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Abstract: Light field (LF) image depth estimation is a critical technique for LF-related applications
such as 3D reconstruction, target detection, and tracking. The refocusing property of LF images
provide rich information for depth estimations; however, it is still challenging in cases of occlusion
regions, edge regions, noise interference, etc. The epipolar plane image (EPI) of LF can effectively deal
with the depth estimation because of its characteristics of multidirectionality and pixel consistency—in
which the LF depth estimations are converted to calculate the EPI slope. This paper proposed an EPI
LF depth estimation algorithm based on a directional relationship model and attention mechanism.
Unlike the subaperture LF depth estimation method, the proposed method takes EPIs as input images.
Specifically, a directional relationship model was used to extract direction features of the horizontal
and vertical EPIs, respectively. Then, a multiviewpoint attention mechanism combining channel
attention and spatial attention is used to give more weight to the EPI slope information. Subsequently,
multiple residual modules are used to eliminate the redundant features that interfere with the EPI
slope information—in which a small stride convolution operation is used to avoid losing key EPI
slope information. The experimental results revealed that the proposed algorithm outperformed the
compared algorithms in terms of accuracy.

Keywords: light field images; depth estimation; epipolar plane image; pixel consistency;
attention mechanism

1. Introduction

A light field (LF) is defined as the flow of light in every 3D space. It can be represented
by the two-plane parametrization as L(x, y, u, v), where the (x, y) plane contains the focal
points of the views, and the (u, v) plane means image plane. L(x, y, u, v) can be viewed as an
assignment of an intensity value to the ray passing through (x, y) and (u, v) [1]. LF cameras
collect and record light from different directions in the scene, which can simultaneously
record spatial and angular information of light rays incident at pixels of the tensor by
inserting a microlens array between the main lens and image sensor [2]. The resulting
plenoptic camera provides information about how the scene would look when viewed
from a continuum of possible viewpoints bounded by the main lens aperture [3]. LF
cameras also implicitly record the depth information, which enables many interesting
applications. As a crucial step, depth estimation from images is a fundamental problem in
many applications, such as in autonomous vehicle driving [4], robot navigation [5], and
robot-assisted surgery [6], for which acquiring the accurate scene depth can be of great help
for the related applications. Hence, improving the performance of algorithms for depth
estimation contributes significantly to the field of computer vision.

Conventional depth estimation algorithms usually calculate the depth information
based on the idea of stereo matching, whereas the LF images have the information of
light directed from different viewpoints. The variety of presentation forms is also very
rich [1]. Consequently, the rich information and the variety of presentation forms for
LF images provide the possibility for improving the accuracy of the depth estimations.
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Currently, the depth estimation methods for LF images based on traditional algorithms are
generally classified into the following categories according to the form of the input image:
Multiview stereo matching algorithms based on subaperture images [7,8], algorithms based
on refocused images and angle blocks [9–12], and algorithms based on epipolar plane
images (EPIs) [13–22].

EPI, being a visualization method unique to LF images, consists of epipolar lines
which are the intersection of the epipolar plane and the camera plane. An example is
shown in Figure 1. In the EPI, the adjacent line comes from the adjacent views captured
by the camera. Image space disparity, defined for a pair of images captured at adjacent
positions, is mapped to the displacement between two adjacent horizontal lines in an EPI.
That is, the line in the EPI represents the imaging points from different views and the slope
of the line indicates the disparity of the point [15]. EPIs contain both spatial and angular
domain information and are more conducive to depth estimations. Consequently, the EPI
LF depth estimation algorithm is able to obtain more effective depth information compared
with other algorithms, and it is more beneficial to solve the occlusion problem of depth
estimations. The basic idea of an EPI LF depth estimation is to find the correct EPI line and
calculate the slope of the line to acquire the depth information for the corresponding pixel
in the central subaperture. This method is effective for EPIs with clear oblique lines and
can be applied to most scenes. However, for EPIs with occlusion regions, edge regions,
and noise interference where the oblique lines are more difficult to extract [23], it is hard to
obtain accurate depth information using the traditional algorithms.
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EPIs, along with the rapid development of deep learning and the advances of convo-
lutional neural networks (CNNs) in recent years, have had their applications in LF depth
estimation become more and more widespread. Compared with traditional stereo matching
algorithms, the LF depth estimation algorithms based on deep learning can fully extract
depth information and obtain accurate LF depth information through a high-performance
CNN. Generally, depending on the data presentation form, deep learning-based LF depth es-
timation can be divided into two kinds: subaperture image-based [7,8,24–32] and EPI-based
methods [18–21,33–35]. The subaperture images contain more pixel space information than
the EPI, but there are more image features, so extracting the accurate depth is the core
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problem of its algorithm. The EPI-based method, on the other hand, relies on the EPI slope
to calculate the depth; it is more intuitive and is good at depth estimation.

In order to extract more effective slope information and improve the performance
of the depth estimation, this paper proposes an EPI LF depth estimation network based
on the directional relationship module and the attention mechanism. We consider two
directions (horizontal and vertical) of EPIs and extract features from these two directions,
respectively. After obtaining abundant EPI slope information and feature information, we
combine with the two-branch structure and aggregate the final depth value of each pixel.
The contributions of this paper can be summarized as:

(1) We design a directional relationship module to extract the EPI slope information. The
relational model has been widely applied in the field of computer vision in areas such
as target detection and semantic segmentation due to its good network performance.
Mostly, the spatial pixel relationship of image features or the relationship of multi-
channel features are used as a cutoff and is enhanced by specific network modules
to improve the network performance. Inspired by the work, the EPI directional re-
lationship model is therefore used to extract the horizontal and vertical EPI slope
information, respectively. Because more effective EPI slope information is extracted,
more accurate depth results can be obtained.

(2) Considering the correlation of EPI pixels, the multiviewpoint attention module is used
to process the EPI feature information. The spatial attention focuses on the correct
slope at the corresponding position, the channel attention extracts the contextual
information around the EPI slope, and multiple residual modules are used to eliminate
other redundant features with noncorrect slope and interference information.

2. Related Work

In this section, we review the major works on LF depth estimation. We classify the
existing methods into subaperture image-based methods and EPI-based methods.

2.1. LF Depth Estimation Based on Subaperture Image

The subaperture image-based method relies on multiple views of the LF images and
calculates the parallax of adjacent views to obtain the depth map. In the early stage of
the research, Jeon et al. [16] estimated the depth by computing matching cost volumes
between the center view image and the view images that were displaced using the phase
shift theorem. Wang et al. [11] introduced a depth estimation method which treated the
occluded and nonoccluded regions differently to handle occlusions. Williem et al. [12] used
angle entropy measurements and adaptive defocus responses to construct data costs, which
are robust to occlusion.

Recently, deep learning methods have been widely used in LF depth estimations
between viewpoints. Herber et al. [24] presented a convolutional neural network based on
the natural LF image volumes used for shape detection, presenting for the first time the idea
of using image volumes in deep learning algorithms for LF images. A pseudo-EPI-based
LF image input form with four LF image volumes as network inputs was designed by
Shin et al. [7] to achieve excellent depth estimation, which became the mainstream form
of subaperture image input algorithms. Tsai et al. [8] designed a view selection scheme
based on the attention mechanism and operated on 81 subaperture image volumes that
could effectively reduce redundant features and improve the depth estimation accuracy.
A multiattention mechanism network framework was designed by Chen et al. [25] to use
the attention mechanism module for feature selection within and between branches of
the four LF image volumes, respectively, reducing the effect of image object occlusion.
Huang et al. [26] proposed a network structure—using two LF images and a central
subaperture edge map as the input—to reduce occlusion interference and increase the
depth estimation accuracy by reincorporating the edge information into the image volume.
A highlight-resistant LF depth estimation algorithm was proposed by Wang et al. [27]. A
cavity convolution was added to the network framework proposed by Shin [7] to expand
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the perceptual field and recover the depth information of the highlight region. Shi et al. [28]
designed a multidirectional selective image method with improved Flownet [29] for parallax
estimation to obtain accurate depth images. The combination of LF image volume and
a single subaperture image in the form of input, and using the attention mechanism for
feature aggregation was designed by Li et al. [30] to improve the network performance
and enable accurate depth estimations for a wide baseline LF. Wang et al. [31] proposed
a separated-light field parallax estimation and reconstruction algorithm and designed
multiple network structures for separating light field subaperture images and performing
feature selection and extraction, achieving very good synthesis results. Wang et al. [32]
designed a mask-aware cost-based LF depth estimation algorithm based on the previous
work, which integrated the matching cost by processing subaperture images with different
convolution kernels. It used image edge as masks as an aid to process the mask and
obtained a network model with an edge region in alignment and had strong antiocclusion
performance. Even though the deep learning algorithm with subaperture images as input
is able to obtain an accurate depth map, it requires complex network structures to obtain
high-performance network models because the input data are too large, and the depth
information is more difficult to extract directly. Furthermore, multiple subaperture images
in the network will generate many redundant features that are not conducive to the network
extracting important depth information, so many studies are also using other forms of LF
images—such as the EPI-based network.

2.2. EPI-Based LF Depth Estimation

The idea of EPI-based LF depth estimation is to extract the EPI slope features using
a deep learning algorithm and calculate its slope to determine the accurate depth value.
Originally, Wanner et al. [15] proposed estimating the direction of the lines on EPIs based
on structure tensors and then integrating the local estimation using fast denoising and
global optimization. Zhang et al. [22] proposed a spinning parallelogram operator to
estimate the slope of lines on EPIs by assuming the difference between the two sides of the
line in the largest. After, the deep learning methods became the mainstream. Herber [33]
proposed the use of CNNs to extract the depth information in the LF EPI; the network
structure was relatively simple, with only a few convolutional blocks stitched together. In
the same year, Herber et al. [34] proposed another U-net-based network framework for
depth estimation which had improved results. However, due to the very simple structure
of convolutional neural networks in the early research period and the small amount of
image feature information in the EPI, the network was unable to extract deeper depth
information from it and the research direction slowly developed toward the direction
of using subaperture images as the input form. As deep learning research continues
to evolve, many studies are using deeper and more capable network frameworks and
modules to deal with LF EPIs. By designing a network framework based on two EPI
blocks and postprocessing the obtained depth map using a global optimization strategy,
Luo et al. [20] improved the performance of EPI LF depth estimation. Zhou et al. [18]
designed a network structure with four EPI blocks, used a scale direction-aware module for
feature extraction, and added refocusing cues to assist in depth estimation, and obtained
better depth results. Li et al. [19] proposed a network structure based on directional relations
for depth estimation, which led to better improvements in depth results. Leistner et al. [21]
adopted a network structure based on EPI-shifted input, adding EPI input features and
using edge masks to increase the algorithm performance and solve the wide baseline optical
field depth problem. Zhou et al. [35] proposed a network structure based on hybrid inputs
of subaperture images and focal stacks and proposed a new input idea to enhance the
depth map effect by extracting the depth information of subaperture images through a
focal stack local guidance network.
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3. Methods
3.1. General Network Structure

The proposed EPI LF depth estimation method based on the directional relationship
model and multiviewpoint attention mechanism will be discussed in detail in this section,
as shown in Figure 1. Our network takes horizontal and vertical EPIs as its input and the
output is the depth value of the corresponding pixel.

The 4D LF image is represented as L(x, y, u, v), where (x, y) is the spatial resolution
and (u, v) is the angle resolution. By fixing two coordinates of LF images: (y, v) or (x, u), the
horizontal and vertical EPIs of a pixel in the image are first obtained. They are then cropped
to obtain EPI blocks containing important information of the EPI slope. We then designed a
directional relationship module to extract the EPI low-level features. The high-level features
of EPI slope were further extracted through the multiviewpoint attention mechanism. In
addition, multiple residual modules were used to eliminate the redundant features of
non-EPI slope information to accelerate the fitting speed. Finally, the depth information of
the pixel was obtained after applying the feature aggregation module.

3.2. EPI Directional Relationship Feature Extraction Module

Due to the multidirectional nature of EPI, the relational model can extract more
EPI slope information from multiple directions. Therefore, this paper adopts the EPI
directional relationship model for the underlying feature extraction of EPIs, which is
used to obtain more EPI slope information for subsequent module processing. The EPI
directional relationship module is depicted in Figure 2 in detail.

Sensors 2022, 22, 6291 5 of 18 
 

 

3. Methods 
3.1. General Network Structure 

The proposed EPI LF depth estimation method based on the directional relationship 
model and multiviewpoint attention mechanism will be discussed in detail in this section, 
as shown in Figure 1. Our network takes horizontal and vertical EPIs as its input and the 
output is the depth value of the corresponding pixel. 

The 4D LF image is represented as L(x, y, u, v), where (x, y) is the spatial resolution 
and (u, v) is the angle resolution. By fixing two coordinates of LF images: (y, v) or (x, u), 
the horizontal and vertical EPIs of a pixel in the image are first obtained. They are then 
cropped to obtain EPI blocks containing important information of the EPI slope. We then 
designed a directional relationship module to extract the EPI low-level features. The high-
level features of EPI slope were further extracted through the multiviewpoint attention 
mechanism. In addition, multiple residual modules were used to eliminate the redundant 
features of non-EPI slope information to accelerate the fitting speed. Finally, the depth 
information of the pixel was obtained after applying the feature aggregation module. 

3.2. EPI Directional Relationship Feature Extraction Module 
Due to the multidirectional nature of EPI, the relational model can extract more EPI 

slope information from multiple directions. Therefore, this paper adopts the EPI direc-
tional relationship model for the underlying feature extraction of EPIs, which is used to 
obtain more EPI slope information for subsequent module processing. The EPI directional 
relationship module is depicted in Figure 2 in detail. 

 
Figure 2. Directional relationship model. 

The underlying features in the EPI block f1 are first obtained by using a 1 × 1 convo-
lutional layer after the initial EPI block f1 is input to the directional relationship module, 
using the correlation and compactness of the pixels in the EPI block. Then, the output 
features are converted into two feature forms, f2 and f3, both horizontal and vertical, as 
follows: 

2 1 1[ ( )]f Reshape Conv f=  (1)

3 2 1[ ( )]f Reshape Conv f=  (2)

where Reshape1 and Reshape2 are two different feature reshapes, Conv is the convolution 
layer with a kernel size of 1 × 1, and f1 feature size is H × W × C; H is the height of the EPI 
block, W is the width of the EPI block, and C is the number of channels. Reshape1 reshapes 
f1 original H × W × C features to C × (H × W) 2D features f2. Reshape2 reshapes f1 original H 
× W × C features to (H × W) × C 2D features f3. 

The two features are then multiplied pointwise to take full advantage of the orienta-
tion relationship in the EPI block to obtain more EPI slope information and to obtain fea-
ture f4 according to: 

4 2 3f f f= •  (3)

Figure 2. Directional relationship model.

The underlying features in the EPI block f 1 are first obtained by using a 1 × 1 convo-
lutional layer after the initial EPI block f 1 is input to the directional relationship module,
using the correlation and compactness of the pixels in the EPI block. Then, the output
features are converted into two feature forms, f 2 and f 3, both horizontal and vertical,
as follows:

f2 = Reshape1[Conv( f1)] (1)

f3 = Reshape2[Conv( f1)] (2)

where Reshape1 and Reshape2 are two different feature reshapes, Conv is the convolution
layer with a kernel size of 1 × 1, and f 1 feature size is H ×W × C; H is the height of the EPI
block, W is the width of the EPI block, and C is the number of channels. Reshape1 reshapes
f 1 original H ×W × C features to C × (H ×W) 2D features f 2. Reshape2 reshapes f 1 original
H ×W × C features to (H ×W) × C 2D features f 3.

The two features are then multiplied pointwise to take full advantage of the orientation
relationship in the EPI block to obtain more EPI slope information and to obtain feature f 4
according to:

f4 = f2· f3 (3)

where · denotes the dot product and the size of feature f 4 is (H ×W) × (H ×W) ×W.
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After extracting the relationship feature f 4 of the EPI block, the directional relationship
features and the original features were combined so that the high-level features and the
low-level features complemented each other. Specifically, we converted its size to a feature
block f 5 with the same size as the original EPI block f 1 and the number of channels as the
width of the original EPI block. The module output feature f 6 can be defined as:

f5 = Reshape3( f4) (4)

f6 = Concate[ f1, f5] (5)

where Reshape3 indicates the deformation operation which deforms f 4 to H × W × W.
After the Concate operation, we obtained the final output feature f 6 whose size is equal to
H ×W × (W + C).

3.3. Multiviewpoint Attention Mechanism Feature Extraction Module

After obtaining the EPI directional relationship features, focusing and extracting the
EPI slope information in the features is critical. Consequently, we further designed a
multiviewpoint attention mechanism module for feature extraction after each directional
relationship module, and its specific structure is illustrated in Figure 3.
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Figure 3. Multiviewpoint attention mechanism.

In order to fully extract the correct EPI slope information in different directions,
the previously obtained directional relationship features are input into three forms of
the attention mechanism module. Specifically, the first channel is to perform attention
mechanism processing on the horizontal EPI features to obtain the horizontal attention
features. Furthermore, the second and third channels input the vertical EPI features and
channel number EPI features into the attention mechanism module to obtain the vertical
attention features and pixel attention features, respectively. After the three-channel part,
we concatenate all the features from each channel, and make a ship connection with the
original input features to obtain the final EPI features.

To extract the EPI slope information well, we adopted the attention mechanism module
which combines channel and spatial features, in which features first pass through the
channel attention module and focus on the feature channels that are more useful for
extracting EPI slope information. Then, features pass through the spatial attention module
and focus on the accurate EPI slope feature area of the EPI features, as shown in Figure 4.
Furthermore, to eliminate the redundant features generated in the directional relationship
module for subsequent attention mechanism modules, a residual module was designed for
feature processing before each attention mechanism module.
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3.4. Feature Aggregation Module

After obtaining the EPI features completed by the attention mechanism, it is necessary
to aggregate the horizontal and vertical EPI features in order to achieve the two branch
features that complement each other and obtain more accurate EPI slope information. Thus,
the following feature aggregation module was designed in this paper, as shown in Figure 5.
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Firstly, before the feature aggregation, the redundant features that were generated in
the attention mechanism need to be processed, and two EPI features need to be input to
the residual module to eliminate invalid redundant features. The two branch features are
then cascaded, and because the obtained EPI features are relatively small, the use of either
more complex network structures or convolution operations with too-large step lengths
will result in the loss of feature information. Therefore, we adopted a basic block: “Conv-
ReLU-Conv-BN-ReLU” to realize feature aggregation, and most of the convolution kernels
were 1 × 2 and 2 × 2 steps, with the purpose of fully extracting all EPI slope information in
the aggregated EPI features and improving the accuracy of the final depth estimation.

Finally, an output of size 1 × 1 was obtained after multiple small-step convolution
operations, which can be abstracted to the depth corresponding to the center of the final
EPI block, thus completing the network framework construction.

4. Experiments

In this section, we first introduce the datasets and implementation details, then com-
pare our method with traditional EPI methods and deep learning-based EPI methods.
Finally, we discuss our failure case.

4.1. Datasets and Implementation Details

In this paper, we conducted experiments on a 4DHCI LF dataset to investigate our
algorithm. We used 16 scenes in the “Additional” category for network training and used
the “Train” and “Test” categories for model testing [36].

The initial form of the 4DHCI dataset was a subaperture image. In order to use its data
for network training, it was necessary to convert the subaperture image into an EPI first.
The 4D LF is denoted as L(x, y, u, v), where (x, y) are coordinates of pixels in the spatial
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domain and (u, v) are coordinates of subaperture images in the angular domain. The EPI is
calculated by fixing two coordinates in different planes and changing the others. As shown
in Figure 1, fixing a horizontal pixel row of constant spatial coordinate y* and constant
angular coordinate v*, along the u axis, an array of camera views is stacked. The horizontal
EPI is calculated as:

Iy,v(x, u) = L(x, y∗, u, v∗) (6)

Similarly, the vertical EPI is calculated as:

Ix,u(y, u) = L(x∗, y, u∗, v) (7)

Secondly, the size of the EPI used in this paper is 9 × 29, which is mainly because if
the length of EPI image is too long, many redundant data unrelated to the EPI slope will
be input into the network, affecting the efficiency of network training. If the EPI slope
is too short, it will lead to the incomplete interception of the EPI slope and be unable to
obtain complete and clear EPI slope data. The image input size is determined after fully
considering relevant factors. Furthermore, in order to accelerate the model fitting and
improve the model performance, two data augmentation algorithms are adopted for data
augmentation in this paper, which are a gray scale randomization algorithm and a random
Gaussian noise data algorithm. The gray scale randomization algorithm randomly changes
some areas in the image to gray. In many cases, the EPI slope information is not affected
by the color, which can improve the EPI slope data and training efficiency. The random
Gaussian noise data enhancement is able to increase the number of training data images
substantially and avoid over-fitting.

In addition, all the convolution sizes and step lengths in the framework proposed in
this paper are basically chosen to be small and controlled below 2 × 2. The reason is that
the EPI size is smaller than the subaperture image, and the pixel relationship contained
in the EPI is more complex. In order to fully extract the EPI slope detail information, a
small step convolution is taken for processing, and many Relu activation layers and batch
normalization layers are used to accelerate convergence and improve training efficiency. In
this paper, the method of network training was gradient descent, the batch size was set to
128, the optimizer used RMSprop, and the initial learning rate was 10−5. The model was
trained on an NVIDIA GTX 2080Ti GPU and took about three days for training. The loss
function chosen for training was the mean absolute error (MAE), which is expressed as:

MAE =
1
m

m

∑
i=1

∣∣dgt(i)− de(i)
∣∣ (8)

where dgt represents the real value of the i-th pixel, m is the total number of pixels in the
depth map, and de represents the estimated depth.

4.2. Quality Metrics

In order to verify the performance of the algorithm in the aspects of edge preservation,
smoothness, and continuity of depth images, the BadPix (BP), mean square errors (MSE),
and Q25 were used for quantitative evaluation [37]. BadPix measures the percentage of
wrongly estimation pixels of which the errors exceed as:

BP(ε) =

{
yi ∈ m :

∣∣dgt(i)− de(i)
∣∣ > ε

m

}
(9)

Quality metrics, Q25, represents the accuracy at the 25th percentile of the disparity
estimates on a given scene. Thus, it measures the maximum error on the best 25% of
pixels for each algorithm. In effect, it provides an idea of the “best case accuracy” of a
given algorithm.

Q25 = Sidx∣∣dgt − de
∣∣ (10)
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Sidx is the idxth data sorted from largest to smallest. |dgt−de| represents the absolute
disparity difference between estimated depth image and ground truth. In line with the
MSE, the absolute disparity difference is multiplied by 100. We set idx = m × 0.25, which
represents 25 percent of the total number of pixels in the depth map.

4.3. Comparison to Traditional EPI Methods

Firstly, we compared our method with the mainstream LF depth estimation algorithms
epi1 [14], epi2 [15], LF [16], LF_OOC [11], and CAE [17]. GT is ground truth of scenes.

(1) Visual Comparison: Figures 6 and 7 show the estimated depth maps. It can be seen
that the algorithm proposed in this paper was closer to the edge of the head and
chin in the Cotton scene—whereas the epi1 and epi2 algorithms had more noise, the
LF algorithm had larger errors at the top of the head, and the LF OCC and CAE
algorithms had several false bulges at the edge of the head red box compared with the
true value. The comprehensive effect of the algorithm proposed in this paper is better.
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Furthermore, the algorithm in this paper was also close to the true value at the edge of
shoes and basketballs in the Sideboard scene. The edge of the red box was more accurate
than in other algorithms, and the depth estimation effect was improved greatly.

(2) Quantitative Results: Quantitative comparisons of BP > 0.07 and MSE are shown in
Tables 1 and 2. Each algorithm solves the problem from a certain view and focuses on
different application scenes and images according to its characteristics. It can be seen
that the algorithm proposed in this paper has obvious advantages compared with the
traditional LF depth estimation algorithm. In addition, the MSE index was poor in
the Sideboard scene. Other scene indexes were better than the traditional LF image
processing algorithm, and the comprehensive index was the best.

Table 1. Comparison of results for BP > 0.07.

Bad Pixel > 0.07

Sideboard Cotton Boxes Dino

epi1 0.1838 0.1393 0.2445 0.1035
epi2 0.1895 0.1669 0.2980 0.1567
LF 0.2199 0.0783 0.2302 0.1903

LF_OOC 0.1849 0.0622 0.2652 0.1491
CAE 0.0984 0.0337 0.1788 0.0497
Ours 0.0887 0.0236 0.1671 0.0493

Each bold indicates the best value in the corresponding column. Each underline indicates the second-best value in
the corresponding column.

Table 2. Comparison of MSE results.

MSE

Sideboard Cotton Boxes Dino

epi1 2.85 2.25 8.72 1.23
epi2 4.65 4.32 10.93 2.08
LF 1.16 9.17 17.43 5.07

LF_OOC 2.30 1.07 9.85 1.14
CAE 0.88 1.51 8.42 0.38
Ours 1.08 0.76 7.75 0.82

Each bold indicates the best value in the corresponding column. Each underline indicates the second-best value in
the corresponding column.

4.4. Comparison to Deep Learning-Based EPI Methods

For verifying the performance of the algorithm in this paper under the same class of
algorithms, the experimental results are compared with the mainstream EPI deep learning
LF depth estimation algorithms EPIRefocusNet [18], EPI-ORM [19], EPNosgc [20], and
EPI-shift [21], and the better-performance EPI traditional LF depth estimation algorithm,
SPO [22].

(1) Visual comparison on estimated depth map: Detailed experimental comparisons are
shown in Figures 8–11. It can be seen from the figures that the algorithm proposed
in this paper has made a good depth prediction effect on the basketball edge in the
lower right corner of the Sideboard scene, and the edge depth effect was very close
to the true value. The edge of EPIRefocusNet and SPO algorithms had a little noise,
the edge of EPNosgc and EPI-orm algorithms had error estimation, and the edge
of EPI-shift algorithm had a little gap. At the chandelier region in the scene, the
algorithm in this paper predicted its depth edge closer to the true value. In the region
where multiple chandeliers block each other, the SPO and EPI-orm algorithms had
obvious noise in the edge prediction. The EPNosgc and EPIRefocusNet algorithms
had error estimations at the chandeliers, which are close to each other. The algorithm
in this paper is basically accurate in predicting the edges of the chandeliers. In the
Cotton scene, the algorithm proposed in this paper was very close to the true value in
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the portrait hair region prediction, and there was basically no noise in the background
region—indicating that the comprehensive effect is better. In the Boxes scene, although
the edge results of the proposed algorithm were good, there was a little noise on the
box, indicating some disadvantages when compared with other algorithms. In the
Dino scene, the proposed algorithm also had obvious effect advantages at some edges
and obtained better depth results.
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Figure 9. Comparison of depth results in Cotton scene.

It can be seen from the above that the algorithm proposed in this paper is more
accurate in estimating the depth detail region and can achieve good subjective results.

(2) Comparison on BP, MSE and Q25 indexes: Moreover, this paper makes three types of
index correlation images based on the subjective depth map, which reflects the details
of the algorithm results, as shown in Figures 12–14.
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BP measures the percentage of wrongly estimated pixels. It can reflect the edge
preservation ability of the algorithm. As we can see in Figure 12, of the BP maps, our results
had fewer false points at the edges, preserved more details, and had sharper boundaries
compared to other methods. At the same time, as shown in the quantitative comparisons
of BP > 0.03 in Table 3, our algorithm can always hit the optimal or suboptimal indicators.
Especially for challenging scenes—e.g., the Boxes scene, which consists of occlusions with
depth discontinuity, and the Sideboard scene, which had complex shape and texture—
our approach always achieved the best effect. This shows that our algorithm is more
advantageous for occlusion and complex scenes.

MSE reflects the smoothness of the reconstructed depth map. As shown in Figure 13
(color difference reflects the change of MSE values), although the proposed algorithm can
reconstruct a relatively smooth surface and clear edges, it is easily disturbed by noise. As
shown by the quantitative results in Table 4, our algorithm can achieve good results for the
Cotton sequence containing smooth surfaces and textureless regions, but it is not dominant
for noisy scenes. This is the common shortcoming of applying EPIs to the CNN-based
method. The reason is that noise may lead to the false slope estimations in EPI patches.
Therefore, one of the future works could introduce global constraints into our model.
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Table 3. Comparison of results for BP > 0.03.

Bad Pixel > 0.03

Sideboard Cotton Boxes Dino

EPNOSGC 23.87 9.77 29.01 12.79
EPIRefocus 32.50 14.15 30.26 18.65

EPI-shift 36.29 17.08 44.62 22.28
SPO 28.81 13.71 29.53 16.36

EPI-ORM 23.34 18.28 31.30 17.19
proposed 20.53 10.57 28.58 13.60

Each bold indicates the best value in the corresponding column. Each underline indicates the second-best value in
the corresponding column.

Table 4. Comparison of MSE results.

MSE

Sideboard Cotton Boxes Dino

EPNOSGC 1.74 1.41 9.31 0.57
EPIRefocus 1.61 0.57 7.55 0.65

EPI-shift 1.30 0.46 6.93 0.37
SPO 1.02 1.31 9.11 0.31

EPI-ORM 1.87 1.50 7.43 1.03
proposed 1.08 0.76 7.75 0.82

Each bold indicates the best value in the corresponding column. Each underline indicates the second-best value in
the corresponding column.

Q25 visualization depicts the accuracy for those pixels that fall into the Q25, i.e., the
regions with the 25% best accuracy for each algorithm. As we can see in Figure 14, our
approach can reconstruct the smooth gradient in the background. Inside the object and in
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the background, other algorithms show stratification effects, and the gradient is not smooth
(such as in the slope region of the error plot), while the algorithm proposed in this paper
has almost no such phenomenon. The proposed algorithm can solve the problem that it is
difficult to extract the depth of complex images in EPIs and obtains good results, which
reflects the feasibility of the proposed attention mechanism to extract features.

We drew the intuitive radar chart as shown in Figure 15. It can be seen that the
comprehensive performance of the proposed method in this paper is excellent, and the
average effect of each scene reaches the best in BP > 0.03, BP > 0.01, and Q25 indexes. These
results reflect the comprehensive performance of the algorithm proposed in this paper and
proves its research value.
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4.5. Failure Case and Discussion

We further compared the proposed method with two advanced subaperture image-
based methods: epinetfcn [7] and lfattnet [8]. As shown in Figure 16 and Tables 5 and 6,
our method does not achieve the best results and lfattnet obtains better performance.
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Table 5. Comparison of results for BP > 0.07.

Bad Pixel > 0.07

Boxes Cotton Sideboard Dino

epinetfcn 0.1284 0.0051 0.0480 0.0129
lfattnet 0.1104 0.0027 0.0287 0.0085
Ours 0.1671 0.0236 0.0887 0.0493

Each bold indicates the best value in the corresponding column.

Table 6. Comparison of MSE results.

MSE

Boxes Cotton Sideboard Dino

epinetfcn 6.24 0.19 0.83 0.17
lfattnet 4.00 0.21 0.53 0.09
Ours 7.75 0.76 1.08 0.82

Each bold indicates the best value in the corresponding column.

Although EPI LF contains the depth information of each point in the scene, it discards
many pixel features inside the subaperture image and contains less spatial information
compared with other LF representation forms, which will have an impact on the accuracy
of the depth estimation. Although the directional relationship model and multiviewpoint
attention mechanism designed in this paper can accurately extract the EPI slope features,
it is inevitable that it will lose EPI slope features due to the small number of pixels in
the EPI and the occlusion of important EPI slope information. Therefore, we deduced
that a multimodel LF depth estimation algorithm combining the LF EPI with other LF
representation forms, such as subaperture image and focal stack images, would be designed
to improve the accuracy of the depth estimation.

5. Conclusions

In this paper, in consideration of EPI LF’s characteristics of multidirectional relation-
ship and pixel consistency, we proposed an EPI LF depth estimation method based on
the directional relationship model and multiviewpoint attention mechanism. The EPI
directional relationship model was used to establish the directional relationship of two EPIs.
The EPI low-level features were extracted by using multiviewpoint attention mechanism,
and the EPI slope high-level features are extracted by combining channel attention and
the spatial attention mechanism. The feature redundancy was eliminated by using the
residual module.

We demonstrated the effectiveness of our approach on the 4D LF benchmark. It can
reconstruct the smooth surface and the region with sharp depth discontinuity. Especially,
it is able to predict more accurate disparity maps in some challenging scenes such as
Boxes and Sideboard. In future works, we could introduce global constraints to enhance the
antinoise ability. We will also try to combine the EPI with subaperture images or focal stack
images to improve the accuracy of the depth estimations.
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