

  sensors-22-06325




sensors-22-06325







Sensors 2022, 22(17), 6325; doi:10.3390/s22176325




Article



Augmentation Method for High Intra-Class Variation Data in Apple Detection



Huibin Li 1[image: Orcid], Wei Guo 2,*[image: Orcid], Guowen Lu 3 and Yun Shi 1,*[image: Orcid]





1



Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China






2



Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan






3



College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China









*



Correspondence: guowei@g.ecc.u-tokyo.ac.jp (W.G.); shiyun@caas.cn (Y.S.)







Academic Editor: Yongwha Chung



Received: 17 July 2022 / Accepted: 18 August 2022 / Published: 23 August 2022



Abstract

:

Deep learning is widely used in modern orchard production for various inspection missions, which helps improve the efficiency of orchard operations. In the mission of visual detection during fruit picking, most current lightweight detection models are not yet effective enough to detect multi-type occlusion targets, severely affecting automated fruit-picking efficiency. This study addresses this problem by proposing the pioneering design of a multi-type occlusion apple dataset and an augmentation method of data balance. We divided apple occlusion into eight types and used the proposed method to balance the number of annotation boxes for multi-type occlusion apple targets. Finally, a validation experiment was carried out using five popular lightweight object detection models: yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficidentdet-d0. The results show that, using the proposed augmentation method, the average detection precision of the five popular lightweight object detection models improved significantly. Specifically, the precision increased from 0.894 to 0.974, recall increased from 0.845 to 0.972, and mAP0.5 increased from 0.982 to 0.919 for yolox-s. This implies that the proposed augmentation method shows great potential for different fruit detection missions in future orchard applications.
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1. Introduction


Deep learning has evolved rapidly in recent years. A proper deep learning algorithm requires a suitable dataset or data augmentation method to demonstrate its superior performance. Therefore, finding pre-processing methods to enhance data quality is a critical step in research since it is more effective to increase the quantity, diversity, and quality of a dataset than to increase the complexity and depth of a model [1], not only to increase the generalization capability of the algorithm but also to make research more convincing.



Research related to data quality improvement is essential for fruit-picking detection in agriculture. It is well-known that the significant demand for mechanized automatic fruit harvesting in the agricultural sector offers significant opportunities for developing agricultural picking robots. Automatic picking robots have received a great deal of attention from researchers in recent decades, and a variety of robots have been developed domestically and internationally to harvest fruits and vegetables, such as apple-picking robots [2]. In addition, vision-based control technology for picking robots has seen rapid development in recent years. Although there has been a great deal of research in the development of vision-control techniques for robotic picking, the low success rate of fruit recognition and inefficient hand–eye coordination still limits picking robot performance [3]. Occlusion is considered to be one of the challenges of robotic vision picking technology since it seriously affects the recognition and localization accuracy of picking robots [4], mainly in the case of leaf and branch occlusion and when fruit overlaps, resulting in a long time requirements for target fruit recognition, low recognition accuracy, and more difficult recognition at night [5]. Recent advances in deep learning have greatly improved the perception of occlusion fruit because relevant detection algorithms are sensitive to changes in object appearance and environmental conditions [6]. Research related to improving the quality of training data can further facilitate the optimal performance of deep learning detection algorithms.



In researching a detection model for apple-picking robots, the model needs to determine multi-type occlusion generated by branches, leaves, and fruits to improve the picking ability of the robot to select fruit. In various studies, apple-picking robots only detected apples as one class [4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24], ignoring apple occlusion during picking, which can potentially damage the end-effector and target apples [25,26]. Therefore, fine detection of multi-type occlusion fruits is required prior to picking, which is a much more complicated method and requires detection based on fine features of the apple position. In studies performed to detect multi-type occlusion fruit, a significant variation in sample size between classes in most datasets is common [27,28]. We also found high intra-class variation when the collected raw images were annotated and counted by multi-type occlusions. Moreover, classification bias or algorithm performance degradation will occur in the process of model detection due to the imbalance of annotation numbers in each type of occlusion, which affects the effectiveness and accuracy of the trained model. For example, the algorithm overfits classes with too many samples and underfits classes with very few samples. It is necessary to have methods that can solve the problem from a data perspective, including oversampling and undersampling, to reduce the effects of the uneven number of training samples of each type on the training of the model [29]. The method presented in [30] derived the result that both oversampling and undersampling increased model recall by using multiple resampling algorithms, with oversampling improving the detection performance of all models and being one of the common methods used in deep learning [31,32]. Oversampling methods generally replicate samples from a small number of classes to fill the number. To reduce the overfitting problem of the model, the method in [33] used a combination of inter-class weight assignment, central loss, and adaptive synthetic sampling approaches [34] to achieve a balance in the number of samples for each type of pest and disease, which eventually further reduced model loss during model training, and the detection accuracy of each type of pest and disease was greatly improved. Undersampling methods involve randomly removing a large number of available sample classes to equal the number of classes [35]. While these methods can be helpful in some cases, randomly discarding data reduces the total amount of learning data required by the model and may prevent the model from performing optimally. In contrast, some methods modify the way the model learns during training, focusing less on the majority groups and more on the minority groups [36].



In this study, we first build the multi-type occlusion apple (MTOA) dataset, then propose a balance augmentation method. The method is based on the differences between the number of annotation boxes of each apple occlusion class and the pattern of occlusion existence for manual data synthesis. Moreover, this method achieved a balanced number of annotation boxes of each apple occlusion class in different regions under different illuminations. Five lightweight models (i.e., yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficientdet-d0) were used as basic models to verify the effectiveness of the proposed method. Each model was trained with basic training datasets of MTOA and balanced MTOA datasets. Finally, the performance metrics were compared. The results show that the proposed method could solve the imbalance problem in the number of annotation boxes in the training part of the MTOA dataset. In addition, it could avoid the annotation noise and overfitting phenomena.



The highlights of this study are as follows:




	
We created the MTOA, the first dataset considering multi-type occlusion of apple fruits, and made it available for free under the MIT license.



	
We proposed a balance augmentation method to achieve a balanced number of annotation boxes of each apple occlusion class in different regions under different illuminations and solved the problem of severe differences in the number of samples between classes.



	
We validated the effectiveness of the proposed algorithm using five popular lightweight object detection models.









2. Materials and Methods


2.1. Making the MTOA Dataset


The raw images in the apple orchards were obtained by self-collection and web-collection, respectively, and an example of the collected images for each region is shown in Figure 1. The raw images include images of Yanfu-3 apples from Zhaoyuan, Shandong, China (SD_ZY_IMG), Yanfu-8 apples from Qixia, Shandong, China (SD_QX_IMG), and Jonagold apples from Prosser, Washington, USA (WT_PSR_IMG) [25]. The specific information about the collected images is listed in Table 1.



There is variability in the way orchards are grown and data collected between the three regions. The Zhaoyuan orchard is a modern spindle planting structure with apple trees spaced in rows approximately 3.5 m apart, with 1.5 m between plants, and with a height of 3.5 m. Multi-angle photography was mainly performed by handheld cameras at a distance of about 0.5–1.0 m. The images were taken in the morning, at midday, and in the evening, with clear weather during the day and artificial lighting at night. On the other hand, the Qixia apple orchard is a traditional orchard with a happy canopy, with rows about 4 m apart, plants approximately 5 m apart, and trees with a height of about 3 m. It was mainly photographed by handheld cameras at a distance of 0.3–0.8 m, at midday with clear weather. Meanwhile, the Prosser apple orchard in Washington State has a tree-wall structure. The data on Jonagold apples were collected by mounting the camera, which was approximately 1.7 m above the ground, on a mobile platform and keeping the distance from the camera to the tree wall at about 0.5 m at midday with clear weather.



Since there are no publicly available apple datasets, we manually annotate all images. Annotation classes consisted of eight types of occlusions, including no occlusions (N), leaf occlusions (L), fruit occlusions (F), branch occlusions (B), leaf and fruit occlusions (LF), leaf and branch occlusions (BL), branch and fruit occlusions (BF), and leaf, branch, and fruit occlusions (BLF). Each annotation class is shown in Figure 2. The MTOA dataset was constructed after all annotations. We counted all annotation boxes, and the result showed that the class with the largest number of annotation boxes was N (22986), accounting for 28.2% of the total, and the class with the smallest number of annotation boxes was BLF (1374), accounting for 1.7% of the total, which is a difference of approximately 16 times. In BF, F, and LF, the proportion of data in each occlusion class did not exceed 5% of the total number of annotated boxes, which shows the significant variability between all occlusion apple classes in the MTOA dataset.




2.2. Data Balance Algorithms


2.2.1. Algorithm Validation Process


The validation flow of the data balance augmentation algorithm proposed in this study is shown in Figure 3. The diagram contains the following steps.




	
Splitting the MTOA dataset into a basic test and training dataset with a ratio of 3:7 and then training five lightweight models with the basic training dataset. The training of five lightweight models was carried out to form five corresponding basic models.



	
Balancing the basic training dataset using the proposed method to form the balanced MTOA dataset.



	
Training five lightweight models with the balanced MTOA dataset. Five lightweight models were trained to form five corresponding balanced models.



	
Using basic test dataset to perform metrics on five basic and balanced models and analyze reasons for changes in model performance.









2.2.2. MTOA Dataset Statistical Analysis by Illumination


The lighting methods in the apple orchards were natural lighting during the day and artificial lighting at night. Different lighting methods produce different light illuminations (i.e., RGB vectors of different lighting colors) [37]. As illumination changes, the same scene shows different color representations, for example, backlit and artificially lit images in which apple targets tend to be too bright or have severe color distortion. In this study, to effectively classify images under different illuminations [38], a MobileNetV3-based classification model was used to classify raw images from each region into high and low illuminations, with low-illumination images mainly containing images under backlight, evening, or nighttime artificial lighting conditions, and high-illumination images containing images under sufficient daytime light conditions. The classification of raw images by illumination is shown in Figure S1 in the Supplementary Material.



The MTOA dataset was analyzed and counted by illumination to clarify the number of each type of annotation box in each region with high and low illuminations in the MTOA dataset. First, raw images in the MTOA dataset were classified using the illumination binary classification model of MobileNetV3 to form six sub-datasets, including the ZhaoYuan high-illumination dataset (ZY_H), ZhaoYuan low-illumination dataset (ZY_L), Qixia high-illumination dataset (QX_H), Qixia low-illumination dataset (QX_L), Prosser high-illumination dataset (PSR_H), and Prosser low-illumination dataset (PSR_L). Six sub-datasets were counted by illumination for each occlusion type, and the results are shown in Table 2.



The statistics showed that QX_L had a low number of annotation boxes and PSR_L had zero annotation boxes because most of the raw images in QX_L and all raw images in PSR_L were collected in the morning with even lighting, respectively. Due to the small number of annotation boxes in QX_L and PSR_L, data balance augmentation of these two sub-datasets was ignored. From the other four sub-datasets, the number of annotation boxes varied greatly between apple occlusion classes, with the largest class being B for ZY_H, the smallest class being BF for PSR_H, and the difference between them being approximately 195 times. In summary, the number of annotation boxes and data in sub-datasets by illumination varied greatly between regions, resulting in difficulty making the training data from different regions and different illuminations play an equal role in calculating the training loss of the model.




2.2.3. Rules for Building the Component Pool


The component pool is a collection of elements required for synthesizing each occlusion apple. It consists of five elements in high and low illuminations: base image elements, fruit elements, branch elements, leaf elements, and composite elements.




	
Rules for making base image elements



In this study, images with no fruit in high illumination and matching the orchard background were selected as high-illumination base images. Images with no fruit in low illumination and matching the orchard background were selected as low-illumination base images. However, since there were fewer images in this study, some low-illumination images were blurred and supplemented as base images. These two types of base images were randomly scaled to 640 × 480 and 1280 × 720 to maintain consistency with the image size in basic training dataset. Finally, 1000 high-illumination base images and 1000 low-illumination base images were selected. Figure 4 shows various base images under high and low illuminations.



	
Rules for the selection of occlusion elements



In this study, fruit, branch, leaf, and composite occlusion elements were segmented from images from the basic training dataset. The fruit occlusion elements were mainly single intact fruits; the branch elements were divided into multiple branches and single branches; the leaf elements were divided into a single leaf and multiple leaves; and the composite elements were mainly the combination of branches, leaves, and fruits. Five hundred elements of each of the five classes were segmented to ensure the diversity of selected results. After that, fruit, branch, leaf, and composite occlusion elements under high illumination were grouped into one category. Meanwhile, the fruit, branch, leaf, and composite occlusion elements under low illumination were grouped into another category. Figure 5 shows the occlusion elements at high and low illuminations.









2.2.4. Data Synthesis Methods for Each Apple Occlusion Class


The main idea in synthesizing each occlusion apple class was to paste the corresponding occlusion elements into the N area of the raw image, depending on the number of occlusion apple classes to be synthesized and the illumination requirements. This was because the occlusion classes could be combined from N and occlusion elements after observing raw images. All occlusion elements entered from the boundary region of N and extended randomly to arbitrary locations. This study used this prior knowledge to complete the synthesis of each occlusion apple class. There was also variability in the synthesis of each occlusion class. For B and L, both could be formed by randomly pasting leaf and branch elements into N according to the edge entry rule. However, for F, they could not be synthesized according to this method because if N was shaded by more than 50%, the fruit occlusion element easily became an N and the shaded fruit became F (i.e., both occlusion apple classes would appear simultaneously). The BL, BF, LF, and BLF were composite occlusion classes and could be formed by either synthesizing composite occlusion elements or attaching the existing composite occlusion elements to N.




	
N, B, and L class synthesis methods



N synthesis required the cyclic extraction of the required number of N from the basic training dataset for the corresponding region and illumination. B and L were formed by directly attaching branch and leaf occlusion elements to the surface of N randomly according to the edge entry rule. Figure 6 shows the synthesis of B and L.




	
First, the numbers of B and L to be synthesized were calculated. Then, the N class was selected from the images of the basic training dataset for the corresponding region and illumination. The selected N was divided into six equal parts according to their width and height to form a grid with a size of 6 × 6. Since all occlusion elements were entered by the edges of N, the boundary of the grid was set in this study as an edge entry area, within which the starting points of branch and leaf needed to be selected.



	
The branch and leaf elements were randomly extracted from the component pool and cropped at a scale of 0.5–1.0 to form a new occlusion element.



	
The edge entry area contained 24 location points from which the starting point of the occlusion element was randomly selected. The endpoint of the occlusion element could not be in the same row or column as the random starting point because the area formed by the starting and endpoints of the occlusion element in the same row and column was a line, which cannot provide a rectangular area of the same size for the occlusion element. To highlight the occlusion elements, this study set the distance between the starting and endpoints of the occlusion element to be greater than three grid lengths to ensure that any area adjacent to the random starting point that was less than three grid lengths could not be used as the endpoint of the selection area. Other areas could be used as the endpoint of the selection area. Then, we randomly selected the endpoint of the occlusion elements from the endpoint of the selection area.



	
After determining the random starting points and random endpoints of the occlusion element, the dimensions of the new occlusion element were transformed by scaling or cropping the rectangular area between the random start and endpoints. Then, the changed occlusion element was pasted in the random starting and ending areas to form B or L, and finally, the synthetic B or L image was saved.








	
Class F synthesis method



When synthesizing class F, it was impossible to directly attach the fruit occlusion element to the N surface. This was because it was easy to identify the fruit occlusion element as N during the model training process if the N area was overshadowed. The synthesis process of F, shown in Figure 7, was accomplished by limiting the common area of the fruit occlusion element and N.




	
First, N was selected from the images of the basic training dataset for the corresponding region and illumination, which depended on the number of F to be synthesized. Then, we obtained the fruit occlusion element from the component pool according to illumination demand and adjusted its size to the same size as the selected N. Subsequently, we divided N into a 6 × 6 grid and created a 14 × 14 grid area with the center point of N as the origin. The 14 × 14 grid area was divided into four quadrants, with the upper left corner as the first quadrant.



	
The location of the upper left corner of the fruit occlusion element was randomly selected in the first quadrant. To prevent the fruit occlusion element from completely obscuring N, the centroid of the occlusion element and origin were not allowed to overlap. This method limited the area of overlap between the fruit occlusion element and N to no more than 34%, because the fruit occlusion element would become N if it exceeded 34%, leading to confusing annotations.



	
After determining the starting position of the upper left corner for the fruit occlusion element, the upper left corner of the fruit occlusion element and starting position were overlapped to complete the operation of pasting the fruit occlusion element on a 14 × 14 grid. Finally, area N on a 14 × 14 grid was intercepted, and the result of the interception was the synthesized F image.








	
Fused occlusion-type compositing methods



The fused occlusion apples mainly consisted of BL, BF, LF, and BLF. All four could be synthesized on the basis of B, L, and F by the attachment of a second or third occlusion element to form the final fused occlusion apple class. The results of BL, BF, LF, and BLF are shown in Figure 8, and the specific synthesis process is described in Method 1 of the Supplementary Material.









2.2.5. Making the Augmented MTOA Dataset


After synthesizing all occlusion apple images, the next step was to attach these images to base images and automatically label them to form the augmented MTOA dataset, as shown in Algorithm 1. Finally, the augmented MTOA and basic training datasets were combined to form the balanced MTOA dataset.



	Algorithm 1: Making the Augmented MTOA Dataset



	Input:

a. Synthetic occlusion apple images:    D = A r e a    l      i d      {   d  i m g s    j     i       }       

b. Base images under high and low illumination:   B = A r e a    l      i d      {  b _ i m g  s k   }   



	Output: Balanced MTOA dataset:   D B = A r e a    l      i d      {  d b _ i m g s , d b _ l a b e l s  }   



	               f o r    a r e a ← Z h a o y u a n   t o   i d     d o  



	                                 f o r      l g t ← h i g h   t o   l     d o  



	                    b _ i m g _ i d = R a n d o m  (  0 , k − 1  )   



	                                                          b _ i m g = A r e a    l      i d      {  b _ i m g  s k   }   (  a r e a , l g t , b _ i m g _ i d  )   



	                                                       f o r      c l s ← N   t o   i   d o  



	                     f o r      i m g _ i d ← 1   t o   j   d o  



	                                        s h e l t e r _ i m g = A r e a    l      i d      {  d _ i m g s    j     i     }   (  a r e a , l g t , c l s , b _ i m g _ i d  )   



	                                      i f    b  i m g   . r e m a i n i n  g  s p a c e   > s h e l t e  r  i m g   . s h a p e     t h e n  



	                                              s t a r t _ p o s = r a n d o m  (  x , y  )      i n     b _ i m g . r e m a i n i n g _ s p a c e  



	                                          e n d _ p o s =  (  x + s h e l t e r _ i m g . s h a p e . x , y + s h e l t e r _ i m g . s h a p e . y  )   



	                                              c o p y   s h e l t e  r  i m g   t o    b  i m g   . r e m a i n i n  g  s p a c e     w i t h   s t r a r  t  p o s    



	                                                  u p d a t e   b _ i m g . r e m a i n i n g _ s p a c e  



	                                                                                            l a b e l s + =  (  c l s , s t r a r t _ p o s , e n d _ p o s  )   



	                                                                      e l s e  



	          s a v e   n e w   b g _ i m g    



	                                              D B  (  a r e a , l g t  )  =  (  b g _ i m g , l a b e l s  )   



	                                                                c l e a r   l a b e l s  



	id∈(Zhaoyuan,Qixia,Procieer), l∈(low,high), i∈(N,L,F,B,LF,BL,BF,BLF), j is num of class i with l light, k is img num with l light.










2.3. Equipment and Model Training


2.3.1. Training Equipment


All experiments were conducted on a deep learning server with Intel Xeon(R) Gold 6226R v4@2.90 Hz × 64 CPU, 251.6 GB RAM, 1.9 TB SSD, 2 × 16 GB NVIDIA Tesla V100 and software: Ubuntu 20.04 OS, PyTorch 1.10 (America, Facebook), NVIDIA driver 495.46, CUDA 11.5 and cuDNN 8.2.4 (America, Nvidia).




2.3.2. Model Selection and Training


In this study, from the perspective of the practical use of agricultural robots with embedded computing, the primary consideration is the ability of the algorithm to detect fruits quickly and accurately in real time [39]. Therefore, five lightweight models that could be deployed in embedded AI terminals were used to verify the effectiveness of the algorithm. These models were yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficientdet-d0, with fps of 73, 73, 164, 556, and 31, respectively, on the experimental host. The specific information for each model is listed in Table 3. The training progress was stopped when the accuracy of each model reached convergence, and the optimal model was saved at the end of training. The model training time was measured in hours, and each model contained two training times; the first value was the training time using the MTOA dataset, and the second value was the training time using the balanced MTOA dataset.





2.4. Performance Metrics


In this study, four metrics were used to evaluate the performance of the trained model, including precision (P), recall (R), average precision (AP), and mean average precision (mAP), which were calculated as follows:


  P = T P /  (  T P + F P  )  ,  



(1)






  R = T P /  (  T P + F N  )  ,  



(2)






  A P  ( n )  =   ∫  0 1   P n   (   R n   )  d  R n  ,  



(3)






  m A P = 0.125 *   ∑   n = 1  8  A P  ( n )  ,  



(4)




where  P  is the proportion of the correct prediction boxes detected among all prediction boxes;  R  is the proportion of the correct prediction boxes among all annotation boxes;   A P   is the average accuracy value for each occlusion apple class that measures how well the trained model does on each class;   m A P   is the average   A P   value for eight occlusion apple classes to measure how well the trained model does on all classes;   T P   is the number of correctly matched prediction boxes for all annotation boxes;   F P   is the number of incorrectly predicted boxes; and   F N   is the number of missed annotation boxes.





3. Results


3.1. Results after the Balance of Each Occlusion Class


The basic training dataset was balanced to ensure that the numbers of annotation boxes in each occlusion apple class were equal. However, annotation boxes in QX_L and PSR_L were not balanced because of their small number. The final number of annotation boxes in each occlusion apple with each illumination was 10,579, which is the number of B in ZY_H. The total number of annotation boxes was 338,937, and the original number of annotation boxes was 81,631. The results of the synthesis of the images under high and low illuminations are shown in Figure 9, and the numbers of annotation boxes of each occlusion class after synthesis are shown in Table 4.




3.2. Training Results before and after Data Balance


In this study, the yolox-s-basic, yolov5-s-basic, yolov4-s-basic, yolov3-tiny-basic, and effidentdet-d0-basic models were obtained after training five lightweight models using basic training dataset from the MTOA dataset, and we obtained yolox-s-bal, yolov5-s-bal, yolov4-s-bal, yolov3-tiny-bal, and efficidentdet-d0-bal after training five lightweight models using the balanced MTOA dataset. Since all models were pre-trained using the balanced MTOA dataset, it was found that models trained without mosaic and mixup augmentation algorithms performed better than those trained with such algorithms, indicating that the balance augmentation method is more effective than mosaic and mixup methods when training models for apple occlusion detection. This is mainly because the feature difference between the occlusion targets is often in a small local area, and the mosaic and mixup augmentation algorithms increase annotation noise. The test dataset in this study consisted of the basic_test and balance_test datasets, both of which were identical. The test dataset contained 1000 images and labels under ZY_H, ZY_L, QX_H, and PSR_H, excluding synthetic images, for a total of 12,666 apple occlusion targets. The test metrics for each model were calculated using Equations (1)–(4), as shown in Table 5, and the following information was obtained from the analysis of the results.




	
Yolox-s-bal improved significantly over the yolox-s-basic model in terms of precision, recall, and mAp, and it showed some improvement in Ap values between all occlusion classes. Moreover, yolov4-s-bal, yolov3-tiny-bal, and yolox-s-bal had the same performance, indicating that the balance method proposed in this study can improve the performance of the above four models in detecting apple occlusion targets in a comprehensive manner. Compared with the yolov5-s-basic model, the precision and APBLF values decreased by 0.001 and 0.042, respectively. However, the recall value improved significantly, the mAp value remained balanced, and the AP values of all classes except BLF improved, indicating that the proposed method in this study can maintain an accurate performance of yolov5-s-basic while improving the ability of the model to find a full range of occlusion targets.



	
The highest values of each metric in the detection results were P (0.974) in yolox_s_bal; R (0.972) in yolox-s-bal; mAp (0.960) in yolov5-s-basic and yolov5-s-bal; APN (0.985) in yolov5-s-bal; and APB (0.982), APL (0.975), APF (0.963), APBL (0.965), APBF (0.959), APLF (0.956), and APBLF (0.994) in yolox-s-bal, showing that the highest metric values were among the models trained with the balanced MTOA dataset. This indicates that the proposed method can promote a great expression of the detection performance of the model for some categories.



	
The proposed method improved most of the metrics of each model, but the APBLF metrics decreased after the training of yolov5-s-bal and efficientDet-d0-bal, indicating that the features of the BLF in the balanced MTOA dataset differed from those in the BLF classes of the basic training dataset. This affected the detection ability of the BLF in these two models.










4. Discussion


The experimental results show that the APBLF value decreased for the yolov5-s-bal and efficientDet-d0-bal models and increased for all other models. To analyze the reasons, the original test dataset was divided into four sub-classes of test datasets (ZY_H_TEST, ZY_L_TEST, QX_H_TEST, and PSR_H_TEST). Then, the yolov5-s-bal model was used as a representative of an APBLF decreasing model because the APBLF value in yolov5-s-bal declined the most, and yolov4-s-bal was used as a representative of a rising model for all metrics. Finally, these two models were tested separately with four sub-classes of test datasets, as the APBLF value in yolov4-s increased the most.




	
First, four sub-classes of test datasets were tested based on the yolov5-s-basic and yolov5-s-bal models. Test results are shown in Table 6, and visualization test results are shown in Supplementary Material Figure S2. In the test results for ZY_H_TEST and QX_H_TEST, the APBLF improved by 0.018 and 0.071, respectively, but the APBLF decreased by 0.085 and 0.096 in the test results for ZY_L_TEST and PSR_H_TEST, respectively. Meanwhile, in the test results for PSR_H, all metrics decreased for different illuminations except APF, indicating that the yolov5-s-bal model had a loss in the detection performance of the BLF in PSR_H_TEST and ZY_L_TEST, which is also the main reason for the decrease in APBLF when testing the yolov5-s-bal model. In addition, the yolov5-s-basic model had the greatest variability in all test metrics for PSR_H_TEST. If we want to continue to improve the metrics, we need to provide data that are more similar to source data for model training. However, for PSR_H_TEST balance augmentation, the occlusion elements in ZY_H and ZY_L were used for synthesis, which improved the amount of training data but fell short of the goal of being more similar to the source data, resulting in a decrease in the APBLF and other metrics.



	
Four sub-classes of test datasets were tested based on the yolov4-s-basic and yolov4-s-bal models. The test results are shown in Table 7, and the visualization test results are shown in Supplementary Material Figure S3. The decreases in APBLF and P for ZY_L_TEST data were 0.036 and 0.001, respectively, with a large decrease in APBLF, which is due to the same reason as the decrease in APBLF for the yolov5-s-bal model test. Moreover, the detection metrics under all other sub-class test datasets showed substantial improvements, indicating that the combined detection performance of the yolov4-s-bal model improved significantly. Although the detection ability of BLF in ZY_L_TEST data was suppressed, the AP values in other sub-classes increased significantly, which was the main reason for the increase in APBLF when all test datasets passed the yolov4-s-bal test. The results of the yolov4-s-basic model for PSR_H_TEST, ZY_H_TEST, and PSR_H_TEST were all relatively low, which shows that there is more room to improve the performance of the model. All other metrics improved after training the model with a balanced MTOA dataset, indicating that the proposed method in this study is more effective in improving the performance of the model when there is more room for improvement.








The method proposed in this study is expected to be applied to the fine detection of apple fruit in multiple regions. Compared with most data augmentation algorithms, the proposed method greatly increases the quantity and quality of underlying multi-type occlusion apple data and solves the problem of unbalanced quantities between classes. The detection capability of the lightweight model and the generalization capability of the model were also improved, which shows that our method can be used for advancing the fine-grained identification of occlusion fruits. This method needs to be used to fully use a priori knowledge (consistency of occlusion elements, type of occlusion, and features of external illumination) to generate high-quality data and ensure that synthetic data are consistent with the main features of the original data.




5. Limitations and Future Research


Despite the aforementioned achievements [40], there is still room for improvement in the proposed method. Firstly, the process of component pool production consumes a great deal of time because all elements need to be manually selected or extracted, such as selecting base images, manually segmenting fruits, leaves, branches, etc., which increases the cost of data production. Secondly, after the MOTA dataset is balanced, the size of the balanced MOTA dataset will increase, and the training time of the model will increase accordingly when more data are used for model training. In the future, our research direction is to reduce the dataset production time and labor cost by using the existing segmentation model for building a component pool.




6. Conclusions


In this study, we addressed the problem that most lightweight models detect multiple types of occlusion targets inefficiently during fruit picking. We proposed the first MTOA dataset and a balance augmentation method. The results show that using the proposed method, the average detection precision of the five popular lightweight object detection models can be significantly improved, demonstrating the effectiveness of the proposed method. However, we still need to pay attention to the selected occlusion types that should be consistent with the actual situation since this will affect the similarity between the synthetic and actual data. The proposed method showed considerable potential for different fruit detection missions in future orchard applications in complex environments.
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Figure 1. Example of the raw images in the MTOA dataset: (a) SD_ZY_IMG; (b) SD_QX_IMG; (c) WT_PSR_IMG. 
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Figure 2. Annotation classes: (a) no occlusion; (b) leaf occlusion apples; (c) fruit occlusion; (d) branch occlusion; (e) leaf and fruit occlusion; (f) leaf and branch occlusion; (g) branch and fruit occlusion; and (h) leaf, branch, and fruit occlusion. 
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Figure 3. Flow chart for the validation of the proposed method. 
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Figure 4. Various base images with high and low illuminations: (a) 640 × 480 base image under high illumination; (b) 1280 × 720 base image under high illumination; (c) 1280 × 720 base image under low illumination; (d) 640 × 480 blurred base image under low illumination; (e) 1280 × 720 blurred base image under low illumination. 
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Figure 5. Various occlusion elements under high and low illuminations: (a) fruit occlusion elements under high and low illuminations; (b) branch occlusion elements under high and low illuminations; (c) leaf occlusion elements under high and low illuminations; (d) combined leaf, branch, and fruit occlusion elements under high and low illuminations. 
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Figure 6. The synthesis process of B and L: (a) N is selected from the annotated images. (b) N area is gridded, and the blue part is the edge entry area. (c) The gridded area is divided into a random element insertion point selection area and a random element endpoint selection area, with the red point being the random starting point and the blue point being the random endpoint. (d) Branch or leaf occlusion elements are inserted between the random starting and random endpoints. (e) Synthetic B image; (f) Synthetic L image. 
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Figure 7. The synthesis process of F: (a) N is selected from annotated images. (b) Fruit occlusion element is selected from the component pool. (c) Fruit occlusion element is resized to N size. (d) N is divided into 6 × 6 grid regions, a 14 × 14 grid region is created with the center of N as the origin, and it is divided into four quadrants. (e) The randomly selected start point of the fruit occlusion element is based on the first quadrant, which is a red circle. (f) The fruit occlusion element is attached to the 14 × 14 grid area based on the random starting point, ensuring that the overlap between the fruit occlusion element and N is less than 34% of N area. (g) The original image is cut in according to the size of N to form F. (h) The other four F. 
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Figure 8. Synthesis results of fused occlusion apple: (a) Synthetic BL image; (b) Synthetic BF image; (c) Synthetic LF image; (d) Synthetic BLF image; and (e) Synthetic BLF image. 
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Figure 9. Synthesis image in high and low illuminations: (a) Synthesis image in high illumination; (b) Synthesis image in low illumination. 
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Table 1. Information about raw images of apple orchards.
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	Data
	Owner
	Country
	Location
	Acquisition Date
	Sensor
	Platform
	Development Stage
	Size
	No. of Image





	SD_ZY_IMG
	CAAS
	China
	ZhaoYuan
	25 October 2021
	Intel

d455
	Handheld
	filling-ripening
	1280 × 720
	4870



	SD_QX_IMG
	CAAS
	China
	Qixia
	10 October 2020
	Osmo Action1
	Handheld
	filling-ripening
	640 × 480
	2827



	WT_PSR_IMG
	Fu3lab
	America
	Prosser
	2017/2018
	Kinect V2
	Tractor
	filling-ripening
	640 × 480
	1558
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Table 2. MTOA dataset statistics by high and low illuminations.
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	Data Name
	No. of Images
	No. of Annotation Boxes
	No. of N
	No. of B
	No. of L
	No. of BL
	No. of BF
	No. of F
	No. of LF
	No. of BLF





	ZY_H
	2738
	36,803
	9856
	10,579
	5597
	6405
	1936
	1296
	474
	660



	ZY_L
	2132
	25,165
	9639
	5671
	4558
	3133
	728
	901
	252
	283



	QX_H
	2681
	8159
	1273
	3053
	804
	1442
	934
	268
	116
	269



	QX_L
	146
	491
	68
	215
	34
	112
	41
	6
	0
	15



	PSR_H
	1558
	10,774
	2150
	189
	5295
	942
	54
	540
	1457
	147



	PSR_L
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
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Table 3. Information for each model.
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	Model
	Epochs
	Image_Size
	Original Augmentation Algorithm
	New Augmentation Algorithm
	Training Time (h)
	Project Website





	yolox-s
	≤300
	640 × 640
	mosaic, mixup, flip, hsv
	mosaic, mixup (≤60 epoch)

flip, hsv (≥0 epoch)
	7.8/17.2
	https://github.com/MegEngine/YOLOX (accessed on 30 December 2021)



	yolov5-s
	≤300
	640 × 640
	mosaic, mixup, flip, copy_paste, multi-scale
	flip, copy_paste, multi-scale
	4.4/10.4
	https://github.com/ultralytics/yolov5 (accessed on 30 November 2021)



	yolov4-s
	≤300
	640 × 640
	hsv, flip, mosaic
	hsv, flip
	11.1/27.7
	https://github.com/WongKinYiu/PyTorch_YOLOv4 (accessed on 30 November 2021)



	yolov3-tiny
	≤300
	640 × 640
	flip, hsv, mosaic, mixup
	flip, hsv
	4.8/11.6
	https://github.com/ultralytics/yolov3 (accessed on 30 November 2021)



	efficientDet-d0
	≤200
	640 × 640
	--
	--
	19.4/33.8
	https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch (accessed on 31 December 2021)
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Table 4. Synthesis results of basic training dataset by high and low illumination.
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	Results of Data Synthesis
	Total Synthetic
	No. of N
	No. of B
	No. of L
	No. of BL
	No. of BF
	No. of F
	No. of LF
	No. of BLF





	ZY_H_syn
	4,7829
	723
	0
	4982
	4174
	8643
	9283
	10,105
	9919



	ZY_L_syn
	59,467
	940
	4908
	6021
	7446
	9851
	9678
	10,327
	10,296



	QX_H_syn
	76,473
	9306
	7526
	9775
	9137
	9645
	10,311
	10,463
	10,310



	QX_L_syn
	0
	0
	0
	0
	0
	0
	0
	0
	0



	PSR_H_syn
	73,858
	8429
	10,390
	5284
	9637
	10,525
	10,039
	9122
	10,432



	PSR_L_syn
	0
	0
	0
	0
	0
	0
	0
	0
	0







ZY_H_syn, ZY_L_syn, QX_H_syn, QX_L_syn, PSR_H_syn, and PSR_L_syn represent the synthesized data after the equalization of ZY_H, ZY_L, QX_H, QX_L, PSR_H, and PSR_L, respectively.
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Table 5. Detection results of different models on the test dataset.
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	Model Comparison
	P
	R
	mAP0.5
	APN
	APB
	APL
	APF
	APBL
	APBF
	APLF
	APBLF





	yolox-s-basic
	0.894
	0.845
	0.892
	0.904
	0.898
	0.897
	0.892
	0.886
	0.888
	0.884
	0.885



	yolox-s-bal
	0.974
	0.972
	0.919
	0.909
	0.909
	0.908
	0.909
	0.908
	0.908
	0.906
	0.994



	diff
	0.080
	0.127
	0.027
	0.005
	0.011
	0.011
	0.017
	0.022
	0.020
	0.022
	0.109



	yolov5-s-basic
	0.947
	0.914
	0.960
	0.984
	0.979
	0.97
	0.960
	0.957
	0.948
	0.955
	0.934



	yolov5-s-bal
	0.946
	0.936
	0.960
	0.985
	0.982
	0.975
	0.963
	0.965
	0.959
	0.956
	0.898



	diff
	−0.001
	0.022
	0
	0.001
	0.003
	0.005
	0.003
	0.008
	0.011
	0.001
	−0.036



	yolov4-s-basic
	0.900
	0.751
	0.727
	0.835
	0.797
	0.768
	0.699
	0.742
	0.693
	0.639
	0.646



	yolov4-s-bal
	0.961
	0.913
	0.907
	0.941
	0.930
	0.916
	0.910
	0.904
	0.920
	0.879
	0.859



	diff
	0.061
	0.162
	0.180
	0.106
	0.133
	0.148
	0.211
	0.162
	0.227
	0.240
	0.213



	yolov3-tiny-basic
	0.856
	0.791
	0.883
	0.959
	0.936
	0.941
	0.856
	0.889
	0.842
	0.877
	0.768



	yolov3-tiny-bal
	0.910
	0.842
	0.918
	0.97
	0.95
	0.956
	0.897
	0.912
	0.895
	0.917
	0.835



	diff
	0.054
	0.051
	0.035
	0.011
	0.014
	0.015
	0.041
	0.023
	0.053
	0.040
	0.067



	efficientdet-d0-basic
	0.933
	0.896
	0.930
	0.951
	0.938
	0.936
	0.923
	0.923
	0.934
	0.919
	0.913



	efficientdet-d0-bal
	0.940
	0.923
	0.935
	0.951
	0.948
	0.939
	0.934
	0.935
	0.935
	0.934
	0.901



	diff
	0.007
	0.027
	0.005
	0.000
	0.01
	0.003
	0.011
	0.012
	0.001
	0.015
	−0.012







The diff represents the difference between detection metrics of the model trained by the balanced MTOA dataset and the model trained by basic training dataset, and the value is shown in bold black.
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Table 6. Comparison of the statistical results of yolov5-s-basic and yolov5-s-bal for all metrics in test dataset.
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Model Comparison

	
Data

	
P

	
R

	
mAP0.5

	
APN

	
APB

	
APL

	
APF

	
APBL

	
APBF

	
APLF

	
APBLF






	
yolov5-s-basic

	
ZY_H_TEST

	
0.943

	
0.935

	
0.960

	
0.983

	
0.975

	
0.964

	
0.944

	
0.971

	
0.940

	
0.977

	
0.926




	
yolov5-s-bal

	
0.970

	
0.950

	
0.970

	
0.986

	
0.983

	
0.970

	
0.968

	
0.979

	
0.957

	
0.970

	
0.944




	
diff

	
0.027

	
0.015

	
0.010

	
0.003

	
0.008

	
0.006

	
0.024

	
0.008

	
0.017

	
−0.007

	
0.018




	
yolov5-s-basic

	
ZY_L_TEST

	
0.954

	
0.913

	
0.96

	
0.985

	
0.966

	
0.950

	
0.968

	
0.935

	
0.952

	
0.953

	
0.971




	
yolov5-s-bal

	
0.966

	
0.943

	
0.965

	
0.992

	
0.983

	
0.979

	
0.977

	
0.951

	
0.985

	
0.967

	
0.886




	
diff

	
0.012

	
0.030

	
0.005

	
0.007

	
0.017

	
0.029

	
0.009

	
0.016

	
0.033

	
0.014

	
−0.085




	
yolov5-s-basic

	
QX_H_TEST

	
0.948

	
0.950

	
0.958

	
0.985

	
0.985

	
0.955

	
0.935

	
0.977

	
0.962

	
0.967

	
0.890




	
yolov5-s-bal

	
0.943

	
0.902

	
0.973

	
0.992

	
0.986

	
0.982

	
0.954

	
0.981

	
0.964

	
0.967

	
0.961




	
diff

	
−0.005

	
−0.048

	
0.015

	
0.007

	
0.001

	
0.027

	
0.019

	
0.004

	
0.002

	
0.000

	
0.071




	
yolov5-s-basic

	
PSR_H_TEST

	
0.923

	
0.936

	
0.960

	
0.989

	
0.985

	
0.983

	
0.964

	
0.947

	
0.905

	
0.963

	
0.942




	
yolov5-s-bal

	
0.957

	
0.886

	
0.934

	
0.979

	
0.951

	
0.982

	
0.964

	
0.936

	
0.859

	
0.957

	
0.846




	
diff

	
0.034

	
−0.050

	
−0.026

	
−0.010

	
−0.034

	
−0.001

	
0.000

	
−0.011

	
−0.046

	
−0.006

	
−0.096








The diff represents the difference between detection metrics of yolov5-s-basic assay and detection metrics of yolov5-s-bal, and it is bolded in black; the boxed area shows a larger decline in APBLF.
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Table 7. Comparison of the statistical results of yolov4-s-basic and yolov4-s-bal for all metrics in the test dataset for each subcategory.
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Model Comparison

	
Data

	
P

	
R

	
mAP0.5

	
APN

	
APB

	
APL

	
APF

	
APBL

	
APBF

	
APLF

	
APBLF






	
yolov4-s-basic

	
ZY_H_

TEST

	
0.894

	
0.845

	
0.892

	
0.904

	
0.898

	
0.897

	
0.892

	
0.886

	
0.888

	
0.884

	
0.885




	
yolov4-s-bal

	
0.974

	
0.972

	
0.919

	
0.909

	
0.909

	
0.908

	
0.909

	
0.908

	
0.908

	
0.906

	
0.994




	
diff

	
0.08

	
0.127

	
0.027

	
0.005

	
0.011

	
0.011

	
0.017

	
0.022

	
0.02

	
0.022

	
0.109




	
yolov4-s-basic

	
ZY_L_

TEST

	
0.947

	
0.914

	
0.960

	
0.984

	
0.979

	
0.97

	
0.96

	
0.957

	
0.948

	
0.955

	
0.934




	
yolov4-s-bal

	
0.946

	
0.936

	
0.960

	
0.985

	
0.982

	
0.975

	
0.963

	
0.965

	
0.959

	
0.956

	
0.898




	
diff

	
−0.001

	
0.022

	
0.000

	
0.001

	
0.003

	
0.005

	
0.003

	
0.008

	
0.011

	
0.001

	
−0.036




	
yolov4-s-basic

	
QX_H_

TEST

	
0.900

	
0.751

	
0.727

	
0.835

	
0.797

	
0.768

	
0.699

	
0.742

	
0.693

	
0.639

	
0.646




	
yolov4-s-bal

	
0.961

	
0.913

	
0.907

	
0.941

	
0.93

	
0.916

	
0.910

	
0.904

	
0.92

	
0.879

	
0.859




	
diff

	
0.061

	
0.162

	
0.180

	
0.106

	
0.133

	
0.148

	
0.211

	
0.162

	
0.227

	
0.240

	
0.213




	
yolov4-s-basic

	
PSR_H_TEST

	
0.856

	
0.791

	
0.883

	
0.959

	
0.936

	
0.941

	
0.856

	
0.889

	
0.842

	
0.877

	
0.768




	
yolov4-s-bal

	
0.910

	
0.842

	
0.918

	
0.97

	
0.950

	
0.956

	
0.897

	
0.912

	
0.895

	
0.917

	
0.835




	
diff

	
0.054

	
0.051

	
0.035

	
0.011

	
0.014

	
0.015

	
0.041

	
0.023

	
0.053

	
0.040

	
0.067








The diff represents the difference between detection metrics of yolov4-s-basic assay and detection metrics of yolov4-s-bal, and it is bolded in black; the boxed area shows a larger decline in APBLF.
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