I is an identity matrix,

Ω is the second-order difference matrix, and
(

1/βΩTΩ + I
)−1

can be seen as the low-pass
filter. As can be seen from Equation (9), the ACMD generates multiple IFs in the process
of decomposing the compound signal. In order to provide an overall measurement of the
resonance frequency generated by the fault, we made improvements to the ACMD. The
original multiple IFs are averaged to represent the resonance frequencies derived from
faults, thus the IF can be described as:

f =
1
i

[
f 1
i + f 2

i + · · ·+ f n
i

]
=

1
i ∑i

n=1 fi (10)

The strengths of the IACMD in extracting the fault-induced resonance frequency is
demonstrated in the simulation compound signal in Section 4.

2.2. The Improved Sparse Optimization Model

The sparse representation model for a single component fault objective signal y ∈ RN

with a noise component can be expressed as

y = Dx + noise (11)

where D (d1, d2, . . . , dM) (M > N) is a sparse representation dictionary and x is the sparsity
coefficient. The aim of signal sparse representation has always been to choose as few atoms
(di) as possible in an overcomplete dictionary D to represent all or most of the fault impulse
responses. It can be seen from Equation (11) that the sparse representation consists of
two main parts: 1© dictionary construction, the higher the similarity and matching of the
dictionary atom di to the fault impulse response, the better the sparse representation and
2© the determination of the sparse coefficients, the speed of the sparse representation is

mainly affected by the algorithm [26].

Bilateral Adaptive Wavelet Hyper-Dictionary

Wavelet dictionaries have been the subject of extensive research over the past few
years due to the flexibility and versatility of wavelet waveforms [27,28]. Among them,
the Laplace wavelet dictionary, and the Morlet wavelet dictionary have made remarkable
achievements in the sparse representation of fault features. Figure 1 illustrates the time
domain waveforms of a few typical wavelets. Nevertheless, the wavelets used in the
above dictionary atoms are all single-damped wavelets showing the waveform of unilateral
decay or bilateral symmetrical attenuation. Moreover, the impulse response of a real
vibration signal is distorted to some extent by the transmission path and noise, resulting
in a bilateral asymmetric attenuation shape. In Figure 2, the real signals of the inner and
outer rings of the failed bearing of the Case Western Reserve University also confirm
this phenomenon. Therefore, to improve the matching of the dictionary atoms to the
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fault impulse response, period-assisted bilateral wavelets are employed to design the
hyper-dictionary. The expression of the bilateral adaptive wavelet is as follows:

gimp(ω, ξ, ζ, τ, t) =

Kimp(t− τ, 0)·e
−ξ√
1−ξ2

ω(t−τ)
cos(ω(t− τ))− Kimp(τ − t, 0)·e

ζ√
1−ζ2 cos(ω(t− τ)), t ∈ [τ −Ws, τ + Ws]

0, else

Kimp(t, 0) =
{

1, t > 0
0, else

(12)

where ω = 2π f denotes the oscillation frequency, which is represented by f in the following
equation. Additionally, ξ and ζ denotes the damping ratios that decide oscillation attenua-
tion on the left and right sides of the wavelet, respectively. τ is the time-shift, which decides
the position of the wavelet on the X-axis. Figure 3 depicts three bilateral wavelet waveforms
with different parameter combinations, where the parameters are gimp(1000, 0.5, 0.2, 0.01),
gimp(1500, 0.15, 0.15, 0.03), and gimp(1800, 0.2, 0.5, 0.05), respectively.
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Figure 1. A few typical wavelets: (a) db4 wavelet; (b) Morlet wavelet; (c) Laplace wavelet.
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The resonance frequency for each fault type obtained by the IACMD is adopted as
the oscillation frequency fi of the corresponding bilateral wavelet; then, the CFA [29] is
integrated with the WOA to adaptively locate the optimal damping ratios ξi and ζi of the
wavelet that is most similar to the fault impulse response. First, the parameters of the
WOA are initialized, the population size is set up as 20, and the maximum number of
iterations is set up as 60. Considering that the viscous damping ratio in steel structures
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is generally less than 0.2, the ranges of ξ and ζ are both (0, 0.2). Finally, identifying the
optimal parameters ξ and ζ by finding the maximum correlation coefficient Cγ (the fitness
function of the WOA) between the atom di and the constructed bilateral wavelet gimp.
The mathematical expression of Cγ is shown in Equation (13). It is worth pointing out
that, in the literature [27,30], the dictionary atom is usually made up of a single optimal
wavelet. Taking into account the periodic characteristic of the fault impulse response,
period-assisted bilateral wavelets are employed as the atoms di. The length of a single
wavelet Ls: Ls = fs/ fi (where the fs is the sampling frequency, fi is the fault frequency),
and the period number N is set as 4 [20]. Finally, by changing the time-shift τ of the wavelet
atoms corresponding to different fault components, a bilateral adaptive wavelet compound
dictionary D is designed, which can be expressed as Equation (14)

Cγ =

∣∣di, gimp
∣∣

‖di‖2‖gimp‖2
(13)

D =


D1 =

{
gimp( f1, ξ1, ζ1, τ

}
D2 =

{
gimp( f2, ξ2, ζ2, τ

}
...

Di =
{

gimp( fi, ξi, ζi, τ
} (14)

3. Fault Diagnosis Procedure Based on IACMDSR Model

With the analysis mentioned above, the novel IACMDSR model is proposed for
multiple fault feature extraction based on ACMD and sparse representation, which mainly
includes four procedures. The flowchart is shown in Figure 4.
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(1) The first step is to use the IACMD to adaptively separate the compound fault signal y
into different fault signal components based on the amplitude of the signal spectrum.
The IACMD not only separates the different fault signal components but also extracts
the multiple resonance frequencies generated by each fault type.

(2) Second is the design of bilateral adaptive wavelet hyper-dictionary D based on the
method mentioned in Section 2.2.

(3) Third is the use of the OMP algorithm and hyper-dictionary to reconstruct each of
the signal components decomposed by the IACMD. In which, in order to improve
computational efficiency, each signal component is divided into yi segments, and the
length of each segment is N× Ls. Then, the OMP algorithm is employed to obtain
a sparse coefficient matrix α = (α1, α2, . . . , α3). The objective function is shown
as follows:

αi =
argmin

α‖Dα− yi‖
2
2 + µ‖a‖0 (15)

Then, the reconstructed signal x̂ can be expressed as:

x̂ =
argmin

x λ‖x− y‖2
2 + ∑i ‖Dαi − yi‖

2
2 (16)

(4) The Hilbert transform and square operation is applied to the reconstructed signal x̂ to
obtain the squared envelope spectrum. Ultimately, the fault characteristic frequencies
can be identified from the envelope spectrum.

4. Simulation Signals and Analysis

A bearing simulation signal is constructed and carried out to illustrate the effectiveness
of the IACMDSR model on compound fault feature extraction. The bearing fault signal
is made up of two periodic impulse signals and a noise signal. The description of the
simulation signal can be described as

x(t) = x1(t) + x2(t) + n(t)

x1(t) = ∑M
i=1 Amh1(t− iTr1)

x2(t) = ∑M
i=1 Amh2(t− iTr2)

h(t) = e−(ξi/
√

1−ξ2
i )2π fi

(17)

where x1(t) and x2(t) denotes the bearing inner and outer ring fault signal, respectively.
n(t) is the white noise with a standard deviation of 1.2 and h(t− iTr) represents the periodic
impulse responses. The amplitude parameter Am is 1. The attenuation coefficient ξ1 is
600, ξ2 is 800; the resonance frequency is f1 = 2000 Hz and f2 = 3500 Hz; and the fault
characteristic frequency is f1 = 1/Tr1 = 80 Hz and f2 = 1/Tr2 = 60 Hz. Furthermore, the
sampling frequency is fs = 12 kHz.

The time-domain waveforms, the spectrum, and the envelope spectrum of the sim-
ulation compound signals are depicted in Figure 5. As illustrated in Figure 5a, the fault
impulse responses of different components are buried in the noise. In the spectrum pre-
sented in Figure 5b, the information of the fault modulation band can be detected near the
resonance frequencies of 2000 Hz and 3500 Hz. However, in the envelope spectrum that
is depicted in Figure 5c, there is no fault frequency or its harmonics. Subsequently, the
IACMDSR model is employed for the simulation compound signals. Firstly, the IACMD is
employed to isolate the various signal components. In the time-frequency graph shown
in Figure 6d, the resonance frequencies f1 = 2000 Hz and f2 = 3500 Hz of the simulation
compound signal are clearly extracted by the IACMD.
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Figure 5. Compound fault simulation signals: (a) compound signal; (b) spectrum; (c) envelope spectrum.
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Figure 6. Time-frequency feature extraction results of commonly used methods: (a) STFT; (b) CWT;
(c) ACMD; (d) IACMD.

For composition, some leading methods are also employed to extract the resonance
frequency. Figure 6a,b shows the resonance frequency results of the STFT and CWT
methods, respectively. Considering that the Morlet wavelet waveform has a shape similar
to that of a bearing fault-induced impulse response, the Morlet wavelet is employed as
the mother wavelet of the CWT. As observed in the time-frequency graphs, the fault
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resonance frequencies are not reflected by STFT and CWT. Since the frequency of the noise
simulation signal varies considerably, the STFT window is fixed and cannot be adaptively
adjusted based on the variations of the signal. Therefore, the accuracy of time-frequency
positioning is limited. The window of the CWT is a variable window determined by a scale
factor. However, an appropriate mother wavelet is difficult to choose and is susceptible to
noise. The original ACMD extraction result is shown in Figure 6c. The ACMD employs
a greedy algorithm to capture each signal component individually. Hence, we obtain a
high-resolution adaptive time-frequency spectrum that clearly represents the fault-induced
characteristic frequency by using the estimated IA and the IF. However, we can see that the
IFs of each signal component obtained by the ACMD tends to fluctuate significantly around
the fault resonance frequency. Thus, in the IACMD, we take the average of multiple IFs
as the fault resonance frequency, enabling the better visualization of the result (Figure 6d).
From the above analyses, the benefit of the IACMD is demonstrated.

The time-domain waveforms of the corresponding in-band signal components are
displayed in Figure 7a,b. We can discover from the time-domain waveforms that the fault
signal components are disorderly. Next, a hyper-dictionary is designed to provide a sparse
representation of the different signal components. The first step in building the hyper-
dictionary is identifying the optimal parameters of the bilateral wavelet for the dictionary
atom. The resonance frequencies f1 = 2000 Hz, f2 = 3500 Hz obtained by IACMD are
utilized as the oscillation frequency of the corresponding wavelet. The damping ratio
parameters searched by the CFA are as follows: ξ1 = 0.0708 and ζ1 = 0.0571; ξ2 = 0.0588
and ζ2 = 0.0168. The time-domain waveforms of the inner ring fault signal (IMF1) and the
outer ring fault signal (IMF2) after the IACMDSR model are displayed in Figures 8a and 9a,
respectively. Noise interference is well inhibited, and almost all the periodic impulse
responses can be noticed. In the envelope spectrum shown in Figures 8b and 9b, the fault
frequency and its multiplier are both clearly visible. To show the importance of the sparse
decomposition process in the IACMDSR model, as shown in Figure 10, the crest factor,
Shannon entropy, and Kurtosis are adopted to evaluate the quality of the signal components
derived from IACMD decomposition and IACMDSR reconstruction. In Figure 10, we
can see that the signal quality has dramatically improved after the reconstruction of the
IACMDSR model. Meanwhile, the efficiency of the IACMDSR in distinguishing compound
faults is well confirmed.
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Figure 7. The processing results of the IACMD: (a) time-domain waveform of IMF 1; (b) time-domain
waveform of IMF 2.
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Figure 8. The IACMDSR model results of IMF1 (inner ring fault): (a) time-domain waveform;
(b) envelope spectrum.
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Figure 9. The IACMDSR model results of IMF2 (outer ring fault): (a) time-domain waveform;
(b) envelope spectrum.
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Figure 10. The index results of ACMD decomposition (Figure 7) and IACMDSR reconstruction
(Figures 8 and 9) (a) IMF 1; (b) IMF 2.

5. Application Verification

To demonstrate the effectiveness and superiority of IACMDSR in separating the
compound fault of the bearings, the run-to-failure experimental datasets of the XJTU-SY
bearing from the group of Professor Yaguo Lei [31] and the early fault stage of bearing
experiment data from the group of Professor Huaqing Wang [32] were used for analysis,
and the IACMDSR results are compared with a standard MCKDSR model (MCKD joint
sparse representation) and a leading MCKDMWF (MCKD joint Morlet wavelet filter).
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5.1. XJTU-SY Bearings Compound Fault Data

As shown in Figure 11, a motor speed controller, a hydraulic loading system, an
alternating current (AC) induction motor, and a support shaft make up the run-to-failure
test bench. Two acceleration sensors are placed in the bearing housing, one positioned
vertically and the other horizontally. The type of bearing is LDK UER204, which is an
external spherical bearing with concentric sleeve locking. The signal sampling frequency
was set at 25.6 kHz. Table 1 displays the detailed parameters and the fault frequency
of the bearing. At the rotating speed of 900 rpm, the bearing compound fault of the
inner ring and outer ring is analyzed. According to the formula of the bearing fault
characteristic frequencies, the fault characteristic frequency of the inner ring and outer
ring is 172.9 Hz and 107.9 Hz, respectively. Figure 12 depicts the time-domain waveform,
spectrum, and envelope spectrum of the compound fault vibration signals. From the time-
domain waveform presented in Figure 12a, we can see that the fault impulse responses in
the compound signal are submerged in harmonic interference and noise, as indicated by its
envelope spectrum presented in Figure 12c, where the right characteristic frequency of the
inner ring fault (172.9 Hz) and outer ring fault (107.9 Hz) are not presented.
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Table 1. The parameters of LDK UER204 bearing.

Geometric Parameter Numerical

Rolling diameter Dr (mm) 7.92
Inner ring raceway diameter Di (mm) 29.30
Outer race diameter Do (mm) 39.8
Bearing mean diameter (mm) 34.55
Contact angle (α/◦) 0
Rollers number Z 8
Load rating (static) (kN) 6.65
Load rating (dynamic) (kN) 12.82

Next, the IACMD is applied to isolate the compound signal (Figure 12a). Figure 13
displays the results of the IACMD. As shown in Figure 13a, two distinct fault resonance
frequency bands are shown in the time-frequency graph. Figure 13b displays the time-
domain waveform of the in-band signal components that are shown in Figure 13a. Nev-
ertheless, these preliminary results are insufficient to accurately extract the fault feature.
Therefore, the envelope spectrum (Figure 13c) shows frequencies with characteristics
similar to the fault but with significant noise and interference components. In fact, the
IACMD, as an adaptive filter, can distinguish the resonance frequencies of the differ-
ent signal components, but the decomposed in-band components still contain a large
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amount of noise that cannot be removed. Therefore, this paper performs a sparse rep-
resentation of the in-band fault signal to pick up the fault feature. As illustrated in
Figure 14(a1,a2), the repetitive transients caused by the faults are clearly exhibited in the
time-domain waveform, and the corresponding optimal parameters of the bilateral wavelet
are: f1 = 874 Hz, ξ1 = 0.1999, ζ1 = 0.0513; f2 = 4636 Hz, ξ2 = 0.2, ζ2 = 0.0233. As a
result, the envelope spectrum is presented in Figure 14(b1,b2), where the fault characteristic
frequency is effectively extracted. Likewise, Figure 15 depicts the quality results of the
IACMD decomposed and further reconstructed signal components using the IACMDSR
model. Therefore, we can conclude that IACMDSR has good performance in extracting
fault features and diagnosing compound faults.
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different signal components, but the decomposed in-band components still contain a large 
amount of noise that cannot be removed. Therefore, this paper performs a sparse 
representation of the in-band fault signal to pick up the fault feature. As illustrated in 
Figure 14 (a1,a2), the repetitive transients caused by the faults are clearly exhibited in the 
time-domain waveform, and the corresponding optimal parameters of the bilateral 
wavelet are: 𝑓ଵ = 874 Hz, 𝜉ଵ = 0.1999, 𝜁ଵ = 0.0513; 𝑓ଶ = 4636 Hz, 𝜉ଶ = 0.2, 𝜁ଶ = 0.0233. As 
a result, the envelope spectrum is presented in Figure 14 (b1,b2), where the fault 
characteristic frequency is effectively extracted. Likewise, Figure 15 depicts the quality 
results of the IACMD decomposed and further reconstructed signal components using 
the IACMDSR model. Therefore, we can conclude that IACMDSR has good performance 
in extracting fault features and diagnosing compound faults. 
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Figure 12. Compound fault measurement signal of the XJTU-SY bearing: (a) time-domain waveform;
(b) spectrum; (c) envelope spectrum.
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Figure 13. The processing results of the IACMD: (a) time-frequency graph; (b) the time-domain
waveform; (c) the envelope spectrum.



Sensors 2022, 22, 6330 13 of 23

Sensors 2022, 22, x FOR PEER REVIEW 13 of 24 
 

 
Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

  
  

Figure 13. The processing results of the IACMD: (a) time-frequency graph; (b) the time-domain 
waveform; (c) the envelope spectrum. 

 

  

Figure 14. The IACMDSR model results of IMF1 (outer ring fault) and IMF 2 (inner ring fault): (a1) 
and (a2) time-domain waveform; (b1) and (b2) envelope spectrum. 

  

  

Figure 15. The index results of IACMD decomposition (Figure 13) and IACMDSR reconstruction 
(Figure 14) (a) IMF 1; (b) IMF 2. 

0 0.2 0.4 0.6 0.8Time (s)
-5

0

5

Am
pl

itu
de

 (m
/s

2 )

0 500 1000
Frequency (Hz)

0

0.5

Am
pl

itu
de

 (m
/s

2 )(b)

0 0.2 0.4 0.6 0.8
Time (s)

-5

0

5

Am
pl

itu
de

 (m
/s

2 )

(c)

0 500 1000
Frequency (Hz)

0

0.1

0.2

Am
pl

itu
de

 (m
/s

2 )

109.6 Hz
IMF 1

IMF 2

178.9 Hz

0 0.2 0.4 0.6 0.8
Time (s)

-2

0

2

(a1)

0 200 400 600 800 1000
Frequency (Hz)

0

0.1

0.2

(b1)

IMF 1

fo 2fo 3fo 4fo 5fo

0 0.2 0.4 0.6 0.8
Time (s)

-2

0

2
(a2)

0 200 400 600 800 1000
Frequency (Hz)

0

0.05

0.1
(b2)

2fi 3fi 5fi

IMF 2

fi 4fi

(a)

6.10

13.6

2.4

19.2

11

21.9

IMF 1 Reframing IMF1
 0.00

 5.00

10.00

15.00

20.00

RP1 (Crest factor) RP2 (Shannon entropy) RP3 (kurtosis)

10.10

13.5

2.9

8.8

22.5
(b)

IMF 2 Reframing IMF2
 0.00

 5.00

10.00

15.00

20.00

RP1 (Crest factor) RP2 (Shannon entropy) RP3 (kurtosis)

Figure 14. The IACMDSR model results of IMF1 (outer ring fault) and IMF 2 (inner ring fault):
(a1,a2) time-domain waveform; (b1,b2) envelope spectrum.
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Figure 15. The index results of IACMD decomposition (Figure 13) and IACMDSR reconstruction
(Figure 14) (a) IMF 1; (b) IMF 2.

Comparison and Analysis of Experimental Results

(1) The MCKDSR Model

To demonstrate the superiority of the IACMD with sparse representation in this
paper, the MCKD algorithm was used as an alternative to the IACMD to process the raw
signal (Figure 12a). The MCKD algorithm has gained enormous application for separating
compound faults [33,34]. By setting the parameter of the deconvolution period T, the
deconvolution signal of interested component is extracted to realize the fault feature
separation. The Laplace wavelet is in a shape similar to that of bearing fault-induced
impulse responses with signal-sided attenuation [35]. Thus, in the comparison analysis,
the Laplace wavelet parameter dictionary is used in a sparse representation. Here, the
deconvolution period T of the MCKD algorithm is T1 = 235, T2 = 148. (T = fs/ ft)
( fs is the sampling frequency and ft is the corresponding fault frequency) [36]. The filter
order is L1 = L2 =550 and the shift number is M1 = M2 =7. The selected parameters
via the CFA method of the Laplace wavelet model for dictionary atom are as follows:
f1 = 12, 400, f2 = 5100; ξ1 = 0.015, ξ2 = 0.0310. Figure 16 shows the MCKDSR model
processing results for the outer and inner ring fault signals, respectively. We can see from the
time-domain waveforms (Figure 16(a1,a2)) after MCKD filtering that the main bearing fault
features are significantly enhanced. Next, the time-domain waveforms of Figure 16(a1,a2)
after further sparse representation are plotted in Figure 16(b1,b2), respectively. In each of
them, certain fault impulses occurred, but the positions and periods of the impulses are
inconsistent with the theoretical periodic impulses. Thus, in the envelope spectrum shown
in Figure 16(c1,c2), no significant frequency of fault characteristic is presented.
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Figure 16. The MCKDSR processing results of IMF1 (outer ring fault) and IMF2 (inner ring fault):
(a1,a2) filtered signal by the MCKD algorithm; (b1,b2) re-constructed signal; (c1,c2) envelope spectrum.

(2) The MCKDMWF Model

The wavelet filter is a versatile tool that can efficiently extract potential fault fea-
tures [37,38]. Therefore, in this comparison experiment, the MCKD algorithm is also
applied to initially separate the different fault components, followed by the Morlet wavelet
filter to extract the fault feature of the in-band signals. The parameters of the MCKD algo-
rithm were set as in the MCKDSR model. For the Morlet wavelet filter, the filtering effect is
determined by the bandwidth β and the central frequency fc. The bandwidth is usually
set to 3–4 times the maximum characteristic frequency. In order to exclude interference
components and include bearing fault components as far as possible, the bandwidth is
set to β = [3× BPFI, 7× BPFI]. Next, with a defined bandwidth, the central frequency
is derived in combination with the wavelet admissibility condition and the sampling the-
orem is: max(2.5βmin, 30 fr + βmin/2) < fc < min( fs/2− βmin/2, 0.8× fs/2). The crest
factor of the envelope spectrum, which considers the amplitude and periodicity of the
fault impulses, is chosen as an index for the Morlet wavelet filter parameters selection.
Figure 17(b1,b2) illustrates the time-domain waveforms of the outer and inner ring fault
signals isolated from the raw signal (Figure 12a) using the MCKD algorithm. The results of
parameter selection for the corresponding Morlet wavelet are shown in Figure 17(a1,a2).
Figure 17(c1,c2) shows the spectrum of Figure 17(b1,b2), as well as the shape of the optimal
Morlet wavelet filter. Figure 17(d1,d2) illustrates the time domain signal after the Morlet
wavelet filter. As illustrated in Figure 17(d1,d2), the fault impulse responses have improved
markedly. Figure 17(e1,e2) shows the envelope spectrum for Figure 17(d1,d2). Despite the
fact that the spectral peaks of IMF1 (outer race fault) can be seen in the envelope spectrum
depicted in Figure 17(e1), they are still affected by noise to some extent. Worse, the no
fault characteristic frequency of IMF2 (inner race fault) is visible in the envelope spectrum
(Figure 17(e2)). As a result, we may conclude that the MCKDMWF model’s fault feature
extraction effect is considerably inferior to that of the IACMDSR model.
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optimal Morlet wavelet filter. Figure 17(d1,d2) illustrates the time domain signal after the 
Morlet wavelet filter. As illustrated in Figure 17(d1,d2), the fault impulse responses have 
improved markedly. Figure 17(e1,e2) shows the envelope spectrum for Figure 17(d1,d2). 
Despite the fact that the spectral peaks of IMF1 (outer race fault) can be seen in the 
envelope spectrum depicted in Figure 17(e1), they are still affected by noise to some extent. 
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envelope spectrum (Figure 17(e2)). As a result, we may conclude that the MCKDMWF 
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5.2. The Bearing Early Fault Experiment Data

In the early stage of a bearing failure, the fault-induced impulse responses are normally
very weak and are accompanied by strong confusion noise. Therefore, the feature extraction
and identification of early compound faults are even more challenging. In this section,
the efficiency of the proposed approach in early compound fault of bearings is validated.
Figure 18 illustrates the installation positions of the acceleration sensor in the experiment
system. The compound fault of the bearing outer-race, the unbalance fault, and the roller
fault is the analysis goal. A groove with a width of 0.5 mm and a depth of 0.15 mm
was machined into the outer ring and the roller of the bearing, respectively. A sampling
frequency of 100 kHz and the rotating speed of 900 rpm were adopted in this experiment.
The type of the fault bearing is NTN N204, and the detailed parameters of the bearing are
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given in Table 2. According to the theoretical formulae of fault characteristic frequency, the
characteristic frequency for outer ring fault and rollers are 59.8 Hz and 71.8 Hz, respectively.
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Table 2. The parameters of NTN N204 bearing.

Geometric Parameter Numerical

Inner race diameter Di (mm) 20
Outer race diameter Do (mm) 47
Contact angle (α/◦) 0
Rollers number Z 10
Thickness (mm) 14

The fault impulse responses of the compound fault signal are irregular, as shown
in the time-domain waveform plotted in Figure 19a, and as illustrated by its envelope
spectrum given in Figure 19c, where no significant frequency of the fault characteristics is
presented. Next, the IACMD is employed for the pre-processing of the compound signal
(Figure 19a). Figure 20a shows the multiple resonance frequencies extracted by the IACMD.
In addition to the resonance frequencies formed by the outer ring and roller faults, the
resonance band caused by the bearing unbalance fault is also clearly identified. Figure 20b,c
displays the time-domain waveforms and the envelope spectrums of the three components
separated by the IACMD. Although spectral peaks and their multiplier appear in the
envelope spectrum, they are not consistent with the right fault characteristic frequencies.
This indicates that the impulse responses generated by the various faults in the original
signal (Figure 19a) are not fully extracted by the IACMD because of the influence of noise
as well as interference components.

The IACMD-decomposed components are then sparsely characterized using the sparse
representation method outlined in Section 3. The final results of IACMDSR model for
each component (IMF1 (unbalance fault), IMF2 (outer race fault), and IMF3 (roller fault))
are shown in Figure 21. The corresponding parameters are: f1 = 931 Hz, ξ1 = 0.1719,
ζ1 = 0.0530; f2 = 2459 Hz, ξ2 = 0.1719, ζ2 = 0.0233; f3 = 3874 Hz, ξ3 = 0.0014, ζ3 = 0.0029.
The time-domain waveforms of the reconstructed signals by the IACMDSR model are
exhibited in Figure 21(a1–a3), which clearly shows that almost all of the repetitive im-
pulse responses induced by the fault are captured. The spectrum peaks indicative of
the corresponding fault characteristic frequencies and their harmonics are prominent in
Figure 21(b1–b3). As a result, we can conclude that the primary fault features of the outer
ring, the unbalance, and the rollers have been extracted essentially.
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Figure 19. The early compound fault signal: (a) time-domain waveform; (b) spectrum; (c) envelope
spectrum.
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Figure 20. The processing results by IACMD: (a) time-frequency graph; (b) time-domain waveforms;
(c) envelope spectrum.
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Figure 21. The IACMDSR model results of IMF1 (unbalance fault), IMF2 (outer ring fault), and IMF3
(roller fault): (a1–a3) time-domain waveform; (b1–b3) envelope spectrum.

Comparison and Analysis

(1) The MCKDSR Model

Similarly, the MCKDSR model was adapted to handle the identical vibration signal
(Figure 19a) in order to demonstrate the superiority of the proposed technique. In this ex-
periment data, the deconvolution period T of the MCKD algorithm is T1 = 6666, T2 = 1672,
T3 = 1392. The filter order and the shift number are also L1 = L2 = L3 = 550, and
M1 = M2 = M3 = 7, respectively. The corresponding parameters of the Laplace wavelet as
the dictionary atom by the CFA are f1 = 900, f2 = 3600, f3 = 3900; ξ1 = 0.001, ξ2 = 0.001,
ξ3 = 0.001. The processing results of the MCKDSR model for the three signal components
are exhibited in Figure 22. It can be calculated that a bearing with a rotational frequency of
900 rpm would have an unbalance fault frequency of 15 Hz. However, the correct charac-
teristic frequency does not appear in the envelope spectrum of the unbalance fault signal
component (IMF1) in Figure 22(c1). The MCKDSR model also failed to capture significant
fault features from the processing results of the outer ring fault signal component (IMF2)
and the roller signal component (IMF3). As a result, no fault characteristic frequencies are
presented in the corresponding envelope spectrum. Actually, the oscillation frequencies
extracted by the CFA do not match the energy concentration part of the original signal
spectrum plotted in Figure 19b, whereas the resonance frequencies extracted by the IACMD
are in general agreement with the range containing the three energy peaks of Figure 19b.
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Figure 22. The MCKDSR processing results of IMF1 (unbalance fault), IMF2 (outer ring fault),
and IMF3 (roller fault): (a1–a3) filtered signal by MCKD algorithm; (b1–b3) re-constructed signal;
(c1–c3) envelope spectrum.

(2) The MCKDMWF Model

The MCKDMWF model is also used to handle the raw signal (Figure 19a). Finally, the
analysis results of the three signal components by MCKDMWF are presented in Figure 23.
Among the three sets of processing results, Figure 23(a1–a3) represents the parameter
selection results of the Morlet wavelet filter, Figure 23(b1–b3) is the filtering result by the
MCKD algorithm, Figure 23(c1–c3) gives the window of the Morlet wavelet filter and the
spectrum of the Figure 23(b1–b3), Figure 23(d1–d3) is the filtered signal by the Morlet
wavelet filter. As shown in the envelope spectrum (Figure 23(e1)), the MCKDMWT model
was unable to extract the correct unbalance fault (IMF1) features, resulting in theoretical
fault feature frequencies (15 Hz) not appearing in the corresponding envelope spectrum. In
Figure 23(e2), a few noticeable spectral peaks of the outer race fault (IMF2) characteristic
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frequency may be observed but the result is significantly inferior to Figure 21(b2). Worse
still, no useful fault feature was extracted from the rollers’ fault (IMF3) signal components,
resulting in no significant roller fault characteristic frequencies emerging in Figure 23(e3).
The aforementioned experiment results show that the IACMDSR model significantly out-
performed the other modes in terms of multiple fault feature extraction, which provides an
appealing tool for bearing compound fault detection.
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Figure 23. The MCKDMWT processing results of IMF 1 (unbalance fault), IMF 2 (outer race fault), and
IMF 3 (roller fault): (a1–a3) the parameter selection of the Morlet wavelet filter; (b1–b3) filtered signal
by MCKD algorithm; (c1–c3) the shape of the Morlet wavelet filter and the spectrum; (d1–d3) filtered
signal of the Morlet wavelet filter; (e1–e3) envelope spectrum.

6. Conclusions

In this paper, the IACMDSR model is put forward for vibration signal denoising
and detecting the multiple fault signatures of the bearing. The IACMDSR model can
not only automatically extract the multiple resonance frequencies and separate the signal
components of a compound fault but can accurately recover the fault-induced impulse
response of various signal components. The main conclusions are summarized as follows:

(1) The effectiveness of the IACMDSR model that incorporates IACMD with sparse
representation is validated by simulation signals and two sets of experimental signals,
and it exhibits better fault extraction performance than the MCKDSR model and
MCKDMWF model. These experiment analyses confirm that the IACMDSR model
is powerful and has the capability of detecting bearing weak multiple fault features
in the presence of heavy noise, which is the Achilles’ heel of the two other leading
rival methods.

(2) The performance of the IACMD in extracting fault resonance band is evaluated by the
comparison with STFT, CWT, and ACMD, and the comparison results demonstrate
that the IACMD exhibits better noise immunity. Additionally, the hyper-dictionary is
developed by period-assisted bilateral wavelets, which simultaneously dig deeper
into the periodicity and waveform characteristics exhibited by the real fault impulse
response. Therefore, it is more suitable for practical engineering applications.

(3) The developed IACMDSR model can be extended to those diagnosis fields such as
railway axles, high-speed train gearboxes, as well as engine diagnosis. It is worth
pointing out that the IACMDSR has outstanding anti-noise capabilities and self-
adaptability. Thus, it is completely suitable for the fault feature extraction of railway
bearings with heavy noise and a complex working environment, which can play a
significant role in maintaining the safety and comfort of the railway transport system.
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Further research will focus on adjusting for the variable amplitude of the reconstructed
signal. We would like to embed the feature enhancement algorithm into the sparse repre-
sentation model. In addition, the characteristics of bearing fault vibration signals under
variable speed conditions will be investigated in order to build a sparse representation
compound dictionary suitable for vibration signals under variable conditions.
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