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Abstract: State-of-charge (SOC) is a relative quantity that describes the ratio of the remaining capacity
to the present maximum available capacity. Accurate SOC estimation is essential for a battery-
management system. In addition to informing the user of the expected usage until the next recharge,
it is crucial for improving the utilization efficiency and service life of the battery. This study focuses
on applying deep-learning techniques, and specifically convolutional residual networks, to estimate
the SOC of lithium-ion batteries. By stacking the values of multiple measurable variables taken at
many time instants as the model inputs, the process information for the voltage or current generation,
and their interrelations, can be effectively extracted using the proposed convolutional residual
blocks, and can simultaneously be exploited to regress for accurate SOCs. The performance of the
proposed network model was evaluated using the data obtained from a lithium-ion battery (Panasonic
NCR18650PF) under nine different driving schedules at five ambient temperatures. The experimental
results demonstrated an average mean absolute error of 1.260%, and an average root-mean-square
error of 0.998%. The number of floating-point operations required to complete one SOC estimation
was 2.24 × 106. These results indicate the efficacy and performance of the proposed approach.

Keywords: state-of-charge; lithium-ion battery; deep learning; residual convolutional neural networks

1. Introduction

Lithium-ion (or Li-ion) batteries are rechargeable batteries with a high energy density,
no memory effect, and low self-discharge [1]. They have been widely used in portable
electronics and have become increasingly popular for electric vehicles. State-of-charge
(SOC) is a relative quantity that describes the ratio of the remaining capacity to the present
maximum available capacity of a battery. Accurate SOC estimation is crucial in a battery-
management system to inform the user of the expected usage until the next recharge, and
to improve the utilization efficiency and service life of the battery [2]. Various methods
facilitate the estimation of the SOC for Li-ion batteries, including Coulomb-counting, open-
circuit-voltage (OCV), and model-based estimation methods.

SOC estimation in Coulomb counting is realized by integrating the charging and
discharging currents over time [3,4]. Accurate current sensing and a correct initial SOC
estimate are crucial for successful Coulomb counting. Moreover, the influence factors
(e.g., the operating temperature) on the Coulombic efficiency should be carefully considered.
The OCV, which is a nonlinear function of the SOC, is obtained through an offline OCV
test at a specific ambient temperature and aging stage [4,5]. This approach is known for its
computational efficiency, which is implemented as either a look-up table or an analytical
expression in a battery-management system. However, the relaxation time of the Li-ion
battery can be long, which limits the practicality of OCV. Moreover, for chemistries such as
lithium iron phosphate [6], the SOC–OCV relationship is relatively flat; therefore, a small
error in the OCV measurement could lead to a significant error in the estimated SOC.

Model-based methods require a battery model that relates the SOC and the dynamic
behaviors of the battery; thus, the SOC can be inferred from the measurable variables
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(e.g., voltage, current, and temperature) that characterize its dynamic behaviors under
that SOC [5,7]. The advantage of this method category lies in its reliability, accuracy, and
universal validity. However, developing a model that can adequately describe a battery
requires laborious experiments and extensive battery research by domain experts [8].
Moreover, the model parameters vary over the lifetime of a battery, and accurate estimations
can only be attained in the laboratory or achieved by using sophisticated approaches [7].
Finally, many external uncertainties in the ambient environment may alter the internal
electrochemical behavior of the battery. Formulating a model that considers all these factors
for accurate SOC estimation is not easy because of the complex nonlinearity and time
variability of the system [8]. Examples of model-based methods include the Luenberger
observer [9], adaptive nonlinear observer [10], extended Kalman filter (EKF) [11], and
unscented Kalman filter (UKF) [12]. The Luenberger observer is widely used for linear
deterministic dynamic systems due to its simplicity. However, its SOC estimates may
deviate from actual values due to the nonlinearity of the OCV over a wide SOC range [9].
The adaptive nonlinear observer is designed to compensate for the nonlinearity and it
can attain better SOC-estimation accuracy [10]. The EKF is an alternative to address the
issue based on the principle of the linearization of the nonlinear function that uses partial
derivatives and first-order Taylor series expansion [11]. Considering that high orders
are ignored in the EKF, the UKF may also be adopted in a highly nonlinear system if
needed [12].

Relying on computational intelligence techniques to perform SOC estimation, data-
driven methods are gaining significant attention. The measurable variables of a battery
vary, where the degree of change depends on the SOC level. Different profiles among these
variables are exhibited under different SOCs. The methods aim to establish connections
between these profiles and their corresponding SOCs without the need for prior information
about the internal characteristics and chemical reactions of the battery [3,8]. Examples of this
category include works based on support vector machines [13], artificial neural networks
(ANNs) [14], and functional link neural networks [15]. SOC estimation in these methods is
considered as a regression problem, and efforts are made to evaluate the efficacy of different
methods to obtain a “hyper-plane” that can reasonably fit the “data” (i.e., SOC, voltage,
current, and temperature). Because the relationships between the measurable variables
and SOC cannot be adequately described using a linear model, kernel functions that map
the data to a high-dimensional space are required. However, estimating the regression
coefficients of higher-order models is difficult. Among these methods, neural networks
have been shown to have suitable nonlinear-function-approximation capabilities [14].

Deep learning is a branch of machine learning based on ANNs [16]. It has been applied
in many fields, including SOC estimation. Some of the latest deep-learning models used
for SOC estimation include the deep feedforward neural network (DNN)-based [17] and
gated recurrent unit (GRU)-based network models [18,19]. The advantages of a DNN
model include its capability of directly mapping the measurable variables to the SOC and
self-learning its weights through learning algorithms, such as gradient descent. This is
markedly different from techniques such as equivalent-circuit and electrochemical models,
which require much time to hand-engineer and parameterize [17]. The capacitive effect in
the Li-ion battery causes the previous states of the battery to influence its present state [14],
and including the past-state information while performing SOC estimation can be bene-
ficial. However, the DNN model lacks this ability. A GRU is an advanced version of the
recurrent-neural-network (RNN) architecture. Although an RNN can use the internal state
to learn time dependencies from sequential data [19], it has been revealed to be unable
to capture long-term dependencies due to the so-called vanishing gradient problem [18].
On the contrary, a GRU is not only able to capture long-term sequential dependencies,
but it is also robust to the vanishing gradient problem [19]. These network models have
superior capabilities in timeseries analysis and may be able to use past information for
long periods. However, to attain a high estimation accuracy, a highly complicated model
may be required (e.g., the GRU-based network of [19]). Moreover, these models focus on



Sensors 2022, 22, 6303 3 of 16

exploring the information contained in the measurable variables from a temporal aspect
(e.g., the process information for voltage or current generation), which leads to the igno-
rance of their interactions. A convolutional neural network (CNN) is a deep-learning-
network model initially designed to work with an image. However, its application to
multivariate data timeseries analysis for sensor-reading reconstruction and SOC estimation
have also been reported [20,21].

Unlike the existing approaches, this study focuses on applying deep-learning tech-
niques, and specifically convolutional residual networks, to estimate the SOC of a Li-ion
battery. We aim to propose a network model that exploits the process information and the
interrelations among the measurable variables to achieve accurate SOC estimation. More-
over, the model needs to be compact to be applicable in real-time applications. Because of
the capacitive resistance in a battery, the past currents and voltages of a Li-ion battery affect
its present state [14]. Thus, we include the values of multiple measurable variables taken
at many time instants as the model inputs while performing the SOC estimation. Before
proceeding to the SOC estimation, the data of different measurable variables are stacked as
a two-dimensional data block that may be regarded as an “image”. Although including
measurable variables for SOC estimation, such as the voltage, current, and temperature
taken at many time instants, can provide different insights into the task, the large volumes
of data unquestionably pose challenges in revealing the discriminant information therein.
To prevent an estimation model from being overwhelmed by the massive amount of data,
convolution layers are included. A convolution layer is known for its superior ability to
extract discriminant information from an image. Through the filters therein, the process
information for the voltage or current generation (usually explored by the ANN- and
GRU-based networks) and their interrelations can be extracted and exploited to regress
for accurate SOCs. To emphasize, although a convolutional neural network is frequently
used for image classification, its application to timeseries analysis is straightforward in this
study due to the way we treat the acquired data (i.e., stacking them as a two-dimensional
data block). After the convolution layers, several fully connected layers are utilized to
regress the obtained discriminant information for the SOC. In addition, we include several
shortcut connections in the proposed model, which perform identity mapping to prevent
the accuracy saturation problem when the network goes deeper [22]. These connections
ensure that the higher layer performs at least as well as the lower layer, if not better. They
also provide the benefit of not adding any extra parameters or computational complexity.

The remainder of this paper is organized as follows. Two existing deep-learning-based
approaches for SOC estimation are reviewed in Section 2. The proposed network model is
described in detail in Section 3. The datasets used for the performance evaluation and the
results from the detailed experiments are provided in Sections 4 and 5, respectively. Finally,
the conclusions are presented in Section 6.

2. Existing Deep-Learning-Based Methods for SOC Estimation

In this section, we review two existing SOC-estimation network models. We emphasize
their architectures, data-normalization methods, input data, and loss functions.

2.1. Deep Neural Network (DNN)

The DNN of Chemali et al. [17] comprises seven fully connected layers with complete
connections to all activations in the previous layer. The first layer (i.e., the input layer)
contains four neurons to accommodate an input-data vector of the size 4 × 1, and the last
layer has one single neuron for the regression of the SOC. The number of neurons in the
layers in between is 32. The input-data vector is composed of the voltage, temperature,
average current, and average voltage obtained at time (t) without additional normalization:

xt =
[
Vt, Tt, Iavg

t , Vavg
t

]T
. The average current and voltage at time (t) are calculated using

the currents and voltages taken at the last 400 time instants. The activation function of
the last layer is the identity function, and the rectified linear unit (ReLU) is used in the
remaining layers. The ReLU function returns 0 if it receives any negative input; otherwise, it
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returns the input itself. Compared with other activation functions, it reduces the likelihood
of the vanishing gradient problem. Moreover, the constant gradient of the ReLU leads to
faster learning [23,24].

The weights in different layers are determined by minimizing the loss function:

L = e2
max +

1
n ∑n

t=0 e2
t , (1)

where n is the length of the data sequence used for training, and et represents the estimation
error, defined as et = SOCt − SOC∗t , with SOCt and SOC∗t being the actual and estimated
SOC at time (t), respectively. emax is the maximum estimation error. A complete training
epoch has one forward pass and one backward pass. The forward pass starts when the
training-data vectors are fed to the network model, and it ends when the corresponding
SOCs are estimated, and the loss function is evaluated. The backward pass represents the
process of sending the loss-function value backward through the network to update the
weights, which is accomplished by the adaptive-moment-estimation (Adam) optimizer.
The training process is stopped when the maximum number of epochs is met.

2.2. Gated Recurrent Neural Network

The capacitive effect in the Li-ion battery causes the previous states of the battery to
influence its present state [14], and including the past-state information while performing
SOC estimation can be beneficial. However, the DNN model does not have this ability. To
address this issue, GRU-based network models have been proposed [18,19]. A GRU is an
advanced version of the RNN architecture. By introducing an update gate to determine the
proportion of the candidate state to be accepted, and a reset gate to restrict the impact of
the previous hidden state on the candidate state, capturing the long-term dependency in a
data series becomes possible [25].

We describe the GRU network model proposed in Li et al. [19] as follows: Following
the input layer of three neurons, one GRU layer is added to learn the temporal dependency
among the input data. Thereafter, a fully connected layer is followed before entering
the regression output layer for the SOC estimation. Specifically, the full connection layer
transforms multiple outputs of the GRU layer into a single SOC estimate. The number of
units in the GRU layer is 1000, and the number of neurons in the fully connected layers
is 50. The network parameters are optimized using the Adam optimizer. The input-data
vector is composed of the voltage, current, and temperature of the battery at time (t):
xt = [Vt, It, Tt ]

T , and more than one data vector (e.g., 1000 is suggested in [19]) can be
used to estimate the SOC at a given time. To avoid the influence of magnitude imbalance
on the performance of the SOC estimation, the data of different measurable variables are
normalized before further application using:

xnormalized
t =

2(xt − xmin)

(xmax − xmin)
− 1, (2)

where xt is the value of a specific measurable variable (e.g., voltage) acquired at time (t),
with xmax and xmin being its possible maximum and minimum values obtained from the
training data, respectively. Finally, the loss function used in this model is the mean absolute
error (MAE), defined as:

L =
1
n ∑n

t=0|et|. (3)

The training process stops when the maximum number of epochs is satisfied.

3. Proposed Network Model for SOC Estimation

To exploit the temporal information and the interrelations in the multiple measurable
variables of the battery for SOC estimation, we stack their values obtained at n time instants
as a matrix: Xt = [xt, xt−1, · · · , xt−n+1], with xt = [Vt, It, Tt ]

T , which is the input to our
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proposed network model. We will discuss how the parameter n is determined in Section 5.2.
Before constructing the Xt, the data of the different measurable variables are normalized
using [26]:

xnormalized
t =

xt − xmin
xmax − xmin

, (4)

where xt is also the value of a specific measurable variable acquired at time (t), and
xmax and xmin are its possible maximum and minimum values, respectively. The idea of
treating multisensor data as an “image” (i.e., a two-dimensional data block) is crucial
to our discussion. The main building blocks of this network are first introduced, before
proceeding to the details of the proposed network model.

3.1. CNNs and Residual Blocks

A CNN is a deep-learning network with layers of different characteristics [16,27].
A convolution layer performs a dot product between two matrices (i.e., the convolution
operation), as shown in Figure 1a: one is a set of learnable parameters, known as a kernel
or filter, and the other is a portion of the input data [28]. This filter is applied across the
entire input space to obtain a feature map, and an arbitrary number of filters can be utilized
to extract the input-data characteristics from different aspects. A pooling layer is used
to downsample the feature maps obtained above [29]. This involves the extraction of
non-overlapping patches (e.g., having a size of 2 × 2) from a feature map and computing
the average or maximum of the features therein as the output, as shown in Figure 1b. The
downsampled feature maps are less sensitive to changes in the positions of the features in
the original maps. Neurons in a fully connected layer have connections to all activations
in the previous layer, as shown in Figure 1c. These layers consider the results of the
convolution/pooling process to reach a classification decision or regression value. The
feature map must be transformed into a one-dimensional array of numbers or vectors before
connecting to a fully connected layer. This process is referred to as “flatten”. Finally, the
activation function applied to the output layer is determined by the task to be performed.
The softmax function is used for classification, and the identity function (i.e., f (x) = x) is
adopted for regression [30].

A deeper network may fail to perform better than its shallow counterpart, and it is
better to work backward when this happens. However, if we can let a layer stack coming
after a shallow subnetwork inside a deep model do nothing (i.e., performing an identity
mapping), the performance and training error of the deeper model should be comparable
with those of the shallow subnetwork [22]. This idea of containing an identity function as
one of the elements in every additional layer stack lies at the core of a residual block.

The residual block shown in Figure 1d is the building block of the residual neural
network. It comprises a stack of layers set in such a way that its input is taken and added
to the output of the block before passing the activation function. The bypass connection
is referred to as a shortcut connection. If we denote the input of a residual block by X
(e.g., an image or a feature map) and assume that the desired mapping to learn is f (X),
then the portion of the residual block enclosed by the dashed lines must directly learn
the mapping f (X) when the shortcut connection is absent. However, with the help of the
shortcut connection, it only needs to learn the residual mapping (i.e., f (X) → X). If the
identity mapping (i.e., f (X) = X) is the desired mapping, then it only needs to let the weights
and biases of the layers within the dashed-line box be zero. Letting the layer stack fit a
residual mapping is more accessible than directly fitting the desired underlying mapping.
As a result, an effective deep neural network can be trained using the residual blocks [31].
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3.2. Architecture of the Proposed Network

The proposed network model for SOC estimation is shown in Figure 2. After the
input-data matrix (Xt) is fed in, it immediately passes through two residual blocks. Each
block has one convolution layer, one average pooling layer, and one shortcut connection.
The shortcut connection adds the respective input to a residual block to its output feature
maps after an average pooling operation with a 1 × 2 filter. The convolution layer in each
of the residual blocks has 16 3 × 3 filters. We will discuss how the number of filters is
determined in Section 5.2. The size of the filter used in the two average pooling layers is
1 × 2. All filters in the convolution and pooling layers are applied with a stride of one. To
regress the results from the residual blocks for the SOC, three fully connected layers are
added in series, without any intervening layer, before reaching the single output neuron.
The numbers of neurons in the three fully connected layers are 32, 16, and 8. Motivated
by the Kalman-filter-based approach, a shortcut connection is added to directly present
the current measurement vector (xt) of the battery to the second fully connected layer for
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the SOC estimation. Before the xt is added to the output of the second fully connected
layer, it goes through a convolution operation incorporating 16 3 × 1 filters and a global
pooling operation. The global average pooling operation flattens the feature maps by
taking the average of each feature map and stacking them as a data vector for the following
application. All the trainable layers are followed by the ReLU activation function, except
for the output layer, where the identity activation function is used. Finally, the MAE given
in (3) is used as the loss function.
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data matrix (Xt) and the instantaneous measurement vector (xt).

The network parameters are optimized using the Adam optimizer, and early stopping
is used to halt the training to prevent overfitting [32]. Finding an optimal network model
(i.e., searching for the optimal weights for a network model) for SOC estimation can be
formulated as an optimization problem. Once the loss function (e.g., the MAE given in (3))
is determined, the problem can be solved by an appropriate optimization method. Adam
is a method for stochastic optimization [33,34]. It combines the advantages of adaptive
gradients and root-mean-square propagation (RMSProp). Instead of using the entire dataset
to calculate the actual gradient, this algorithm uses a randomly selected data subset to create
a stochastic approximation. The learning rate for gradient descent controls the amount that
the weights are updated. If it is low, then training will progress slowly; if it is too high, then
this leads to undesirable divergent behavior. Moreover, rather than adapting the learning
rate based on the average first moment, as in RMSProp, Adam also uses the average of
the second moments of the gradients. Specifically, the algorithm calculates an exponential
moving average of the gradients and squared gradients, and the parameters β1 and β2
control the decay rates of these moving averages. These are the key hyperparameters to set
in the Adam optimizer [33].

We additionally include the data vectors taken previously for SOC estimation because
the past voltages, currents, and temperatures will affect the current SOC owing to the
capacitive effect in the battery [14]. Discarding the measurable data taken previously could
lead to a loss of information. However, including a large volume of data for SOC estimation
unquestionably poses challenges in revealing discriminant information for the task, and
a scheme to prevent the proposed model from being overwhelmed by a massive amount
of data must be considered. Notably, a filter in the convolution layer is applied across
the entire input space. It moves from left to right with a particular stride until it parses
the complete width. This is similar to the multivariate autoregressive (MVAR) model.
An MVAR model formed by a weighted linear sum of the input-data vectors can predict
future data vectors [35,36]. The learnable parameters in the filter are the required predictor
coefficients in the MVAR model. Different filters can lead to different MVAR models. The
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pooling operation mainly adopted in this study extracts patches of a 1 × 2 size from an
input feature map, and it uses the mean of these extracted features as their respective
output (i.e., average pooling shown in Figure 1b). Note that the pooling is applied in the
row direction (i.e., time indices) of the X, which allows the noisy activations to be discarded.
As the selected measurable variables are not physically swapped while constructing the
input-data matrix (Xt), a shift in the column direction of the Xt is not expected to occur.
Thus, a size of one is utilized. Unlike in the convolution layers, there are no learnable
parameters in the pooling layers.

4. Battery Datasets

The Li-ion battery dataset provided by the research group at the University of Wisconsin–
Madison [37] was utilized to evaluate the performance of the proposed network model.
The dataset contains data from a 2.9 Ah nickel cobalt aluminum chemistry Li-ion battery
(Panasonic NCR18650PF), tested with a 25 amp 18 V Digatron Firing Circuits Universal
Battery Tester (Digatron Firing Circuits, Shelton, CT, USA) channel placed in an eight-cubic-
foot thermal chamber. The cell was cycled according to nine different driving schedules:
US06, HWFET, UDDS, LA92, neural network (NN), and Cycles 1 to 4, under ambient tem-
peratures of 25, 10, 0, −10, and −20 ◦C. US06 is developed to reflect aggressive, high-speed,
and high-acceleration driving behaviors. The highway fuel economy test (HWFET) cycle
is a driving schedule for determining the highway fuel economy. The urban dynamome-
ter driving schedule (UDDS) represents urban driving conditions. These are the driving
schedules used by the United States Environmental Protection Agency (EPA, Washington,
DC, USA) for vehicle emissions and fuel economy testing. Developed by the California Air
Resources Board, LA92 is a dynamometer driving schedule for light-duty vehicles, but it is
a more aggressive driving cycle than the EPA federal test procedure (FTP-75) [38]. The NN
driving schedule consists of US06 and LA92, and it is designed to have different dynamics
that are helpful in training neural networks. Finally, Cycles 1 to 4 are formed by randomly
mixing the US06, HWFET, UDDS, LA92, and NN drive schedules. This dataset covers a
wide range of variability, making the performance evaluation of the proposed network
model realistic. Finally, measurable variables, such as the voltage, current, capacity, battery
temperature, and chamber temperature, were recorded approximately every 0.1 s, with
a slight variance in the sampling rate. Further detailed experimental descriptions can be
found in the accompanying “ReadMe” file [37].

5. Experiments and Discussion
5.1. Experimental Details

As mentioned above, US06, HWFET, UDDS, and LA92 are the driving schedules used
for vehicle emissions and fuel economy testing. We used their corresponding data for the
model training. To obtain a single model applicable to SOC estimation under different
ambient temperatures, all the data were simultaneously included for model training,
regardless of the ambient temperatures under which they were obtained. Furthermore,
because the NN driving schedule was specially designed to help train neural networks, its
related data were used as the validation set. Finally, the data of the remaining four driving
schedules were retained for model testing. The data corresponding to different driving
schedules used for model training, validation, and testing are summarized in Table 1.
Before proceeding, we interpolated all the data and resampled them at a sampling rate of
1 Hz. The maximum and minimum values of the measurable variables used for the data
normalization are listed in Table 2. In addition to the proposed network model, we also
implemented the network models of Chemali et al. [17] and Li et al. [19] for comparison.
These two network models are hereafter referred to as the DNN- and GRU-based models,
respectively. The MAE and root-mean-square error (RMSE) used in most studies [19,21,39]
were adopted to quantify the prediction performance. The RMSE is defined as follows:

RMSE =

√
1
n ∑n

t=0|et|. (5)
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Table 1. The Li-ion battery datasets [37] used to evaluate different SOC-estimation network models.
The data of different driving schedules for model training, validation, and testing are shown as
indicated.

Temp. UDDS LA92 US06 HWFET NN Cycle 1 Cycle 2 Cycle 3 Cycle 4

25 ◦C Train Train Train Train Validation Test Test Test Test
10 ◦C Train Train Train Train Validation Test Test Test Test
0 ◦C Train Train Train Train Validation Test Test Test Test
−10 ◦C Train Train Train Train Validation Test Test Test Test
−20 ◦C Train Train Train Train Validation Test Test Test Test

Table 2. The maximum and minimum values of different measurable variables used for data normal-
ization in this study.

Voltage (V) Current (A) Temperature (◦C)

Max 4.4 10 30
Min 2.5 −10 −25

Finally, all the network models were trained on TensorFlow 1.13.1 (Google, Mountain
View, CL, USA) with the CUDA 9.2 Toolkit (NVIDIA, Santa Clara, CA, USA) and cuDNN
v7.6.0 (NVIDIA, Santa Clara, CA, USA) on an ASUS ESC8000 G4 server (ASUS, Taipei,
Taiwan) with an Intel Xeon CPU (Intel, Santa Clara, CA, USA), GeForce RTX 2080 Ti
(NVIDIA, Santa Clara, CA, USA), and 192 GB RAM. The required hyperparameters used
for training the DNN- and GRU-based models were set following [17] and [19], with a
learning rate of 10−4, and decay rates of β1 = 0.9 and β2 = 0.999, respectively. The maximum
numbers of epochs were 10,000 and 100, respectively. As for the proposed network model,
the decay rates were the same, but the learning rate was 10−3. They are the default settings
suggested in the original paper on the Adam optimizer [33].

5.2. Results and Discussion

Although including the past-state information of the battery in the proposed network
model can benefit the SOC estimation, the amount of information to be used in terms of
the number of measurement vectors is unclear. Thus, in the first experiment, we studied
how the number of measurement vectors used to form the input matrix (Xt) affects the
accuracy of the SOC estimation. Figure 3 shows the mean MAEs and RMSEs, as well as their
standard deviations (STDs), obtained by the proposed network model while estimating
the SOCs of the driving schedules Cycles 1 to 4 at ambient temperatures of 10 ◦C and
−10 ◦C. We varied the number from 50 to 300, and we set the number of filters in the
two residual blocks to 16. As shown in Figure 3, the MAEs and RMSEs varied under
different numbers of measurement vectors. Gradual decreases in the MAEs and RMSEs
were observed when the number increased from 50 to 250. When it exceeded 250, the MAEs
and RMSEs started to increase. The trends of the MAEs and RMSEs were similar under
different ambient temperatures. Although the capacitive resistance in the battery causes
a battery state to affect the battery’s future state, this influence is temporary. Moreover,
including excessive uncorrelated state information cannot enhance the SOC estimation and
may instead degrade the performance owing to an increase in the model complexity.
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Figure 3. The mean MAEs and RMSEs of the proposed network model while using different numbers
of measurement vectors for the Xt construction and the corresponding standard deviations (STDs).
The results were obtained by estimating the SOCs of Cycles 1 to 4.

In the second experiment, we studied the influence of the number of filters in the
convolution layers of the two residual blocks on the SOC-estimation accuracy. Different
filters allow different input-data characteristics to be revealed. However, the larger the
number of filters, the more learnable the parameters will be. This requires more data to train
the network. Moreover, because many filters exist, some may learn characteristics that are
not important for SOC estimation. Filter-pruning methods that remove unimportant filters
in a network model are not uncommon in the literature [40]. To determine a suitable number
of filters to use, we varied the filter number from 8 to 48, and the number of measurement
vectors for the Xt formation was set to 250. As shown in Figure 4, with few filters, the
mean MAEs and RMSEs were large, regardless of the ambient temperature. As the number
of filters increased, the errors first decreased and then increased. The MAE and RMSE
were small when the number of filters was 16. Because of the satisfactory estimation errors
achieved, for the experiments discussed hereafter, we implemented the proposed scheme
with 250 measurement vectors for the Xt formation, and 16 filters in the residual blocks.

In the third experiment, we compared the performances of the three approaches. The
MAEs and RMSEs of the different approaches averaged over the driving schedule Cycles
1 to 4, and their STDs, are shown in Figure 5. The estimation errors increased as the
ambient temperature decreased. The DNN-based approach performed poorly because
of the simple network architecture adopted and the inability to exploit the past-state
information of the battery for SOC estimation. Furthermore, the estimated SOCs fluctuated,
as shown in Figure 6. In many applications, it is desirable that the SOC estimation evolves
smoothly around the actual values so that the residual-range prediction will not suddenly
increase or decrease and confuse the user [14]. Thus, an additional postprocessing scheme
(e.g., the UKF) is required to cooperate with one such network model to provide smooth
SOC estimates with sufficient accuracy. By further looking at the times when the SOC
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estimates fluctuated a lot, we noticed that the measurable variables, mainly the voltages
and currents, varied significantly, as shown in Figure 7a, between the two dotted lines. This
indicates that the SOC estimated by the DNN-based approach was sensitive to the variations
in the input data, although a moving average (MA) was applied while preparing the model
inputs. These deficiencies could be addressed using the GRU-based and proposed network
models, as shown in Figures 6 and 7, where the actual and estimated SOC curves were
close to each other without the need for any additional postprocessing scheme. The
smoothing ability in the GRU-based model could be because the GRU units can not only
perform an MA on the lagged inputs, but can also regress on their own lagged outputs,
which is a vital characteristic of an autoregressive (AR) model. Noise reduction in data
timeseries using ARMA filtering is not uncommon in the literature [41]. As for the proposed
scheme, this could be owing to the ability of the average-pooling layers to discard the
noisy activations while performing dimensionality reduction. Furthermore, the filters in
the convolution layers can reduce noise [42]. Finally, the poor performance of the three
approaches when the ambient temperature was low could be due to the significant disparity
between the measured surface temperature of the battery and its internal temperature [16].
As shown in Figure 7, a sudden increase in the battery temperature was followed by
evident discrepancies between the three approaches’ actual and estimated SOC curves, as
indicated by the black arrows. The estimation errors of the three implemented approaches
under different driving schedules and ambient temperatures are summarized in Table 3.
The MAEs and RMSEs of the GRU-based and proposed models were comparable, with
approximately half the errors of the DNN-based model. Their maximum estimation errors
are listed in Table 3. The maximum estimation errors of the proposed and GRU-based
models were 8.673% and 6.870%, respectively, which were lower than that of the DNN-
based model (i.e., 14.062%).
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In the final experiment, we analyzed the computational complexity of the three net-
work models to provide one SOC estimate. The computational complexity in terms of the
number of floating-point operations (flops) was calculated using the method in [43]. The
computational cost of the DNN-based model was 4400 flops. Under the same settings,
4.33 × 108 and 2.24× 106 flops were required for the GRU-based and proposed approaches,
respectively. Despite its low computational complexity, the SOC estimation using the
DNN-based model was error-prone, as mentioned previously. Although the GRU-based
model attained better estimation accuracy, its computational complexity was of substantial
concern. However, this concern was largely reduced in the proposed model. Furthermore,
the computational complexity of the proposed network model could be further reduced
using a suitable filter-pruning scheme [37], if required. Lastly, we calculated the average
times required to perform one SOC estimation in our platform by averaging the times
needed to complete 29,640 SOC estimations (i.e., four testing cycles, with each of them
having 7410 samples). The results were 4.62 × 10−5 s, 4.64 × 10−3 s, and 1.07 × 10−4 s
for the DNN-based, GRU-based, and proposed models, respectively. It was found that
the run times required by these models on our computing platform were less than 1 s;
therefore, they all could provide a new SOC estimate before new values of the measurable
variables arrived.
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Table 3. SOC-estimation errors (MAEs, RMSEs, and maximum errors) of the three network models
under different driving schedules and ambient temperatures.

Temp.
Operating
Condition

MAE (%) RMSE (%) MAX (%)

DNN GRU Proposed DNN GRU Proposed DNN GRU Proposed

25 ◦C

Cycle 1 1.543 0.460 0.673 1.734 0.549 0.846 4.072 1.557 1.817
Cycle 2 1.281 0.386 0.410 1.557 0.520 0.515 5.196 1.535 2.106
Cycle 3 1.416 0.376 0.515 1.662 0.487 0.644 4.350 1.262 1.709
Cycle 4 1.258 0.342 0.457 1.535 0497 0.604 4.664 1.770 2.030

10 ◦C

Cycle 1 1.438 0.696 0.689 1.708 0.774 0.853 5.364 1.448 2.890
Cycle 2 2.420 0.705 1.101 2.677 0.842 1.179 5.792 1.859 2.828
Cycle 3 1.553 0.635 0.580 1.807 0.738 0.720 4.539 1.525 2.214
Cycle 4 1.214 0.596 0.649 1.532 0.714 0.838 4.798 2.001 2.780

0 ◦C

Cycle 1 1.327 1.174 1.107 1.572 1.497 1.348 4.456 3.171 3.330
Cycle 2 1.365 1.135 1.120 1.704 1.286 1.267 4.828 2.210 2.619
Cycle 3 0.874 0.804 0.792 1.101 1.130 0.925 3.744 2.635 2.294
Cycle 4 1.469 0.769 0.725 1.865 0.888 0.853 6.085 2.147 2.445

−10 ◦C

Cycle 1 1.684 1.633 1.739 2.177 2.206 2.157 6.765 5.162 6.356
Cycle 2 1.670 1.347 1.112 2.018 1.609 1.349 5.311 2.982 3.653
Cycle 3 1.595 0.788 0.951 1.990 1.015 1.132 6.332 2.651 3.061
Cycle 4 2.022 0.823 0.800 2.377 1.017 1.101 6.444 1.986 3.822

−20 ◦C

Cycle 1 3.557 1.126 1.826 4.195 1.303 2.887 11.677 3.886 8.673
Cycle 2 2.966 2.079 1.782 3.673 2.904 2.336 10.175 6.870 6.012
Cycle 3 2.483 0.716 1.282 2.899 0.936 1.621 7.720 2.980 4.553
Cycle 4 3.255 1.800 1.659 3.999 2.711 2.028 14.062 5.854 5.956

Average 1.820 0.920 0.998 2.189 1.181 1.260 6.319 2.775 3.557
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Figure 7. Cycle 2 SOC-estimation results (solid orange lines) using: (a) DNN-based model, (b) GRU-
based model, and (c) the proposed model. The corresponding voltages, currents, and temperatures
are also provided. The ambient temperature was −20 ◦C. The area between the two red dotted lines
indicates the measurable variable varied significantly, and the black arrows indicate the evident
discrepancies between the three approaches’ actual and estimated SOC curves when a sudden
increase in the battery temperature.

6. Conclusions

This paper presents a convolutional residual network to estimate the SOC of Li-ion
batteries. By stacking the values of multiple measurable variables taken at many time
instants as the model inputs, the process information for the voltage or current generation
and their interrelations can be effectively extracted by the proposed convolutional residual
blocks and can simultaneously be exploited to regress for accurate SOCs. In addition,
including the shortcut connections that allow the higher layer to perform at least as well as
the lower layer makes the entire network model compact. The performance of the proposed
network model was evaluated using the data obtained from a Panasonic NCR18650PF
Li-ion battery. For a testing scenario involving four mixing driving schedules, the proposed
model could accurately estimate their SOCs at different ambient temperatures, with a mean
MAE of 0.998%, and a mean RMSE of 1.260%. Moreover, the number of flops required to
complete one SOC estimation was only 2.24 × 106. All these results illustrate the efficacy of
the proposed network model.
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