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Abstract: Portable, custom-made electronic dynamometry for the foot and ankle is a promising as-
sessment method that enables foot and ankle muscle function to be established in healthy participants
and those affected by chronic conditions. Diabetic peripheral neuropathy (DPN) can alter foot and
ankle muscle function. This study assessed ankle toque in participants with diabetic peripheral
neuropathy and healthy participants, with the aim of developing an algorithm for optimizing the
precision of data processing and interpretation of the results and to define a reference frame for ankle
torque measurement in both healthy participants and those affected by DPN. This paper discloses
the software chain and the signal processing methods used for voltage—torque conversion, filter-
ing, offset detection and the muscle effort type identification, which further allowed for a primary
statistical report. The full description of the signal processing methods will make our research
reproducible. The applied algorithm for signal processing is proposed as a reference frame for ankle
torque assessment when using a custom-made electronic dynamometer. While evaluating multiple
measurements, our algorithm permits for a more detailed parametrization of the ankle torque results
in healthy participants and those affected by DPN.

Keywords: ankle torque; dynamometer; diabetic peripheral neuropathy; biomedical signal process-
ing; type II Chebyshev filter; feature extraction; level windowing

1. Introduction

Electromyography (EMG) and electronic dynamometry are two commonly used meth-
ods that assess foot and ankle muscle function in humans. Electronic dynamometry for
the assessment of ankle torque is a promising diagnostic method. Enabling measurements
of lower limb muscle strength, electronic dynamometry can be used alongside or as an
alternative to EMG to provide insight to foot and ankle function.

Isokinetic muscle testing, despite being regarded as the golden standard assessment
for muscle function, involves high costs [1] and special clinicians training.
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Custom-made electronic dynamometry due to its portability, manoeuvrability and
low cost has gained great interest and shown high reliability and utility as a research and
clinical tool [2].

From both EMG and electronic dynamometry, muscle contraction-derived signals are
captured, and the arising data require processing and interpretation.

In comparison with EMG [3] and isokinetic dynamometry [4], for custom-made elec-
tronic dynamometry, there is poor information available on the procedures used for pro-
cessing the signals resulted from muscle efforts.

Human gait requires foot- and ankle-appropriate muscle performance, which can
be altered by various acute and chronic medical conditions such as diabetic peripheral
neuropathy (DPN).

Diabetic peripheral neuropathy affects people’s mobility; therefore, analysing the foot
and ankle muscles parameters through any means enables a better understanding of how
the foot and ankle function.

Muscle strength is altered by DPN, and studies have analysed muscle function using
clinical tests [5], hand-held dynamometry [6] and isometric/isokinetic dynamometry [7],
with isometric/isokinetic testing being the preferred method for the assessment of torque
and maximal muscle strength.

Ankle plantar flexors and dorsiflexors are the main groups participating during the
stance phase [8]; therefore, measuring these particular muscle strength parameters using
precise and reliable methods is relevant for understanding gait performance in people
affected by DPN.

Different papers described custom-made devices for the assessment of ankle torque in
participants not affected by DPN.

In one paper first describing a plate on pivots, a custom-made device was used to
assess how the ankle joint position influenced dorsiflexor strength [9].

A similar custom-built device with a force cell on a foot plate was used to measure
muscle forces acting around the ankle joint [10].

Moraux used a custom-made dynamometer to measure ankle torque [11], and the
same principles were later used to determine torque around the metatarsal phalangeal
joints (MPJ) [12]. Incomplete data from the previous published papers regarding the used
custom-made devices’ calibration procedure, voltage measurement solution, the software
chain and the signal processing methods applied opened the perspectives for new research.

By improving the already existing methods, enhanced muscle testing procedures were
studied, demonstrating that ankle torque measured by portable, custom-made electronic
dynamometry is a reliable [2] and reproducible method [13] in both healthy individuals
and those affected by acute conditions.

Introducing custom-made electronic dynamometry in the assessment of ankle torque
in chronic conditions, such as DPN, could open the path for innovative methods for strength
measurement.

Through dynamometric measurements of consecutive and repetitive maximal vol-
untary isometric contractions (MVIC), symmetrically and bilaterally affecting conditions,
such as diabetic peripheral neuropathy, could benefit from a precise measurement of some
of the foot and ankle muscles parameters.

Signals derived from human muscle efforts assessed through MVIC in both healthy
and affected by DPN participants require that all acquired data are processed for further
medical interpretation and analysis.

Processing the data involves signal conditioning (amplification, filtering, noise sup-
pression, processing of resulted measurement errors), yielding time or frequency graphs,
further processed into significant biological parameters, usually by statistical means. Sig-
nals derived from muscle contractions on a portable dynamometer were captured, ampli-
fied, filtered and analysed as time graphs [2], and the same path was applied for medical
interpretation of the resulted data [13].
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The apparatus used in the present study is a portable, custom-made electronic dy-
namometer [14], and it represents a replica of the device used by Reeves et al. [10].

This paper details the methodology behind the scientific research.
The proposed processing algorithm that enables signal filtering and automatic offset

detection is able to remove aberrant values from data.
In this article, to the best of our knowledge, we present for the first time all the steps

needed for the collected data processing to obtain relevant measurements results when
ankle torque was assessed with a custom-made electronic dynamometer. The aim of the
study was to describe the steps for the signal-processing chain and data processing used
to assess ankle torque with a custom-made electronic dynamometer in participants with
diabetic peripheral neuropathy. The set-up for the voltage signal acquisition, the digital
signal processing including scaling, filtering, feature extraction and data processing is
described.

The second objective was to disclose all the encountered situations during measure-
ments, possible errors and the validation considerations of measurements. In order to
achieve medical interpretation of data, the obtained results were further used for primary
statistical processing.

This algorithm was intended to be a reference frame in portable, custom-made elec-
tronic ankle torque dynamometric assessment for both non-affected and affected-by-DPN
participants.

Analysing foot and ankle muscle strength is essential in the presence of DPN as part
of the quantitative assessment. As foot and ankle muscle strength are difficult to precisely
measure by manual tests, ankle torque dynamometry could offer reliable and accurate
quantitative data for the clinicians to better diagnose strength deficit and further prescribe
personalized treatments.

2. Materials and Methods

Ankle torque measurements captured using a portable, custom-made electronic dy-
namometer in participants affected by DPN and healthy participants were selected for
analysis. A total no of 776 measurements from different clinical studies were included
(from one study [2], 48 measurements were selected, from which 4 measurements were
considered errors; from a second study [13], 96 measurements were selected, from which
3 were considered errors; from a third study [15], 512 measurements were selected; from
a fourth study, 120 measurements were selected, from which 1 was considered an error).
From the total number of the selected measurements, 48 belonged to participants affected
by DPN. Due to the large amount and complexity of the generated data, an automated
signal processing approach was applied and tested. The acquisitions resulted data were
processed and analysed for later clinical interpretation. All the data belonging to consenting
participants were covered by informed and signed consent before the enrolment. All the
studies were conducted in accordance with the Declaration of Helsinki and approved by the
Ethics Committee of the University of Medicine and Pharmacy “Victor Babes” Timisoara,
released and registered under Nr. 50/21.09-14.10.2020.

2.1. System Hardware Components

The hardware is briefly described here for reference. A detailed description of the
hardware system and its components are presented elsewhere [2,13,15].

The measurement system hardware components were: a portable, custom-made
electronic dynamometer designed for the measurement of ankle torque [2], manufactured
by Research Solutions (Alsager, UK) [14], with included load cell [16], load cell amplifier [14]
and oscilloscope [17], connected through wires cable to a personal computer (PC). An image
of the measurement system set-up/layout is represented in Figure 1a, while a complete
diagram of the measurement system hardware components is represented in Figure 1b.

The measurement device (portable, custom-made electronic dynamometer) consisted
of a suspended aluminium pedal and a weight-measuring load cell-CZL-601 [16] with
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an incorporated strain gauge rated at 100 kg connected as a classical Wheatstone (resis-
tive) bridge.
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The manufacturer recommendations on the calibration procedure for the device used 
in the current paper were applied prior the measurements. The complete apparatus cali-
bration procedure is described in detail elsewhere [2].

The measurement device pedal inclination being changeable by selecting the degree 
angle using an electronic inclinometer permitted ankle torque to be measurable at differ-
ent ankle joint angles. Measurements at 0°, +5° and −5° inclination were selected for this 
study. The measurement device system provided a voltage directly proportional to the 
torque further converted into force by software means. 

The measurement device design allowed for standardization of ankle torque meas-
urements, the standardization being achieved by placing the participants in a resting 
seated position having their tested lower limb fixed in place using the apparatus’s rigid 
fixation straps.  

Participants generated ankle plantar flexion or dorsiflexion contractions, and the ob-
tained signal was readable by the load cell transmitted through a four-wire cable to the 
load cell amplifier that further converted the Wheatstone bridge imbalance into voltage. 
Voltage was later evaluated with the oscilloscope connected to the PC.  

Figure 1. Representation of the measurement system set-up; (a) measurement system layout compris-
ing of custom-made electronic dynamometer with incorporated load cell and hardware components:
oscilloscope, load cell amplifier, electronic inclinometer, connective wires and personal computer
(PC). The installation of the whole measurement system including participant chair demonstrates
the reduced required space (approx. 2 m2); (b) a complete diagram of the measurement system
components representing the hardware elements used as graphics: portable, custom-made elec-
tronic dynamometer for ankle torque assessment with incorporated load cell, load cell amplifier,
oscilloscope, connecting wires, personal computer.

The manufacturer recommendations on the calibration procedure for the device used
in the current paper were applied prior the measurements. The complete apparatus
calibration procedure is described in detail elsewhere [2].

The measurement device pedal inclination being changeable by selecting the degree
angle using an electronic inclinometer permitted ankle torque to be measurable at different
ankle joint angles. Measurements at 0◦, +5◦ and −5◦ inclination were selected for this study.
The measurement device system provided a voltage directly proportional to the torque
further converted into force by software means.

The measurement device design allowed for standardization of ankle torque mea-
surements, the standardization being achieved by placing the participants in a resting
seated position having their tested lower limb fixed in place using the apparatus’s rigid
fixation straps.

Participants generated ankle plantar flexion or dorsiflexion contractions, and the
obtained signal was readable by the load cell transmitted through a four-wire cable to the
load cell amplifier that further converted the Wheatstone bridge imbalance into voltage.
Voltage was later evaluated with the oscilloscope connected to the PC.

The oscilloscope (PicoScope2204A) came with its manufacturer software PicoScope®6,
freely available on the same producer’s website [18].

The oscilloscope software memorizes the whole movement and produces graphs of
the recorded torque.
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2.2. System Software Components
2.2.1. Data Acquisition Software

For all selected measurements, the PicoScope®6 software [18] was used according
to the manufacturer specifications. PicoScope®6 software allowed for the selection of
particular parameters depending on the requested type of analysis.

A complete guide for the selection of configuration parameters for all the selected data
is detailed in Figure 2 and was previously used in the same manner [2,13].
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The format of the measurement data resulted upon acquisition is described in
Section 2.3.

2.2.2. Data Processing Software

In order to process the selected data, various GNU Octave and MATLAB scripts
were used. Since the work was completed on diverse computers, not all equipped with a
MATLAB license, scripting was written to maintain compatibility between the two suites
as much as possible.

The processing chain was performed mainly in the classical computer algebra system
MATLAB [19], but the presented code is compatible with Octave suite [20], which can
be regarded as a free version of MATLAB. The summary of processed data was further
exported in Microsoft (MS) Excel format [21] for further statistics use. Final statistics data,
as previously reported [2,13], were mainly processed from these summary files.

A notable difference of execution speed was observed between the two suites (MAT-
LAB and GNU Octave) regarding the for loop, which could be one order of magnitude
faster on MATLAB. For loop was essential in multiple folder processing, which could lead
to long processing times. The loop time for a measurement could be of tenths of seconds,
so a large measurement sample processing time could reach 30 min on available computers.
Repeated runs performed during the development of the scripts led to a significant time
consumption.

In order to assess the results in a simpler manner, the software scripts were developed
in a Jupyter notebook [22] installed within an Anaconda environment [23].

The configuration of MATLAB and GNU Octave in order to work within Jupyter
environment needed some attention [24].

The results were presented as graphs made by MATLAB/GNU Octave scripts but also
summarized as relevant numbers in an Excel sheet.
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2.3. Data Processing

Primary data results after the ankle torque acquisition process were not suitable for
medical interpretation in the absence of a specific data processing procedure. For this
reason, a processing algorithm followed. The steps for data processing targeted: formatting
the acquired data, collection of data and file indexing, analysing the pedal signal, low pass
filtering, offset detection and feature data export.

2.3.1. Acquired Data Format

The recorded measurements belonging to a certain collection of measurements were
grouped in a folder—with all recordings saved as files with an alpha-numerical code so that
participants’ data remained anonymous for the data processor and statistician, respecting
thereafter the ethical and data protection requirements.

The recordings were stored in multiple text files, every text file being a second of
memory buffer. For convenience, we worked with 32 buffers (default software choice), so
all our measurements so far had a consistent length of 32 s. The number of buffers can
be configured to a different number, but most of the presented processing here are not
dependent on the buffer choice and should work with other lengths.

Besides of its own format, the software can save all the buffers in separate files (namely
32 files) in a folder of choice. This kind of export is available as common formats such
as .txt, .csv or .mat (MATLAB matrix data format). We chose the .txt format, since it is
the simplest one. In the future it is intended to test other voltage acquisition gear; this
will impact mostly on this particular section of the processing chain, the other steps of
processing being suitable for other voltage acquisition gear/equipment.

The text files were stored in a folder for each performed measurement. Each text file
was ordered by two rows, first being the time moment, and the second being the measured
voltage. The time starts for every buffer from zero, so for the time axis, time needs to
be appended properly. The file name had the same folder name, but appended with a
two-digit number, which points to the buffer succession, this being the feature used in the
MATLAB/GNU Octave script in order to properly arrange the data. The first three rows of
each file had to be discarded, since they contained the file header.

Reading a measurement folder means taking the data from all files in proper order,
concatenating the data and calculating the time axis, yielding into a graph of 32 s (for the
32 buffers recording), which shows the whole time-function of the dynamometer pedal
press.

2.3.2. Data Collection and the Index File

Measurement data were collected from different studies that included participants
both affected and not affected by DPN (healthy participants).

All data were obtained from measurement sessions performed in different occasions,
in different moments, days or even weeks intervals acquired in Timisoara in the same
Physiotherapy Unit between October 2020 and June 2022.

Data from one measurement session must gather all measurement data from all
participants that were included in that particular session.

Further steps required that data from all sessions were concatenated in one folder.
For collected data belonging to one participant, a unique two-digit code number was

released. Some biometric features needed for statistical purposes were kept and attached
to the index file.

The directory name containing the collected data were gathered in an Excel file includ-
ing measurements in different modes or conditions (plantar/dorsiflexion, left/right foot,
ankle angle degree).

2.3.3. The Pedal Signal Analysis

In case of three MVICs (e.g., during plantar flexion), a typical pedal multiple flexion
record looks like a rectangular signal with 3 periods in the ideal case as seen in Figure 3a,
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having a period close to 10 s. One muscle effort for acclimatisation of participant with
the requested type of contraction is represented in Figure 3b, and this is a typical singular
contraction/muscle effort graphical representation. A period is defined by the interval
between two successive MVICs. The amplitude of the signal stays within 1 ÷ 2 V peak
to peak (Vpp) with an offset of few hundred millivolts (mV). The offset is caused by the
remanent pedal torque and the foot weight in a relaxed state including the torque derived
from the fixation strap.
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Figure 3. Example of signal acquisition during: (a) three consecutive MVICs during plantar flexion
with obtained offset (red intermittent line) during acquisition/familiarization with measurement
procedure; maximal value of voltage (peak voltage); (b) one muscle effort for acclimatisation of
participant with the requested type of contraction.

There were two main problems to solve: the offset measurement and the contraction
measurement in respect with the acquired offset. The measurement should yield at least
one value, namely the MVIC value.

2.3.4. The Low Pass Filtering

As one can see, the signal can be noisy (Figure 4a). Since the signal power density is
relevant at much lower frequencies (Figure 4b), it can be filtered quite easily. We tested
multiple low pass filters in order to find a best fit. Since we expected the shortest pedal
action to be about 1 s, in order to enclose the 11th harmonic, the low pass bandwidth should
have been at least 12 Hz. On the other side, there may be a hum component, depending on
the electric network interference at the place of the measurement.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 30 
 

 

  
(a) (b) 

Figure 4. Typical pedal signal due to multiple consecutive flexions: (a) time graph with hum noise; 
(b) periodogram of power spectrum density (PSD). 

We used a low pass filter in order to eliminate the hum noise. The signal can look 
different depending on the PC power supply. In the case of using a laptop, two different 
situations may be encountered: PC working on battery supply as seen in Figure 5a, and 
PC working with electric network supply as seen in Figure 5b. 

  
(a) (b) 

Figure 5. Example of the power supply network influence on the recorded signal: (a) PC running 
on battery; (b) PC running while connected to power supply network. 

Since a Chebyshev type II filter experienced rejections in the stopband, we made the 
decision to make use of it in order to achieve a lowpass characteristic and a network fre-
quency rejection. 

A Chebyshev filter is a signal filter in which coefficients are calculated from Cheby-
shev polynomials, and it is one of the classical filters largely used in digital signal pro-
cessing. A Chebyshev type I filter has ripple in the passband and a flat stopband, while a 
type II, or an inverse Chebyshev filter, exhibits ripple in the stopband, having a flat pass-
band [25,26] In the stopband, the ripple moves towards zero value of transfer function at 
certain frequencies, yielding to notches into the stopband.  

The Chebyshev filter is cited in various bioelectric signal processing works, mainly 
for electroencephalogram (EEG) and electrocardiogram (ECG) signals, and some of them 
use the idea of the inherent notch included in Chebyshev type II filter stopband [27,28]. 
As it can be observed from previous section in Figure 4b, the pedal press-derived signal 
exhibits similar bandwidth characteristics as EEG and ECG signals, having relevant en-
ergy much under 10 Hz. As it was still in an experimental phase, we maintained the 

Figure 4. Typical pedal signal due to multiple consecutive flexions: (a) time graph with hum noise;
(b) periodogram of power spectrum density (PSD).



Sensors 2022, 22, 6310 8 of 29

We used a low pass filter in order to eliminate the hum noise. The signal can look
different depending on the PC power supply. In the case of using a laptop, two different
situations may be encountered: PC working on battery supply as seen in Figure 5a, and PC
working with electric network supply as seen in Figure 5b.
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Figure 5. Example of the power supply network influence on the recorded signal: (a) PC running on
battery; (b) PC running while connected to power supply network.

Since a Chebyshev type II filter experienced rejections in the stopband, we made
the decision to make use of it in order to achieve a lowpass characteristic and a network
frequency rejection.

A Chebyshev filter is a signal filter in which coefficients are calculated from Chebyshev
polynomials, and it is one of the classical filters largely used in digital signal processing. A
Chebyshev type I filter has ripple in the passband and a flat stopband, while a type II, or an
inverse Chebyshev filter, exhibits ripple in the stopband, having a flat passband [25,26]. In the
stopband, the ripple moves towards zero value of transfer function at certain frequencies,
yielding to notches into the stopband.

The Chebyshev filter is cited in various bioelectric signal processing works, mainly for
electroencephalogram (EEG) and electrocardiogram (ECG) signals, and some of them use
the idea of the inherent notch included in Chebyshev type II filter stopband [27,28]. As it
can be observed from previous section in Figure 4b, the pedal press-derived signal exhibits
similar bandwidth characteristics as EEG and ECG signals, having relevant energy much
under 10 Hz. As it was still in an experimental phase, we maintained the processed signal
bandwidth relatively high, until further experiments could be performed with different
hardware.

Since electric network frequency (ENF) exhibits a small variation, we chose a higher
order (5th) filter in order to tune the second notch into the ENF value, due to the fact that
the second notch is larger and can cover a higher variation of rejected frequency. As one
can see, although the two Chebyshev filters (type I and type II) were designed with the
same parameters, namely 5th order with a cut frequency of 29.3935 Hz, the actual cutting
frequency is smaller for the type II filter. The first notch is around 27 Hz, which has no
practical meaning for the filtering characteristics, since is not used per se. The exact value of
the design cutting frequency is chosen in order to match the second notch at the ENF peak;
with these values the filter exhibited a minimal attenuation of 78 dB in the 49.5– 50.5 Hz
range. The designated cutting frequency appears as a circle in Figure 6.

The other design parameters were the 1 dB ripple in the passband of type I (just for
reference, irrelevant in the matter) and the −50 dB stopband for the type II, as it can be
easily seen in Figure 6. The actual cut-off frequency of the type II Chebyshev filter is 15 Hz,
which yields the signal bandwidth. This value fills the 12 Hz condition, as showed in the
previous section.
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2.3.5. The Offset Detection

One of the most important steps of the measurements processing is the detection of
the pedal offset. This can be completed with the prior knowledge of the contraction type
or without. The pedal exhibited an offset voltage itself, due to its own weight. The foot
weight due to the participant leg position adds to this value a fixed offset value that cannot
be used in order to compensate for the non-contraction part. As a consequence, the offset
must be evaluated for every measurement. The evaluation with the oscilloscope consumes
time and needs a specialized operator; moreover, the offset data are retained anyway in the
recorded waveform, so an automatic detection is very useful.

The offset part is relatively stable, and in case of a correct measurement, it occupies
about 50% of the time. The contraction should be the other 50% of the time, but the value is
unlikely as stable as the offset value. The offset value can have some drift, which we can
hypothesize is due to the movements of the participant, but our experiments showed it as
relatively low. A highly variable offset should be subject of measurement rejection. Due to
these considerations, we tested the offset detection as the maximum of the measurement
histogram, as seen in Figure 7.
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2.3.6. Feature Data Export

Once all data were processed, there was a need for the feature extraction in order to use
the acquired measurements. Since we worked on cohorts, and the features were interesting
at this time for statistics, it was useful to pass to the statistician the raw conclusions of the
measurements. One of the simplest forms it was in was a classical spreadsheet software,
which allowed everyone involved in the research access.

Since both MATLAB and GNU Octave can easily export in MS Excel format, this was
our obvious choice. We describe this in more detail in previous papers [2,13]

2.4. Primary Mathematical Calculus

Feature extraction implies primary statistical calculations from measured samples
such as average dispersion or peak. The first feature extracted was the offset estimate,
which was extensively treated. Most important, once the offset is known, it is the maximum
or minimum value of the measured voltage depending on the contraction type. The
difference between this value and the estimated offset yields the MVIC value. From primary
extracted features there can be derived various statistical parameters. A description of the
primary mathematical calculus for voltage to torque conversion was, in detail, presented
elsewhere [2]. Other possible parameters that can be derived from the measurements in
order to be further used for medical interpretation are: the variation of force during MVIC,
the variation of force between successive MVIC during one acquisition, force staidness.

3. Results
3.1. The Set-Up for the Voltage Signal Acquisition

In order to obtain the data acquisition, we used the hardware set-up. The set-up for
the voltage signal acquisition was already described in Section 2.1, Figure 2.

3.2. The Digital Signal Processing
3.2.1. Data Collection and the Index File

The resulted directory name containing the collected data gathered in an Excel file
including measurements in different modes or conditions (plantar/dorsiflexion, left/right
foot, ankle angle degree) are presented in Table 1.

Table 1. Keywords in filenames for detection of the measurement characteristics from index file.

Keyword Meaning

Sub XX Identification number of the subject (participants), as digits in the XX place
LFT Measurement is a flexion of the left foot
RX Measurement is a flexion of the right foot

PFlex Measurement is a plantar flexion
Dorsi Measurement is a dorsiflexion
−5, Initial pedal angle is −5◦ (comma is needed for detection)
+5, Initial pedal angle is +5◦ (comma is needed for detection)
0, Initial pedal angle is 0◦ (comma is needed for detection)

BASELINE First measurement from multiple series

2h Measurement at 2 h from the baseline in multiple
series (similar for other time intervals—4 h, 6 h)

Flags were attached for measurement identification. For each measurement, a plantar
flexion or dorsiflexion flag and a left or right foot flag were mandatorily added. Depending
on the data provenience and the study requirements, there were various flags attached to
a measurement (e.g., pre- or post-acute condition status, or the rest time before previous
contraction). All these flags were mirrored in the folder title (e.g., ‘20210909-0001 Sub
01,LFT,+5,PFlex’) in order to determine what the measurement folder represent. After
multiple measurements the coding became complicated and non-rigorous, a small database
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was initiated in a MS Excel file. This MS Excel database held the main information on the
measurement type, linking each participant to their measurements.

Since the participant data are further needed for statistical purpose, another MS
Excel file containing participants’ data was elaborated, having their unique identifier
alpha-numerical codes listed in relation to participant biometric data. The same identifier
was used for each measurement involving the corresponding participant. The statistician
analysed the measurement results and corelated them with the biometric data using specific
statistical tools.

The algorithm for feature extraction is described in Figure 8.
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For every measurement folder, there was a validation process. If the measurement
passed the validation process, a feature extraction followed. Most of this paper content
is concerned with the algorithms behind measurement validation and features extraction.
In a measurement cohort there are a number of N measurements performed. Not every
measurement will pass the validation test. Examples of measurements that failed the
validation test due to errors encountered during the measurements have been previously
showed [2,13].

After multiple measurements with encountered errors were identified, we concluded
that an index file comprising the relevant measurement description might be helpful;
nevertheless, most of the scripts we ran used the detection of the relevant parameters from
the measurement file name. In order to be computer-detectable, certain keywords were
used for the detection of the measurement type as detailed in Table 1.

The keywords were chosen by the main researcher to ensure a later identification of a
particular measurement.

As an example, the folder name ‘20210909-0001 Sub 01,LFT,+5,PFlex’ means this mea-
surement belongs to the subject (participant) 01, and it is a plantar flexion made with the
left foot with the initial pedal angle of +5◦. The first digits are generated by the oscilloscope
software and represent the date of the measurement and the current measurement order
number in the respective date.

A database index Excel file was conceived for measurements, linking the unique
participant identifier with its biometric data (sex, age, weight, height, foot length) and
other relevant information (e.g., COVID or diabetes status or presence of diabetes-related
neuropathy).
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This database concerns the final statistical evaluation and not the measurement pro-
cessing chain.

3.2.2. The Low Pass Filtering

We took the decision to use a low pass filter in order to eliminate the undesired
interferences. The filter main function was to eliminate hum noise and other eventual
interference signals.

The proposed solution (Chebyshev low pass filter type II) was tested for stability
between sampling frequencies of 4000 Hz and 50,000 Hz. If the sampling frequency was
lower than 4000 Hz, the filter needed to be redesigned, since the rejection frequency shifted
downwards and above 50,000 Hz. Therefore, another solution was needed since the filter
exhibited numerical instability. Our exact sampling frequency was 6103.5469 Hz, which
was the sampling frequency of our oscilloscope at the used configuration. The design
command worked equally in MATLAB and GNU Octave, and it fit any sampling frequency
in the stability interval. The filter coefficients were determined with the command:

[b2,a2] = cheby2(5,50,29.3935/(fs/2)),

where fs is the actual sampling frequency of the signal in Hz. In case of GNU Octave, the
loading of the signal package (as pkg load signal) [29] was necessary in order to design and
use digital signal filters; in case of MATLAB, the Signal Processing Toolbox was needed [30].

After applying the filtering, the measurement result can be seen in Figure 9.
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3.2.3. The Offset Detection

Our best hypothesis was that a maximum of a probability density will indicate the
most probable offset value. The trials revealed that during some of the measurements, the
foot was unstable on the pedal or the instructions were not followed accordingly, so the
maximum of the probability density was not in the pedal offset. A windowed approach
considerably reduced the false offset detection, so our final approach was to window the
probability density function (as histogram) and to detect the histogram maximum as the
most probable offset as seen in Figure 10.
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In Figure 10, one can see a distribution of offsets for a cohort of 93 measurements.
As revealed later, not all offsets are in the histogram maximum. Figure 7 shows an ideal
case, where the histogram maximum is perfectly clear. A slightly unstable foot or a little
bit of balancing led to an offset displacement, as it can be seen in Figure 11, where the
maximum of the histogram at the pedal press was more stable than the maximum of the
offset position.
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While testing our method, we observed that some of the histograms (Figure 11) were
weighted towards the contraction maximum, though remaining valid. Due to this, we took
improved detection by picking the maximum from a windowed histogram. Establishing
limits for the offset variation led to an improved detection, recovering thereafter some of
the otherwise missed measurements.

In Figure 12, one can see a representation of all histograms (or estimated probability
density functions pdf) of measured data in the sample (cohort). In Figure 12a, one can
easily observe the positioning of the maximum of the histogram, our presumptive offset
(around 0.5 V). In Figure 12b, the logarithm of the histograms shows a few local maximums
on most of the measurements.
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Some of the estimated maximum pdfs were not in the right position for the offset to be
estimated. These situations are shown in Figure 13. A countermeasure used for fake offset
detection is offset windowing. By making multiple observations about pedal offset range,
we decided to limit the offset detection window to a voltage window around expected
mean pedal offset. This can be seemed in Figure 13, where in upper side, the red line
represents the detected histogram position over the entire range, represented here as the
histogram interval on the Oy axis, while on the Ox is the index of the measurement. On the
lower side, there is histogram windowing, and thus, some of the values are eliminated.
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One can see that there are fewer eccentric values out from the mean line, and some of
the histogram maximum positions were changed. By correctly choosing the windowing
limits, the error rates improved with one magnitude order. Practically, in one of our
analysed cohorts, the 93 measurements, the fake offset detection was eliminated for all the
valid measurements.

3.2.4. Data Processing

Having the offset calculated, the most valuable data from a valid measurement were
the MVICs. These were extracted as the difference between maximum voltage value and
the offset value for the plantar flexion and the difference between offset value and the
minimum voltage value from the dorsiflexion. The detected peaks are represented with
round circles in Figure 14.
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Figure 14. Offset and Peak value detection during acquisitions: (a) MVIC during plantar flexion;
(b) MVIC during dorsiflexion.

The detected offset was exported into an Excel file, along with participant-relevant
parameters (sex, age, health status, etc.), in order to perform statistical processing.

3.3. Errors

The second objective of our work was to disclose all the encountered situations during
measurements, possible resulted errors and steps required for the measurement validation
that preceded the statistical and medical interpretation.

Errors resulted during measurements. There were two main types of errors: non-
human-related errors (instrumental and method errors) and human errors.

Non-human-related errors were automatically detected by the proposed algorithm.
Non-human-related errors affected the method accuracy. The proposed method can be
affected by some particular artifacts induced by the presence of unwanted effects related to
the participant interaction with the equipment and by the intrinsic errors introduced by the
instrumentation itself and by the measurement procedure.

The measurement method exhibits a certain degree of error, as does any measure-
ment method.

Instrumental errors were due to the measurement errors and the limit induced by
the used oscilloscope precision, the oscilloscope limited dynamic range, hardware chain,
software chain and the pedal sensor errors.

The pedal errors were discarded since the used apparatus was an experimental pro-
totype. The dynamometer was calibrated with weights, and thereafter, the domain was
rescaled according to the requirements of the proposed experiment.

The most problematic error source related to the hardware chain was the oscilloscope
resolution. Since it had only 8 bits for a symmetric voltage full scale of ±2 V, the voltage
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quanta would be 15.625 mV, which would lead to an approx. 0.5 Nm torque error, an
overwhelming value among the other sources of errors. In the absence of a more in-depth
analysis, which is to follow in further studies, our conservative estimation of an error
margin was 0.7 Nm ±5%.

The main human-related errors were due to the participant or the tester. Participant-
related errors were caused by indiscipline and possible adverse reactions encountered
during measurements (pain, fatigue, emotional reactions, etc.). Tester command errors
were mainly due to improper commands, lack of concentration/attention, inappropriate
timing of commands, etc. Errors automatically detected by the algorithm were mainly due
to improper number of contractions. Inconstant pedal press during contractions and offset
instability might result. Such situations require special attention from the operator. As
some automatically detected possible errors could have been normal situations encountered
in the case of those participants affected by medical conditions, such as diabetic-related
peripheral neuropathy, an operator interpretation was mandatory for the validation of
measurements.

Errors that the algorithm could not detect needed a tester/operator special attention.

3.3.1. Participant-Related Errors

Errors derived from participant indiscipline were encountered during the measure-
ment sessions and did not pass validation procedure. Such indiscipline errors may have
been due to either undesired body movements during the muscle efforts execution, as seen
in Figure 15a,b; insufficient number of requested contractions, as seen in Figure 16; wrong
direction of contractions; insufficient maintenance of contractions, as seen in Figure 17;
delay in contracting the muscle on tester command, as seen in Figure 18a,b; etc. Other
encountered participant-related errors showed offset unsteadiness due to the inability of
the participant to control the relaxation period as seen in Figure 19b; unsteadiness of offset
during breaks between two MVICs, as seen in Figure 19c; and inability to maintain the
same level of force during MVIC, as seen in Figure 19d. An example of another invalid
measurement due to participant inability to complete a maximal muscle effort during
MVIC as per tester command is shown in Figure 20.
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Other participant-derived errors were encountered due to adverse side-effects such as
fatigue, as seen in Figure 21a, or any other emotional reactions such as pain/discomfort, as
seen in Figure 21b, or tremor, as seen in Figure 21c.
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In the case of healthy participants, some signal behaviours were encountered, as seen
in Figure 22a–d. Such examples should be not confounded with errors.
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Figure 22. Example of not rejected time graphs: (a) contraction with the progressive increment
of voltage value starting from first MVIC to the third MVIC; (b) muscle fatigue during the third
MVIC during plantar flexion represented by decrement of voltage value; (c) progressive increment of
voltage value during three consecutive MVICs (dorsiflexion); (d) progressive increment of voltage
value during three consecutive MVICs (plantar flexion).

Situations such as those the time graphs show in Figure 19 and the situations seen in
Figure 23, could be seen as normal in pathological situations and should not be confounded
with participant-related errors.
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Figure 23. Example of invalid measurement due to: (a) participant inability to properly switch from
effort to relaxation period during dorsiflexion; (b) participant inability to act according to the test
protocol on tester command.

Examples of fatigue or tremor might need some attention when the data appertain to
participants affected by medical conditions such as DPN. As such time graphs might look
like errors but could be the result of the natural behaviour in the presence of the condition,
more attention is required.

3.3.2. Tester Command-Related Errors

An example of invalid measurement due to insufficient number of MVICs might result
from either participant indiscipline or from the tester command. Such an example was
already described in Figure 16 and are also represented in Figure 24.
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Figure 24. Example of invalid measurement due to improper tester command; (a) operator forgot
to ask for third MVIC; (b) operator forgot to command relaxation; (c) while dorsiflexion command
would have normally followed, the operator requested a plantar flexion command.

3.3.3. Automatically Detected Errors

Errors due to wrong editing of keywords (see below Figure 25 which represents a
dorsi with a keyword edited as a plantar) might appear. These errors are mainly due to the
operator but also due to the participant. One particular example is that while the operator
requested a plantar flexion, the participant executed a dorsiflexion. Such errors could be
avoided by special attention of the operator while evaluating the correct execution of the
command on the PC screen.
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Automatically detected errors are mainly due to technical issues as seen in Figure 26a,b,
or participant-derived errors that cannot permit automatically detection, as seen in Figure 27.
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Figure 27. Example of invalid measurement due to: (a) impossibility to make automation detection
of offset level; (b) participant inability to coordinate both muscle effort and relaxation period, which
resulted in a time graph that does not permit an automatic detection of the offset level.

The impossibility to make the automation detection of the offset level could be also
due to the participant inability to coordinate muscle efforts and relaxation periods. This
further does not allow an automatically detection of the offset level, as seen in Figure 27.

3.4. Resulted Parameters Derived from Measurements

Measurement-derived parameters resulted and were considered for further medical
interpretation.

Peak voltage/torque were automatically calculated for each acquisition.
Offset detection and were automatically calculated, and offset variations were anal-

ysed. Two situations were encountered: offset steadiness, as seen in Figure 19a, and offset
unsteadiness, as seen in Figure 28.

When offset unsteadiness was encountered, different possible situations were consid-
ered, and it was either due to muscle fatigue, as seen in Figure 28, or due to the inability of
the participant to maintain constant offset level during relaxation period (Figure 19b) or
before/after contractions (Figure 19c).
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Figure 28. Example of automatically calculated offset steadiness types due to the inability to main-
tain constant offset level with progressive decrement of voltage from first to third MVIC due to
muscle fatigue.

In the same manner, the variation of force during one MVIC, the variation of force
between successive MVICs during one acquisition and force steadiness resulted after
the primary mathematical calculus. The clinical significance of our study results is of
great importance when muscle strength is assessed in participants affected by DPN. The
interpretation of the resulted possible encountered errors could help in establishing the
differences between what is normal muscle behaviour and real errors while muscle derived
signals are being captured by electronic dynamometry in the presence of DPN. Precise
discrimination between errors and normal behaviour in the presence of DPN is mandatory
for the diagnostic, risk assessment and treatment strategies.

4. Discussion

As there is no widely accepted method for measuring foot and ankle strength in
healthy and affected-by-DPN participants, we appreciate that a custom-made electronic dy-
namometer offers great potential to become the measurement method of choice because of
being non-invasive and having lower costs, a good reliability and reproducibility. Portable,
custom-made electronic dynamometry can become a valuable tool when the measurement
protocols, software chain and the signal processing methods used are rigorously applied
when assessing ankle torque in both healthy and affected-by-DPN participants.

Describing the algorithm for signal processing used to assess ankle torque with a
custom-made electronic dynamometer in participants affected and non-affected by diabetic
peripheral neuropathy was one of the study aims.

The hardware set-up, the set-up for the voltage signal acquisition and the digital signal
processing including scaling, filtering, feature extraction and data processing (export and
basic mathematical calculus) were the main steps of the used algorithm.

There are few data available on the previous used custom-made devices with regards
to the apparatus construction, calibration and functioning. Previously described custom-
made dynamometers used a foot plate with one or two load cells (strain-gauge mounted
on the apparatus tongue) [9,10,31–39].

In previous papers, we fully detailed the custom-made apparatus used, the construc-
tion, calibration, functioning parameters and measurement protocol [2,13] when ankle
torque was captured, which was conducted using the same custom-made device used in
this study.

Other torque measurements using electrical muscle stimulation previously used simi-
lar custom-made devices [40–42].
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While Marsh [9] recorded only active torque measurements, considering cancelation
of the passive torque resetting the DC level of the recording system, we used automatically
offset detection during each acquisition.

Marsh reported using alternative current (AC)-provoked contractions instead of voli-
tional MVIC [9].

Force was measured during an isometric voluntary contraction using a pre-calibrated
force transducer located under the footplate [10].

For torque conversion, Marsh multiplied each weight by the distance between the
point of weight application and the axis of rotation, while we used automatic calculation of
torque using the apparatus pivotal point position, as previously described [2].

Previous studies that used similar custom-made devices did not report any data or
not enough data on the software chain and the signal processing methods used for ankle
torque data processing [9–12].

Despite the similar signal processing chain, including low pass filtering, no time
recordings were published as time graphs in previous papers [11]. Goldmann used a PC
digitizer card (NI 6024E, 12-bit ADC—manufactured by National Instruments, Austin, TX,
USA), without published time graphs [12].

Marsh briefly mentioned the use of an unspecified type of oscilloscope. The resonant
frequency of the system used by Marsh, while the participant foot was in position, was
80 Hz (120 Hz unloaded) [9].

Marsh used an oscilloscope (Hewlett-Packard model 141B) for displaying the EMG
activity later rectified, averaged by the use of a signal analyser (Hewlett-Packard 5480B)
and computed by a programmable desktop calculator (Hewlett-Packard model 9810A).

We used an oscilloscope [17], connected through wires cable to a personal com-
puter (PC).

The steps for the signal processing used to assess ankle torque with a custom-made
electronic dynamometer were fully described. As per our knowledge, previous studies
did not report the data on the processing chain used when a custom-made electronic
dynamometer was utilized for ankle torque measurement.

Moreover, previous published papers that used custom-made dynamometry presented
single data points rather than time graphs. Marsh showed only singular contraction time
graphs and that no particular signal processing data were reported for dynamometric
measurements in voluntary and/or EMG stimulated contractions [9].

Time graphs are graphic representations in time of voltage or torque during sin-
gle/multiple contractions. Our measurements only considered MVIC [2,13].

Multiple contractions (three MVICs) for the determination of average torque/peak
torque in order to compensate any variations during acquisitions were used. The represen-
tations of data using time graphs were performed for a better interpretation of results (type
of muscle efforts, contraction direction, possible encountered errors). Time graphs gener-
ated from data reveal main parameters of MVIC. Together with the medical information
gathered from the participants files, a further detection of the differences between healthy
and affected-by-DPN participants can be obtained and used for medical interpretation.

Data processing normally is undertaken by a data processor, who might not be the
same person who conducted the clinical measurements [2].

For this reason, in the data collection and the index file, the main parameters for
data processing were established. This step was essential for the recorded files to be
sent for simple voltage–torque conversion, signal processing chain preparation, signal
filtering, offset detection, contraction type detection and MVIC measurements, which
further allowed for a primary statistical report.

Offset detection needs consideration for each individual measurement. A highly vari-
able offset should be generally subject of measurement rejection. In case of measurements
belonging to participants affected by chronic conditions such as diabetic-related neuropa-
thy, the variation of the offset level should be considered as a possible specific situation
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in accordance with the pathology and should be carefully considered for analysis and not
automatically rejected.

The advantages of using a custom-made electronic dynamometer have been already
demonstrated. Beside its reliability [2] and reproducibility [13] when used for the as-
sessment of foot and ankle muscle strength in both healthy participants and participants
affected by acute condition, another advantage of our method is that we fully disclosed
the software behind the ankle torque measurements and the automatization of certain
processes. This particularity permitted that the method already tested on healthy and
affected-by-acute-conditions participants be transferred for the assessment of participants
affected by chronic conditions like DPN.

One of the only disadvantages encountered was the long data processing time. For
this reason, a solution for a more efficient processing time could be developed in the future.

The advantage of signal processing approach resides in the fact that, while evaluating
multiple measurements (in both non-affected participants and those affected by diabetic
peripheral neuropathy), it permitted for a more detailed parametrization of the ankle torque
results, hence showing premises for a better precision and a more relevant data interpreta-
tion of the measurement results than a simple maximal voluntary isometric contraction
assessment. While the software is still in early development, the description of the signal
processing methods makes our research fully reproducible. During measurements, noise
can occur due to electronic components that can alter the whole frequency range. High-
frequency electromagnetic radiation may result from WLAN, TV or any other electronic
components.

Our non-invasive approach uses signal frequencies components for analysis of the
results. In order to eliminate hum noise and other interference signals, we used a Cheby-
shev filter.

Moraux used an analogic low pass filter with a cut-off frequency of 10 Hz [11].
Artifacts might derive from movement. In biological-derived signals, low-frequency

artifacts such as movement artifacts, appear predominantly in the range of 0–20 Hz [43,44].
In our study, movement-derived artefacts were related to participants’ spontaneous

body movements during measurements, as seen in Figure 15a,b. Some of the participant-
derived movements seen as errors on the time graphs were encountered due to possible
adverse side-effects such as fatigue, as seen in Figures 21a and 22b, or any other emotional
reactions such as discomfort/pain, as seen in Figure 21b.

Similarities and differences between measurements belonging to DPN and healthy
participants were seen.

Examples of fatigue might need some attention when the data appertain to participants
affected by medical conditions such as DPN. As such a time graph might look like it contains
errors but could be the result of the natural behaviour in the presence of the condition, more
attention is required when graphs are sent for medical interpretation. Operator intervention
is required for the accurate assessment of any participant movements while testing.

The second aim was to disclose all the encountered situations during measurements,
possible errors and the validation of measurements.

Encountered errors were mainly due to participant and tester. Other errors were
considered technical errors.

Situations such as the time graphs seen in Figure 19 could be seen as normal in
pathological situations and should not be confounded with participant-related errors.

Examples of fatigue or tremor might need some attention when the data appertain
to participants affected by medical conditions such as DPN. As such a time graph might
look like it contains errors but could be the result of the natural behaviour in the presence
of the condition, more attention is required. In case of healthy participants, some signal
behaviours were encountered, as seen in Figure 22a–c. Such examples should be not
confounded with errors.
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After achieving the second aim of the study, the objective was to evaluate the applica-
bility of the same measurement protocol and data processing algorithm when evaluating
resulted data belonging to participants affected by diabetic peripheral neuropathy.

This work accomplished fully describing the signal processing algorithm of ankle
toque measurements in order to obtain primary data for statistical and medical interpreta-
tion of the results.

This study did not resolve some encountered problems derived from resulted errors,
either automatically or operator-detected.

The limitation of our study was the small sample size for the measurements belonging
to participants affected by DPN when compared to the sample size of the measurements
belonging to healthy participants. For more statistical representative results, a bigger
sample is needed.

Future research should consider for the measurement of ankle torque the use of reliable
and reproducible custom-made electronic devices like the apparatus used in our case.

Chronic conditions such as diabetic peripheral neuropathy (DPN) alter foot and ankle
muscle function and could benefit of more accurate ankle torque measurement to better
understand how this particular condition affects muscle parameters and performance.
Future work should address analysing the force parameters such as force steadiness and
variation of force during MVIC in participants affected by DPN when compared to healthy
individuals.

Analysing foot and ankle muscle strength is essential in presence of DPN and is part
of the clinical assessment. As foot and ankle muscle strength can reach high values for
the strength to be manually tested, introducing ankle torque dynamometry could bring
more reliable and accurate results for the clinicians to better diagnose strength deficit.
Analysing muscle strength requires that all muscle performance parameters are checked.
Strength is only one muscle performance parameter frequently assessed through the MVIC
value. Muscle strength is individual-dependent. No universal references for normal muscle
strength have been defined. For this reason, analysing other muscle parameters such as
force variation between repetitive contractions and force steadiness could complete the
quantitative data. Such quantitative data could offer more precise information for the risk
analysis and personalized treatment.

Future research should consider the analysis of MVIC main parameters such as vari-
ation of force during MVIC, variation of force between successive MVICs during one
acquisition and force variation in time and force steadiness during MVIC.

More research is needed for the interpretation of the resulted data for clinical inter-
pretation in presence of DPN. The same resulted data could be used in the future for the
quantitative analysis of the treatment evolution and outcomes.

5. Conclusions

When the foot muscle function is the main measurement goal, dynamometrical cap-
tured muscle efforts-derived signals from both healthy individuals and individuals affected
by conditions need a better understanding. When portable, custom-made electronic dy-
namometry is used with the intent of measuring ankle torque in participants affected by
DPN, signal processing is required, and signal characteristics as seen on the time graphs
should be carefully interpreted from a medical perspective.

Not all distorted oscillograms are errors. Captures appearing as possible errors need
comprehensive analysis when the measurements are related to chronic conditions as DPN.
When DPN is clinically present, distorted signal detected by time graph interpretation may
not represent errors, but the natural aspect of signal in presence of the pathology.

Analysing foot and ankle muscle strength through ankle torque dynamometry is
essential in the presence of DPN, and quantitative resulted data could offer more precise
information for the risk analysis and personalized treatment.

Future research should consider the analysis of the differences obtained on the time
graphs between healthy and affected-by-DPN participants. Such differences between the
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resulted parameters could be explained by the natural course of the pathology and further
be used to screen or detect pathology.

Analysing in detail the differences between spectral components belonging to healthy
and affected-by-DPN participants could open new perspectives in DPN diagnostics. Speci-
mens of discarded measurements could be useful as reference for future studies and trials.

New research should consider the analysis of false errors as possibly being the first
signs of DPN in the early stage of the condition.

Electronic custom-made dynamometry that includes a precise working algorithm
can become a valuable tool not only to accurately measure ankle torque but also in the
rehabilitation pathways and progression and treatment outcomes in participants affected
by DPN.
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