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Abstract: In this paper, we propose an object-cooperated decision method for efficient ternary tree
(TT) partitioning that reduces the encoding complexity of versatile video coding (VVC). In most
previous studies, the VVC complexity was reduced using decision schemes based on the encoding
context, which do not apply object detecion models. We assume that high-level objects are important
for deciding whether complex TT partitioning is required because they can provide hints on the
characteristics of a video. Herein, we apply an object detection model that discovers and extracts the
high-level object features—the number and ratio of objects from frames in a video sequence. Using
the extracted features, we propose machine learning (ML)-based classifiers for each TT-split direction
to efficiently reduce the encoding complexity of VVC and decide whether the TT-split process can be
skipped in the vertical or horizontal direction. The TT-split decision of classifiers is formulated as a
binary classification problem. Experimental results show that the proposed method more effectively
decreases the encoding complexity of VVC than a state-of-the-art model based on ML.

Keywords: ternary tree; versatile video coding; object detection; encoding complexity; machine learning

1. Introduction

Deep learning (DL) [1] techniques are known to outperform non-DL approaches in
diverse fields, such as computer vision [2], natural language processing [3], and speech
recognition [4]. Among the DL models, object detection models have demonstrated partic-
ular success in computer vision but have rarely been deployed in video coding. Instead,
most researchers who have investigated video coding use traditional machine learning
(ML) approaches to reduce the complexity of the encoders [5]. Herein, we propose that
object detection models can reduce the video coding complexity of the next-generation
video coding standard known as versatile video coding (VVC) [6].

Unlike previous video coding standards, such as high efficiency video coding
(HEVC) [7], VVC introduces a multi-type tree (MTT) block partitioning structure that
supports binary tree (BT) and ternary tree (TT) splits in the horizontal and vertical di-
rections. Although these approaches achieve higher coding efficiency than HEVC, they
considerably increase the computational complexity [8] because the VVC encoder applies a
brute-force method to optimize the partitioning structure.

To reduce the encoding complexity, we must reduce the number of MTT-partitioning
steps. Recent complexity reduction methods have achieved fast MTT-partitioning decision
in VVC [5]; however, the methods that use object detection for fast TT partitioning in the
horizontal and vertical directions are rarely reported.

To bridge this gap, we previously proposed improving the complexity of the VVC
encoder by applying ML models. This research is an extension of work originally presented
in ICEIC 2022 [9]. In this paper, we first apply object detection techniques to VVC to
decrease its encoding complexity. We propose a new framework by combining DL for object
detection in the first stage (feature extraction) and ML for accurate TT-split prediction in
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the second stage (TT-split decision). In the feature extraction stage, we extract new features
related to objects via object detection in each frame of a video sequence while obtaining
the context-based features using the traditional context-based approach. In the TT-split
decision stage, we conduct experiments using ML models with extracted features for fast
TT partitioning to reduce the encoding complexity of VVC.

Herein, we show that our proposed method decreases the encoding time of the VVC
test model (VTM4.0) by up to 60% with an average coding loss of 0.56%. Moreover, our
proposed method is flexible and adaptable to applications.

The contributions of this paper are summarized as follows:

• We discover new object-based features that can cooperate with context-based methods.
We assume that objects are the key characteristics of videos and object features can
help reduce the computational cost (or complexity) of VVC.

• Our proposed framework newly combines a descent DL-based model with the tradi-
tional ML approach—DL for feature extraction and ML for the final decision scheme.
Experimental results show that the proposed combined framework outperforms the
state-of-the-art model.

The remainder of this paper is organized as follows. Section 2 describes existing
methods related to encoding complexity reduction and overviews DL models for object
detection. Section 3 introduces the proposed object-cooperated TT partitioning decision
method. The dataset and the associated training process are also presented in Section 3.
Section 4 describes the experimental setup and test environment and compares the perfor-
mances of the MLP-based method and proposed methods with that of the anchor. Finally,
Section 5 provides conclusions of this study.

2. Related Works
2.1. Existing Methods for Encoder-Complexity Reduction

Although VVC can provide powerful coding performance, the computational com-
plexity of the VVC encoder is substantially high compared with that of the HEVC encoder.
The current various approaches apply statistical analysis and neural networks have been
researched to reduce the complexity of the VVC encoder. For a statistical analysis based
approach, Park et al. [8] proposed a context-based fast TT decision method using the di-
rectional information between BT and TT. H. Yang et al. [10] proposed a fast intra coding
algorithm consisting of fast coding unit (CU) partition and fast intra mode decision using
the combination of binary classifiers. This method exploited the textural complexity of the
current CU and the context information from neighboring CUs.

The aforementioned methods evaluated the statistical correlations between a current
CU and the neighboring CUs. Recent studies have studied neural network-based fast
decision schemes based on neural networks to avoid redundancy in the process of optimal
VVC block structure. Park et al. [11] designed a fast decision scheme using two lightweight
neural networks to determine TT block partitioning. Q. Zhang et al. [12] proposed a fast
CU decision algorithm based on DenseNet, which predicts the probabilities of whether the
edge of 4 × 4 blocks are the boundary blocks or not. T. Li et al. [13] designed a multi-stage
Convolutional Neural Network (CNN) model to predict the quad-tree and multi-type
tree-based CU partition method for accelerating the encoding process of intra-mode VVC.
S. Wu et al. [14] proposed a hierarchy grid fully convolutional network framework, which
can substantially predict the particular hierarchical split structure to automatically control
the trade-off between coding efficiency and complexity.

2.2. Object Detection

Object detection employs computer vision and image processing technologies to detect
object instances of a certain class within an image. Object detection can be categorized
in: ML-based and DL-based approaches. ML-based approaches are frameworks based
on Haar features, scale-invariant feature transform (SIFT), and histograms of oriented
gradients (HOG) functions [15] followed by a classification technique such as a support
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vector machine (SVM). Meanwhile, DL techniques perform end-to-end framework without
using specifically defined functions and are usually based on CNN. DL-based methods for
object detection can be categorized into two main types: one-stage methods and two-stage
methods. The one-stage methods prioritize the inference speed using You Only Look Once
(YOLO) [16], a single shot detector [17], or RetinaNet [18]. The two-stage methods prioritize
the detection accuracy using a model such as Faster R-CNN [19], Mask R-CNN [20], or
Cascade R-CNN [21].

In this study, we use a model that prioritizes the inference speed to reduce the encoding
complexity of VVC. Therefore, we choose the YOLO method for object detection and
the YOLOv5 [22] model for experiments. YOLOv5 has lower capacity and faster speed
than the other YOLO versions. YOLOv5, a family of object detection architecture and
models pre-trained on the COCO 2017 dataset [23], has been introduced to four models:
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, which are simply named small, medium,
large, and extra-large, respectively. The four models have the same backbone or head,
but different multiples of model depths and layer widths. We use the YOLOv5s model,
which has the fastest inference speed among the YOLOv5 pre-trained models.

3. Proposed Object-Cooperated TT Partitioning Decision Method

Because the VVC encoder cannot know which block should avoid the TT-split
process [9], it usually attempts to determine the optimal partitioning structure via brute-
force search, which is a time-consuming process. To reduce the encoding time from that of
brute-force searching, we adopt ML models that decide when a TT-split is required. First,
using ML models, we experimentally identify which model can accurately predict whether
a TT-split process should be skipped (see Section 4.3). Second, we select the lightweight
model that provides the highest accuracy of TT-split decisions with our extracted features
compared with the existing method (see Section 4.4). In our proposed method, the model
that makes accurate TT-partitioning decisions using extracted features is applied to each
TT-split direction.

As mentioned above, our proposed method for fast TT partitioning comprises two-
stages: the feature extraction stage and the TT-split decision stage. Figure 1 presents the
framework of the proposed object-cooperated TT partitioning decision method. In the
feature extraction stage, our extracted features related to objects are obtained via DL-based
object detection and the context-based features [11] are obtained from the traditional context-
based approach for each TT-split direction. The feature extraction and the training and
evaluation datasets are explained in Section 3.1. In the TT-split decision stage, two decision
tree (DT) classifiers are applied in each TT-split direction in the same manner as done
in [11]: horizontal TT (TT_H) and vertical TT (TT_V). The encoding-complexity reduction
of VVC by the DT model using the extracted features is experimentally demonstrated in
each TT-partitioning direction.

3.1. Process of Feature Extraction Including Object Detection

To reduce the encoding complexity of VVC, the extracted features forming the input
vector of the ML model must ensure accurate predictions of TT-splits decisions using the
model. Accordingly, we assume that objects are among the main features of the video
sequences; moreover, we can characterize the number and ratio of objects. As shown in
Figure 1, our feature extraction method uses YOLOv5 object detection. We first extracted
11 features such as quad-tree depth, MTT depth, etc. (Features F presented in Figure 1)
through context-based approaches. Second, we executed YOLOv5 based on object detec-
tion on the frames of video sequences to obtain object-cooperated features (Features O
presented in Figure 1). Figure 2 shows the object detection results of two frames in video
sequences. In the first frame (Figure 2a), 23 objects were detected: 9 persons, 12 bicycles, and
2 backpacks. We define the object’s ratio as the ratio of objects, and the objects’ number as
the sum of the number of objects by object detection in the frame. The object’s number is 23
and the object’s ratio is 51.58%. The object’s number and objects’ ratio are the new features
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obtained from object detection. We specified the new features as object features. By contrast,
no objects were detected in the second frame (Figure 2b). In this case, the object’s number
and objects’ ratio are zero. Object’s ratio is defined as follows:

Object’s ratio =
A bounding box size of objects detected by YOLOv5

A frame resolution
× 100, (1)

Figure 1. Framework of the proposed object-cooperated ternary tree (TT) partitioning decision
method. Features F denotes the context-based features obtained by coding unit (CU) encoding,
and Features O denotes the object-features obtained via object detection.

(a) (b)
Figure 2. Results of YOLOv5-based object detection in two frames of video sequences: (a) most objects
are detected; (b) no object is detected.

Features F were extracted during the encoding process. The datasets obtained from
encoding process comprised 11 input features and a binary class—determining whether
the TT-split process is required (binary class = 1) or not (binary class = 0). The features F
were the same as those reported in [11]. The 11 features are the quad-tree depth (QTD), BT’s
superiority in rate-distortion (RD) cost view (BTS), Boolean value indicating whether the
optimal BT direction of two BTs in RD cost view (BTD), block shape ratio depending on TT
direction (BSR), BT/TT depth (MTD), intra prediction mode (IPM), intra subblock partition
(ISP), multiple reference lines (MRL), coded block flag (CBF), multiple transform set (MTS),
and quantization parameter value for a frame (QP). The reported 11 features details can be
found [11]. Features O present the object’ number and object’s ratio of a frame in a video
sequence. We added two columns of the input vector of the ML models to combine the
newly extracted Features O with Features F obtained using the existing method [11].

3.2. Datasets for Training and Evaluation

The training dataset in this study was derived from the Tencent Video Dataset
(TVD) [24], which differs from that in [11]. The TVD captures a variety of content coverage
within 86 video sequences, each comprising 65 frames with 3840 × 2160 spatial resolution.
As the training dataset, the 0th frame (the very first frame of the sequence), the 20th frame,
the 40th frame, and the 60th frame of TVD sequences were used and then encoded under
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an all intra (AI) configuration. The frames used for training were never used for testing.
Five QP values with a wide range (20, 25, 30, 35, and 40) were used for encoding.

We used JVET test sequences [25] to evaluate the proposed method . For encoding, we
adopted QP values with a wide range of 20, 25, 30, 35, and 40. The test dataset comprised the
encoded 0th frame in each test video sequence. Features were extracted during the encoding
process. To evaluate the performance of the ML models, object-features in the 0th frame
of each test sequence were extracted via object detection. Moreover, when comparing the
performances of the existing and proposed complexity-reduction methods, we used object
features obtained via object detection in the common test condition (CTC) recommended
by JVET experts [25].

3.3. Data Augmentation of the Training Datasets

To improve the generalization of the ML model, we expanded the training dataset
through a data augmentation technique called pixel-level transform, which was imple-
mented via OpenCV-Python [26]. This technique adjusts the brightness of the sequences
by manipulating the pixel values in the original video sequences. As shown in Table 1,
10 video sequences were adjusted to be brighter (by 39.06%) than the original video se-
quences and another 10 video sequences were adjusted to be darker (by −19.53%) than the
original sequences. Figure 3 shows examples of an original sequence, a brighter sequence,
and a darker sequence.

Table 1. Data augmentation by brightness adjustment of sequences.

Sequence Brightness (%)

BoyDressing1 39.06
BoyDressing1 39.06

BoyMakingUp1 39.06
BoyMakingUp2 39.06

BoyWithCostume 39.06
ChefCooking1 39.06
ChefCooking2 39.06
ChefCooking3 39.06
ChefCooking4 39.06
ChefCooking5 39.06
ChefCutting1 −19.53
ChefCutting2 −19.53

DryRedPepper −19.53
Fountain −19.53

GirlWithTeaSet1 −19.53
GirlWithTeaSet2 −19.53
GirlWithTeaSet3 −19.53

HotelClerks −19.53
HotPot −19.53

LyingDog −19.53

Table 2 lists the number of training samples collected after data augmentation of
TVD. The original dataset comprises 86 sequences. Each brightness dataset consists of
10 sequences that were brightened and 10 sequences that were darkened via data augmen-
tation. A total of 6,665,015 and 6,689,424 samples were thus collected for TT_H and TT_V,
respectively.
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Table 2. The number of training samples for horizontal ternary tree (TT_H) and vertical ternary tree
(TT_V) of sequences.

Sequence TT_H TT_V

Original 5,690,877 6,094,181
Brightness (39.06%) 302,072 304,357

Brightness (−19.53%) 672,066 290,886
Total 6,665,015 6,689,424

(a) ChefCooking1 sequence

(b) LyingDog sequence

(c) DryRedPepper sequence
Figure 3. Examples of TVD sequences after data augmentation: a lightened image (left), the original
image (center), and a darkened image (right).

To demonstrate the effectiveness of the data augmentation technique, we used the
Pearson correlation coefficient (PCC) to analyze the correlation between extracted features
and binary classes in Figure 4. Figure 4a,b display the heatmaps of PCCs before and after
data augmentation, respectively, for TT_H. One of the object-features obtained via object
detection, i.e., object’s ratio increased to 0.0085 and 0.012. It was confirmed that the feature
was more related to the binary class. In the next experiment, we applied the DT model as
the basic ML model with different maximum tree depth (max depth = 5, 6, and 7) to TT_H
splitting decisions. The performances of the models with and without data augmentation
are compared in Table 3. Because approximately 10% of datasets were added through
the data augmentation technique and accuracy of the DT model increased as the depth
of the DT increased, we applied the data augmentation technique to training datasets.
In addition, when object detection is performed, it is reported that the effect is better if the
data augmentation technique is applied [27]. Thus, the data augmentation technique is
applied to the experiment.
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(a) The result of PCC before data augmentation techniques.

(b) The result of PCC after data augmentation techniques.

Figure 4. Heatmaps of the correlations between the features and binary class using the Pearson
correlation coefficient (a) before and (b) after data augmentation.

Table 3. Effectiveness of data augmentation techniques in the basic machine learning (ML) model
with decision tree (DT) models (max_depth = maximum tree depth).

Model [9] Accuracy (%)
When Not Applied

Accuracy (%)
When Applied

DT (max depth = 5) 86.66 86.66
DT (max depth = 6) 86.77 86.78
DT (max depth = 7) 86.79 86.85

3.4. TT Partitioning Decision Stage Based on DT

To decide whether TT partitioning should be avoided, we proposed a framework using
two DTs for the TT-split decision stage (Figure 1). DTs were chosen owing to their very fast
inference speed and low implementation complexity on DTs with limited maximum depth.
DT is a nonparametric supervised learning algorithm for classification and regression.
The model generated using a DT predicts the value of a target by learning simple decision
rules inferred from the data features. To predict the value of a target, we used the Gini
impurity function [28], which determines how well a DT is split. The Gini impurity ranges
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from 0 (all elements belong to the same class) to 1 (each class has only one element). When
Gini impurity is 1, all elements are randomly distributed into various classes; when the Gini
impurity is 0.5, the elements are uniformly distributed across some classes. Furthermore,
a DT learns from the data features and approximates a sine curve with a set of if-then-else
decision rules up to max depth. The deeper the tree is, the more complicated the rules of
the DT model are. The DT is usually divided until the class value is perfectly determined
or until the data are fewer than the minimum number of samples that can be split; that is,
the minimum number of sample data required to form a leaf node.

Because TT-splits are directional, DTs are trained separately. Thus, the Gini values
resulting from the DTs, which determine whether a TT should be split (i.e., TT partitioning),
differ between the models. Among the ML models for determining TT partitioning, DT
was chosen because it shows the best accuracy. The performances of the ML models in each
direction are given in Tables 4 and 5 (see Section 4.3).

Table 4. Performance results of the ML models for TT_H decisions.

Model [9] Accuracy (%) Model Training Time (s)

DT (max depth = 5) 86.66 32.1842
DT (max depth = 6) 86.78 1 36.1361
DT (max depth = 7) 86.85 1 40.5430

RF (number of DTs = 5) 85.65 89.8891
RF (number of DTs = 6) 85.92 109.0825
RF (number of DTs = 7) 85.91 124.2268

MLP (epoch = 2000) 86.74 64,322.8483
MLP (epoch = 3000) 86.78 1 92,569.8476

1 The most and second most accurate results are indicated in bold and blue fonts, respectively.

Table 5. Performance results of the ML models for TT_V decisions.

Model [9] Accuracy (%) Model Training Time (s)

DT (max depth = 5) 87.09 21.5739
DT (max depth = 6) 87.17 1 25.6598
DT (max depth = 7) 87.13 1 27.7193

RF (number of DTs = 5) 85.37 57.9501
RF (number of DTs = 6) 85.79 68.3354
RF (number of DTs = 7) 85.61 80.5442

MLP (epoch = 2000) 86.97 60,731.3039
MLP (epoch = 3000) 87.03 91,888.3900

1 The most and second most accurate results are indicated in bold and blue fonts, respectively.

We established two models for the two TT-split directions (TT_H and TT_V). In each
model, we evaluated three DT models with different max depths (5, 6, and 7). The range of
max depth was limited for the following reasons:

• If the max depth is less than 5, the model is oversimplified and provides poor predictions.
• If the max depth is greater than 7, the model becomes too complicated and is prone to

overfitting.

During the experiment, the DT with max depth = 7 achieved the best predictions;
therefore, the maximum depth was set to 7 in subsequent analyses. Figure 5 shows graphs
of the DT models with max depth = 7. Figure 5a,b are the left side and right-side graphs of
the DT based on the root node for TT_H. Figure 5c,d are the left side and right-side graphs
of the DT based on the root node for TT_V. The graphs can be enlarged by running our
GitHub code (https://github.com/sujineel/Object-cooperated-Ternary-Tree-Partitioning-
Decision-Method-for-Versatile-Video-Coding accessed on 12 June 2022), which is pro-
vided online.

 https://github.com/sujineel/Object-cooperated-Ternary-Tree-Partitioning-Decision-Method-for-Versatile-Video-Coding
 https://github.com/sujineel/Object-cooperated-Ternary-Tree-Partitioning-Decision-Method-for-Versatile-Video-Coding
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(a)
(b)

(c)
(d)

Figure 5. Graphs of decision tree (DT) models for (a,b) horizontal TT (TT _H), (c,d) vertial TT (TT _V)
with a left and right by root node, respectively.
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The output value y of the DT model determines whether TT should be split in each
direction. For example, if the output value of a DT, y, is equal to 1, TT is split; if y = 0, TT is
not split. We set a threshold α in the mid-range of y (i.e., when y ranges between 0 and 1,
α = 0.5) for mapping the floating value to a Boolean value (true/false answer). The entire
TT_H or TT _V splitting process is omitted if y is less than 0.5. In the entire TT-partitioning
process, y determines the best CU. By avoiding unnecessary TT-splits, the proposed method
reduces the encoding complexity of VVC.

The coding efficiency is considerably reduced when a required TT is incorrectly
predicted by the DT; that is, when the DT outputs a false-negative. To solve the coding loss
of the predictive DT model, we should adjust the α to suit the encoding application. If the
application prioritizes image quality, α should be less than 0.5 even if the complexity is
somewhat compromised. Therefore, we propose two threshold values (0.5 and 0.25) that
accomplish a reasonable trade-off between coding efficiency and complexity.

4. Experimental Results
4.1. Experimental Setup

All the encoding operations were conducted using personal computers with Intel i7-
10700 eight-core 2.90-GHz processors and a 64-bit Windows 10 operating system, with the
hyper-threading and turbo modes turned off. Experiments were performed without GPUs
to reduce the complexity of the ML models. The training and testing of the ML models
were assessed using Jupyter Notebook. Visual Studio 2017 was used for conversion and
experiments with c++ languages.

The model performances were evaluated using the TensorFlow [29] and scikit-learn
libraries [30]. The TensorFlow library is an open-source software library for ML and artificial
intelligence. TensorFlow can be used for a range of tasks but focuses particularly on
the training and inference of deep neural networks. TensorFlow was developed by the
Google Brain team for internal Google use in research and production. Scikit-learn is a free
software ML library for the Python programming language. Scikit-learn includes various
classification, regression, and clustering algorithms, including SVM, random forest (RF),
gradient boosting, and k-means. It is designed to inter-operate with the numerical and
scientific Python libraries such as NumPy and SciPy.

4.2. Performance Metrics of the Proposed Method
4.2.1. Evaluation Metrics of the ML Models

ML models are used in the TT-split decision stage of the proposed model. As the
performance metrics of the ML models, we used the metric provided by TensorFlow and
Scikit-learn libraries. We measured total time for training and the accuracy of models.
The accuracy is defined as follows:

Accuracy =
TruePositives + TrueNegatives

TruePositives + TrueNegatives + FalsePositives + FalseNegatives
, (2)

where True Positives denote the correct predictions of actually true answers, False Positives
denote the wrong predictions of actually false answers predicted as true, True Negatives
denote the correct predictions of actually false answers, and False Negatives denote the
wrong predictions of actually true answer predicted as false.

To evaluate the accuracy of our method using the object-features, we added the object-
features to the DT with max depth = 7 according to the direction of TT-splits. The results of
the experiment are shown in detail in Section 4.4.

4.2.2. Evaluation Protocol of the Proposed Method: Comparisons with the Anchor

All encoding experiments were conducted using VTM4.0 in the AI coding configura-
tion. To evaluate the performance of the proposed method, coding efficiency and compu-
tational complexity were measured in terms of Bjontegaard delta bit rate (BDBR), which
represents the rate saving of methods under the same objective quality and computing
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encoding time (∆EncT). The BDBR is the bitrate loss over four QPs in percentage with
respect to the anchor for the same Peak Signal-to-Noise. In [11], BDBR is defined as follows:

BDBRyuv =
(6BDBRy + BDBRu + BDBRv)

8
, (3)

where BDBRy, BDBRu, and BDBRv are the weighted average of the BDBRs of the Y, U,
and V components, respectively. Using BDBRy, we compared the coding efficiency of the
proposed and existing methods with respect to the anchor.

The encoding time reductions of the proposed and existing methods with respect to
the anchor were assessed in each sequence. ∆EncT is calulated as:

∆EncT = 4

√√√√ ∏
QPi∈22,27,32,37

Tmethod(QPi)

Torg(QPi)
, (4)

To evaluate the model performances, we selected a method based on the traditional
context-based approach for early TT partitioning [11]. The BDBRy and ∆EncT of the
proposed method were evaluated at the α values of 0.5 and 0.25. For a fair comparison,
VTM4.0 was applied to the existing and proposed methods. The experimental results are
presented in Section 4.5.

4.3. Performance of ML Models for Accurate TT-Split Prediction

Tables 4 and 5 present the performance results (accuracy and training time) of the ML
models established for the TT_H and TT_V split directions, respectively.

The ML models used in the TT-split decision stage were DT, RF, and multi-layer
perceptron (MLP) [9]. We first established three DT models with different maximum depths
(max depth = 5, 6, and 7) and then established three RF models with the different number of
DTs (number of DTs = 5, 6, and 7). We finally constructed a fully connected neural network
with 13 input nodes, 30 hidden nodes, and 1 output node (the MLP model) and set the
number of epochs to 2000 or 3000. The number of hidden layers was set to 30 to ensure the
same accuracy for evaluating the proposed method as that for the existing method [11].

The results show that the DT models achieved higher accuracy within less training
time than the other models. The DT model with max depth = 7 achieved the highest
accuracy within a fast total training time in TT_H decisions. Thus, this model was selected
for determining whether a TT-split is required in the TT-partitioning decision stage.

4.4. Performance of the Proposed Object-Cooperated TT Partitioning Decision Method

We now compare the performance of the method that inputs context-based features
and the proposed method that additionally inputs object-features. Tables 6 and 7 display the
accuracy of the methods per sequence in the horizontal and vertical directions of TT-split,
respectively, on a 0th frame of 22 sequences at various video resolutions [25].

Using the existing method, we evaluated a DT model with max depth 7 and only
context-based features. In the proposed object-cooperated method, the TT-partitioning
decision method, the DT model with a max depth = 7 was trained using 13 features
comprising 11 context-based features and two additional features (object-features) obtained
via object detection—employing YOLOv5.

As shown in Table 6, our proposed object-cooperated method exhibits higher accuracy
than the DT-based method [9] in the worst cases (video sequences with an accuracy of
less than 80%). In the worst cases, we also prove that our proposed method improves the
accuracy of five out of seven sequences, as shown in Table 7, confirming its effectiveness.
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Table 6. Accuracy of the DT-based and proposed method regarding the TT_H decisions.

Sequence DT-Based Method [9] Proposed Method
Accuracy (%) Accuracy (%)

Tango2 90.72 1 90.71
FoodMarket4 96.84 96.84

Campfire 86.87 86.87
CatRobot1 89.91 1 89.87

DaylightRoad2 84.45 84.45
ParkRunning3 90.081 90.06
MarketPlace 87.09 87.10 1

RitualDance 85.63 85.67 1

Cactus 83.15 83.15
BasketballDrive 81.24 1 81.19

BQTerrace 81.29 81.38 1

BasketballDrill 80.99 1 80.96
BQMall 81.54 1 81.48

PartyScene 75.52 75.61 2

RaceHOrsesC 80.97 81.09 1

BasketballPass 80.15 80.22 1

BQSquare 74.90 74.94 2

BlowingBubbles 81.37 81.46 1

RaceHorses 82.62 82.65
FourPeoples 84.44 84.49 1

Johnny 88.32 88.35 1

KristenAndSara 86.87 86.89 1

Average 86.85 86.85
1 The most accurate results are indicated in bold. 2 If the accuracy is less than 80%, the more accurate of the two
methods is displayed in blue.

Table 7. Accuracy of the DT-based and proposed method regarding the TT_V decisions.

Sequence DT-Based Method [9] Proposed Method
Accuracy (%) Accuracy (%)

Tango2 90.78 1 90.72
FoodMarket4 96.69 1 96.63

Campfire 83.54 83.55 1

CatRobot1 85.58 1 85.55
DaylightRoad2 88.44 1 88.43
ParkRunning3 90.54 90.56 1

MarketPlace 90.83 1 90.81
RitualDance 82.94 82.97 1

Cactus 85.78 85.78
BasketballDrive 95.20 1 95.19

BQTerrace 82.90 82.98 1

BasketballDrill 81.65 1 81.64
BQMall 77.58 77.68 2

PartyScene 76.67 76.71 2

RaceHOrsesC 82.48 82.48
BasketballPass 82.28 1 82.21

BQSquare 77.24 2 77.20
BlowingBubbles 77.32 77.50 2

RaceHorses 77.59 77.62 2

FourPeoples 79.58 79.63 2

Johnny 80.89 80.98 1

KristenAndSara 79.91 2 79.90

Average 87.13 87.13
1 The most accurate results are indicated in bold. 2 If the accuracy is less than 80%, the more accurate of the two
methods is displayed in blue.
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4.5. Complexity-Reduction Performances of the MLP-Based and Proposed Method
for Encoding-Complexity

Table 8 compares the performances of the existing and proposed method with respect
to BDBRy and ∆EncT. To demonstrate that our proposed method is flexible for users de-
pending on the need of applications, we adjusted the α value of classification on DT model
for TT_H and TT_V. The ∆EncT value was optimized using the proposed method (with
α = 0.5). The best result of ∆EncT is the application of the proposed method when α = 0.5
with a 60%, on average, compared with the anchor (VTM4.0). To list methods that show
the superior performance based on ∆EncT, they are in the order of the proposed method
(α = 0.5) [11], and the proposed method (α = 0.25). We also confirm that out proposed
method reasonably reduced the encoding complexity of VVC. Meanwhile, the BDBRY
value when using the the proposed method (α = 0.5) increased by 0.56%, which is 0.01%
higher than that obtained using a previously reported model [11]. However, the value ob-
tained using the proposed method (α = 0.25) increased by only 0.11% relative to the anchor,
although the ∆EncT value was 75%. Thus, our proposed method achieved a moderate
trade-off between encoding complexity and coding efficiency.

Table 8. Comparison of the existing and proposed methods relative to the anchor (VTM 4.0).

Sequence Resolution
MLP-Based Method [11] Proposed Method Proposed Method

α = 0.5 α = 0.5 α = 0.25
BDBRY ∆EncT BDBRY ∆EncT BDBRY ∆EncT

MarketPlace 1920 × 1080 0.47% 66% 0.47% 64% 0.09% 87%
RitualDance 1920 × 1080 0.57% 72% 0.62% 68% 0.13% 89%

Cactus 1920 × 1080 0.48% 73% 0.52% 71% 0.07% 90%
BasketballDrive 1920 × 1080 0.73% 57% 0.56% 59% 0.12% 73%

BQTerrace 1920 × 1080 0.44% 61% 0.50% 58% 0.09% 73%

BasketballDrill 832 × 480 0.83% 61% 0.83% 59% 0.19% 72%
BQMall 832 × 480 0.50% 62% 0.51% 59% 0.07% 73%

PartyScene 832 × 480 0.32% 62% 0.30% 59% 0.04% 71%
RaceHorses 832 × 480 0.39% 61% 0.41% 57% 1 0.08% 74%

BasketballPass 416 × 240 0.51% 62% 0.45% 59% 0.17% 73%
BQSquare 416 × 240 0.25% 63% 0.27% 60% 0.02% 72%

BlowingBubbles 416 × 240 0.30% 62% 0.41% 58% 0.07% 71%
RaceHorses 416 × 240 0.25% 62% 0.32% 57% 1 0.00% 72%

FourPeople 1280 × 720 0.69% 62% 0.79% 58% 0.15% 74%
Johnny 1280 × 720 0.60% 61% 0.65% 57% 1 0.16% 72%

KristenAndSara 1280 × 720 0.53% 62% 0.59% 58% 0.11% 72%

Average 0.55% 63% 0.56% 60% 0.11% 75%
1 The best results in terms of ∆EncT are indicated in bold.

The results of the video sequence experiments show that the proposed methods
(α = 0.5 and α = 0.25) outperformed the method reported in [11] in terms of ∆EncT and
BDBRy, respectively. The largest reduction in encoding time was 57%, achieved using
our proposed method with α = 0.5 on the RaceHorses (832 × 480), Johnny sequence.
On the same sequence, at the resolutions of (832 × 480) and (416 × 240), the existing
MLP-based method reduced by 61% and 62%, respectively. Comparing the best results,
it can be seen that our proposed method (α = 0.5) improved by 4% and 5% in terms of
∆EncT, respectively, over the MLP-based method.

Table 9 shows results between the bitrate and the average object’s number, the object’s
ratio when the DT model sets α as 0.5. The average object’s number and the object’s ratio
were determined by object detection of frames of the JVET test sequences. As the result, we
identified the assumption that object-features can be hints to determine the characteristics
of the video. Based on various JVET test sequences [25], it was confirmed that sequences
with a low object ratio or a small number of objects are superior to other sequences in terms
of bitrate. For example, BQSquare and PartyScene sequences show a low average object
ratio and the best bitrate. The MLP-based method [11] was incomparable because there
were no object features.



Sensors 2022, 22, 6328 14 of 18

Table 9. Results between the bitrate and the average object’s number, object’s ratio when DT model
sets α as 0.5.

Sequence Resolution Bitrate Average of Object’s Number Average of Object’s Ratio

MarketPlace 1920 × 1080 0.47% 1 9.77 0.38%
RitualDance 1920 × 1080 0.62% 18.57 0.54%

Cactus 1920 × 1080 0.52% 1 1.76 0.25%
BasketballDrive 1920 × 1080 0.56% 8.01 0.33%

BQTerrace 1920 × 1080 0.50% 1 22.42 0.10%

BasketballDrill 832 × 480 0.83% 7.15 0.29%
BQMall 832 × 480 0.51% 1 11.17 0.51%

PartyScene 832 × 480 0.30% 1 6.06 0.11%
RaceHorses 832 × 480 0.41% 1 4.71 0.80%

BasketballPass 416 × 240 0.45% 1 5.20 0.51%
BQSquare 416 × 240 0.27% 1 24.61 0.36%

BlowingBubbles 416 × 240 0.41% 1 3.85 0.88%
RaceHorses 416 × 240 0.32% 1 4.78 0.80%

FourPeople 1280 × 720 0.79% 18.69 0.58%
Johnny 1280 × 720 0.65% 12.56 0.63%

KristenAndSara 1280 × 720 0.59% 10.10 0.70%

Average 0.56% 10.58 0.48%
1 Superior results to average of bitrate are indicated in bold.

Figures 6 and 7 show the decoded images of models yielding the best ∆EncT results
on the video sequence of RaceHorses (832 × 480) and RaceHorses (416 × 240) in Table 8
for QPs of 22 and 37, respectively. The image-quality degradations were not noticeably
different in the proposed method, the MLP-based method [11], and VTM4.0. Meanwhile,
Figures 8 and 9 show the decoded images of models yielding the worst ∆EncT results in
Table 8 for QPs of 22 and 37, respectively. On the video sequences of RitualDance and
Cactus, where the proposed method (with α = 0.5) delivered the poorest performance (68%
and 71%, respectively), the encoding times were increased by 72% and 73%, respectively,
in the existing method. Comparing the worst results, it can be seen that our proposed
method (α = 0.5) improved by 4% and 2% in terms of ∆EncT, respectively, over the MLP-
based method. Moreover, increasing the QP from 22 to 37 caused no significant difference
in the image-quality degradation of the proposed method, the MLP-based method [11],
and VTM4.0.

Figure 6. Decoded frames from RaceHorses (832 × 480) and RaceHorses (416 × 240) videos yielding
the best ∆EncT results presented in Table 8 when QP = 22.
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Figure 7. Decoded frames from RaceHorses (832 × 480) and RaceHorses (416 × 240) videos yielding
the best ∆EncT results presented in Table 8 when QP = 37.

Figure 8. Decoded frames from Cactus and RitualDance videos yielding the worst ∆EncT results
presented in Table 8 when QP = 22.
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Figure 9. Decoded frames from Cactus and RitualDance videos yielding the worst ∆EncT results
presented in Table 8 when QP = 37.

5. Conclusions

To reduce the encoding complexity of VVC, we proposed a framework combining
DL for object detection with ML for accurate TT-split prediction. The framework extracts
the image features in the first stage and decides whether to split the TT in the second
stage. In the feature extraction stage, we acquired object-features—object number and
object ratio—using the object detection model YOLOv5. In the TT-split decision stage,
we determined whether to split TT using DT, which showed the highest accuracy in an
experimental test on multiple ML models. The experimental results confirmed that our
proposed method is flexible for the purpose of the application. Therefore, the proposed
method could be effectively used in the case of a VVC encoder that can reduce encoding
complexity while somewhat compromising the quality or in the case of the encoder that
can reduce encoding complexity while ensuring some quality. Furthermore, the extracted
object-features and the optimization of the VVC encoder based on object detection may be
further investigated to reduce the complexity of high-quality encoders in the near future.

Author Contributions: Conceptualization, S.L. and S.-h.P.; software, S.L. and S.-h.P.; investigation,
S.L., S.-h.P. and D.J.; writing—original draft preparation, S.L.; writing—review and editing, S.-h.P.
and D.J.; supervision, S.-h.P. and D.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) grant funded by the Korean Government (MSIT) (No.
2021-0-00087, Development of high-quality conversion technology for SD/HD low-quality media)
and in part by the BK21 FOUR project (AI-driven Convergence Software Education Research Program)
funded by the Ministry of Education, School of Computer Science and Engineering, Kyungpook
National University, Korea (4199990214394).

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 6328 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in

Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: New York,
NY, USA, 2012; Volume 25.

3. Collobert, R.; Weston, J. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning.
In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; ACM: New York, NY,
USA, 2008; pp. 160–167. [CrossRef]

4. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag.
2012, 29, 82–97. [CrossRef]

5. Tissier, A.; Hamidouche, W.; Mdalsi, S.B.D.; Vanne, J.; Galpin, F.; Menard, D. Machine Learning based Efficient QT-MTT
Partitioning Scheme for VVC Intra Encoders. arXiv 2021, arXiv:2103.05319.

6. Bross, B.; Wang, Y.K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.R. Overview of the Versatile Video Coding (VVC) Standard
and its Applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [CrossRef]

7. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

8. Park, S.H.; Kang, J.W. Context-Based Ternary Tree Decision Method in Versatile Video Coding for Fast Intra Coding. IEEE Access
2019, 7, 172597–172605. [CrossRef]

9. Lee, S.; Park, S.H. Study on Machine Learning Models for Tree Partitioning Method of Versatile Video Coding. In Proceedings
of the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Korea, 6–9 February 2022;
pp. 1–2. [CrossRef]

10. Yang, H.; Shen, L.; Dong, X.; Ding, Q.; An, P.; Jiang, G. Low-Complexity CTU Partition Structure Decision and Fast Intra Mode
Decision for Versatile Video Coding. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1668–1682. [CrossRef]

11. Park, S.h.; Kang, J.W. Fast Multi-Type Tree Partitioning for Versatile Video Coding Using a Lightweight Neural Network. IEEE
Trans. Multimed. 2021, 23, 4388–4399. [CrossRef]

12. Zhang, Q.; Guo, R.; Jiang, B.; Su, R. Fast CU Decision-Making Algorithm Based on DenseNet Network for VVC. IEEE Access 2021,
9, 119289–119297. [CrossRef]

13. Li, T.; Xu, M.; Tang, R.; Chen, Y.; Xing, Q. DeepQTMT: A Deep Learning Approach for Fast QTMT-Based CU Partition of
Intra-Mode VVC. IEEE Trans. Image Process. 2021, 30, 5377–5390. [CrossRef] [PubMed]

14. Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical grid fully convolutional network for fast VVC intra coding. IEEE Trans. Circuits
Syst. Video Technol. 2022, 32, 5638–5649. [CrossRef]

15. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.
[CrossRef]

16. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,
arXiv:1506.02640.

17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European
Conference on Computer Vision; Springer International Publishing: Cham, Switerland, 2016; pp. 21–37. [CrossRef]

18. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv

2015, arXiv:1506.01497.
20. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
21. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. arXiv 2017, arXiv:1712.00726.
22. YOLOv5. Available online: https://github.com/ultralytics/yolov5/ (accessed on 3 May 2022).
23. COCO 2017 Dataset. Available online: https://cocodataset.org/#overview (accessed on 3 May 2022).
24. Xu, X.; Liu, S.; Li, Z. Tencent Video Dataset (TVD): A Video Dataset for Learning-based Visual Data Compression and Analysis.

arXiv 2021, arXiv:2105.05961.
25. Boyce, J.; Suehring, K.; Li, X.; Seregin, V. JVET-J1010: JVET Common test Conditions and Software Reference Configurations. 2018.

Available online: https://jvet.hhi.fraunhofer.de/ (accessed on 3 May 2022).
26. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123.
27. Zoph, B.; Cubuk, E.D.; Ghiasi, G.; Lin, T.Y.; Shlens, J.; Le, Q.V. Learning Data Augmentation Strategies for Object Detection. arXiv

2019, arXiv:1906.11172.

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/TCSVT.2021.3101953
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/ACCESS.2019.2956196
http://dx.doi.org/10.1109/ICEIC54506.2022.9748428
http://dx.doi.org/10.1109/TCSVT.2019.2904198
http://dx.doi.org/10.1109/TMM.2020.3042062
http://dx.doi.org/10.1109/ACCESS.2021.3108238
http://dx.doi.org/10.1109/TIP.2021.3083447
http://www.ncbi.nlm.nih.gov/pubmed/34057892
http://dx.doi.org/10.1109/TCSVT.2022.3146061
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://github.com/ultralytics/yolov5/
https://cocodataset.org/#overview
https://jvet.hhi.fraunhofer.de/


Sensors 2022, 22, 6328 18 of 18

28. Adams, K. Tutorial the Gini Impurity Index and What It Means and How to Calculate It. 2018. Available online: https://www.
researchgate.net/publication/327110793_Tutorial_The_Gini_Impurity_index_and_what_it_means_and_how_to_calculate_it (ac-
cessed on 3 May 2022).

29. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 3
May 2022).

30. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

https://www.researchgate.net/publication/327110793_Tutorial_The_Gini_Impurity_index_and_what_it_means_and_how_to_calculate_it
https://www.researchgate.net/publication/327110793_Tutorial_The_Gini_Impurity_index_and_what_it_means_and_how_to_calculate_it
https://www.tensorflow.org/

	Introduction
	Related Works
	Existing Methods for Encoder-Complexity Reduction
	Object Detection

	Proposed Object-Cooperated TT Partitioning Decision Method
	Process of Feature Extraction Including Object Detection
	Datasets for Training and Evaluation
	Data Augmentation of the Training Datasets
	TT Partitioning Decision Stage Based on DT

	Experimental Results
	Experimental Setup
	Performance Metrics of the Proposed Method
	Evaluation Metrics of the ML Models
	Evaluation Protocol of the Proposed Method: Comparisons with the Anchor

	Performance of ML Models for Accurate TT-Split Prediction
	Performance of the Proposed Object-Cooperated TT Partitioning Decision Method
	Complexity-Reduction Performances of the MLP-Based and Proposed Method for Encoding-Complexity

	Conclusions
	References

