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Abstract: Currently, abnormality detection and/or prediction is a very hot topic. In this paper,
we addressed it in the frame of activity monitoring of a human in bed. This paper presents a
comprehensive formulation of a requirements engineering dossier for a monitoring system of a
“human in bed” for abnormal behavior detection and forecasting. Hereby, practical and real-world
constraints and concerns were identified and taken into consideration in the requirements dossier.
A comprehensive and holistic discussion of the anomaly concept was extensively conducted and
contributed to laying the ground for a realistic specifications book of the anomaly detection system.
Some systems engineering relevant issues were also briefly addressed, e.g., verification and validation.
A structured critical review of the relevant literature led to identifying four major approaches of
interest. These four approaches were evaluated from the perspective of the requirements dossier. It
was thereby clearly demonstrated that the approach integrating graph networks and advanced deep-
learning schemes (Graph-DL) is the one capable of fully fulfilling the challenging issues expressed in
the real-world conditions aware specification book. Nevertheless, to meet immediate market needs,
systems based on advanced statistical methods, after a series of adaptations, already ensure and satisfy
the important requirements related to, e.g., low cost, solid data security and a fully embedded and
self-sufficient implementation. To conclude, some recommendations regarding system architecture
and overall systems engineering were formulated.

Keywords: activity monitoring of “humans in bed”; abnormal behavior detection and forecasting;
comprehensive anomaly concept definition; explainability and interpretability of detected anoma-
lies; uncertainty modeling; early warning capability; behavior evolution identification and system
adaptivity; verification and validation; anomaly detection and prediction; scenario analysis; selected
use-cases; user perspectives of practical interest; real-world context-aware and practically realistic
specification book; comprehensive critical state-of-the-art review; system architecture and system
engineering related recommendations

1. Introduction

Abnormality detection and/or prediction is currently a topic of very high interest.
In this paper, we addressed it in the frame of the activity monitoring of a human in bed.
Indeed, humans typically spend a significant portion of their daily lives in bed. This time
becomes even longer in cases where the human is unwell. This is particularly the case for
sick or older people, who spend even more time in bed. Their physical activity or inactivity
patterns provide useful signatures that reflect the “state” of the person under observation.
In the frame of activity monitoring endeavors, behavioral situations that are abnormal
(these situations are more/extremely rare within the observation time window) are the
ones that are of the highest interest when compared to behavioral situations that are rather
normal (these ones occupy most of the observation time window).
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Monitoring humans in bed, e.g., in the context of “sleep monitoring”, is very important
for a series of human-specific health conditions. For elderly people, for example, inadequate
and irregular sleep (which can be inferred from physical movements on the bed while
sleeping) is often related to serious diseases such as depression and diabetes. Indeed, in
several cases, it is necessary to monitor the body positions and movements made while
sleeping (or just while lying in bed) because of their relationships to either particular
diseases (i.e., sleep apnea and restless legs syndrome) or particular anomalous behaviors of
relevance w.r.t. the specific observation context of the human in bed. Analyzing movements
(or, more generally, physical activities) during sleep can also help in determining both sleep
(or laying down) quality and irregular sleeping (or laying down) patterns.

Lying in bed, especially for longer times or more than only some minutes, is generally
motivated by the need to rest due to several health status-related contexts. For example,
one is sick (different types of sickness, different levels of sickness), one is very tired, one
is very old and weak, one is weak or tired, a lady one day or several hours before giving
birth, a person in rehabilitation after either a chirurgical operation or a stroke, etc.

Moreover, it is well known that sleep plays an important role in the quality of life
and contributes significantly to staying healthy, active and energetic. In special residences
such as in the so-called nursing and retirement homes, periodic observation rounds (of the
medical or nursing personnel) during the night are a major disruption for the residents and
can cause distress and sleep deprivation. Thus, some intelligent technical system capable
of reliably performing the monitoring endeavor of those named residents is most welcome.

Overall, it can be stated that sleep monitoring systems, to name a few illustrative
use-cases, enable the recognition of sleeping disorders as early as possible for diagnosis
and prompt treatment of diseases. Such smart monitoring systems can indeed provide
healthcare providers with quantitative data about irregularities (in related positions and
movements in bed) in sleeping periods (or more generally in laying periods) and durations.
They can also provide detailed sleeping/laying profiles that depict periods of restlessness
and interruptions, such as bed exits and bed entries due to either visiting the bathroom or
performing other activities in the home.

Numerous sensor technologies exist that can be involved in the acquisition of data
from a bed w.r.t. to movement and/or positions of the human lying in the bed. There are
several monitoring devices available on the market that are used for sleep tracking or for
more safety during the night. These sensor systems can be divided into wearables, such as
smart watches and fitness trackers, sleep monitoring belts and devices that are placed on
or under the mattress [1–6]; devices that are attached to the pillow [2]; smart bed sheets,
mattresses and pillows [2,7,8]; sleep monitoring devices that are placed beside the bed [9];
and camera-based systems in the room [10]. Furthermore, there are monitoring systems
available and capable, for example, of measuring parameters of sleeping babies [11] and
people with epilepsy [12]. Most of those devices are mainly configured as lifestyle gadgets
for rather private applications. However, some manufacturers have already been offering
special solutions for care institutions [3,4,8,10]. Thereby, most existing sensor systems use
piezoelectric sensors, accelerometers and/or radio-frequency identifiers to detect a series
of relevant parameters. Indeed, the use of radio-frequency identifiers [13,14], air-pressure
sensors [15,16], smart textiles [17,18], photoplethysmography [19] and thermopiles [20]
has already been extensively researched, as described in several scientific papers. Some of
those papers also discussed the use of piezoelectric sensors [21,22] or load cells [23] below
the legs of a bed to monitor the parameters of a person lying in bed.

Sensors placed under each of the four bed legs are a representative example of the
various sensor systems described in the previous paragraph. These types of sensors are
particularly capable of measuring variables related to all forms of physical activity in the
bed, e.g., through weight variations or motion detection. A monitoring system involving
the data generated by such sensors can capture different activity-related physical variables
through the use of more than one sensor type under each bed leg [24]. The following are
some examples of usual physical activities in the bed for which related variables can be
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detected by the various sensors (non-exhaustive list): sitting on the bed with feet on the
ground, standing up from the bed with feet on the ground, sleeping on the bed, turning
oneself in the bed, sitting in the bed (with feet in the bed), etc.

The comprehensive and holistic discussion of the abnormality concept in the overall
observation context of the “monitoring of a human in bed” is motivated by a series of
insights originating from a critical analysis of the relevant literature. First, overall, one
realizes that there is a big and serious confusion regarding a comprehensive and universally
solid, valid and accepted definition of the concept “anomaly”. What some authors call
or understand under “anomaly” comes rather too close to other concepts of relevance
such as “activity”, “event”, “abnormal behavior” and “behavior change”. Moreover, the
“anomaly” definition becomes more complex in view of the fact that the system under
observation (i.e., a human in bed) is in various system-related aspects very different from
a pure technical machine as usually addressed in most of the relevant literature. It is
also of special relevance that the context “human in bed” is itself a relatively diverse and
broad universe where various fully different and interesting monitoring use-cases may be
encountered. For example, alone, the specific human type/sample under observation may
make a huge difference in the case settings. The following few examples may underscore
this sensitive nuance: (a) the human under observation is a one-year-old baby or a small
child between two and five years; (b) the human under observation is a healthy athletic fit
young man; (c) the human under observation is a very old (90 years old) and sick person
in a coma; (d) the human under observation is a pregnant woman awaiting to give birth
within a couple of days, etc. One can assume from common knowledge that the physical
activity patterns and their respective dynamic evolutions over time (short-term, average-
term and long-term) for these human types are fully different from each other. Thus, the
unsupervised-learning-related “anomaly” definition shall be robust w.r.t. those evident
differences amongst different human samples under observation. Moreover, one can also
ask whether the “anomaly” definition shall be “black” (meaning it assumes unsupervised
learning or identification), “white” (meaning it assumes an expert-supported (or via a
reference labeled dataset) supervised learning or identification), or “gray” (meaning a
merging of “black” and “white” identification).

From the broad anomaly literature in the contexts of machines’ or technical systems’
observations, one learns that there are various types and forms of anomalies. Thus, just
stating or detecting the presence/occurrence of an anomaly is not sufficient at all. One shall
also specify the related anomaly type and/or form. An interesting question for this review
study is whether all of those anomaly types and forms observed in the context of machines’
observations are also relevant and observable for our core context, “monitoring of a human
in bed”.

Even after the “anomaly” concept has been well defined and assessed regarding
type and form, another very sensitive and practically relevant dimension is its location
of it in time. In any observation/monitoring endeavor, the time dimension fixes three
regions, whereby each of them can also be divided into respective sub-regions: (a) past,
(b) present/now/current and (c) future. If we consider the future, sub-regions can be
near-future, middle-future and far-future. The specific measure of each of these sub-regions
(for an illustration of the future) may be very dependent on the setting of the specific
observation case. The “near future” may be some seconds, some minutes, some hours,
or even some days, depending on the given human observation use-case. This suggests
that the use-case engineer shall specify the various use-case related realistic/appropriate
boundaries of the different time dimension-related sub-regions. Therefore, a given well-
defined “anomaly” shall be placed in a specific sub-region of the time dimension. A
very interesting question of relevance for science is that the detection of anomaly may
happen/occur or be confirmed at various relative times. The relativity referred to here is
the one between the time of occurrence (or time sub-region) of an anomaly and the time it
is effectively detected/assessed/predicted.
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Indeed, a currently running anomaly detection algorithm can produce a result related
to three different cases in their meaning, interpretation and relevance for the specific
monitoring use-case:

• Time Case 1—Posterior anomaly detection: the anomaly happened in the past (in
one of the different sub-regions of the past), but it is detected now. Here, the detection
of posterior is the anomaly occurrence;

• Time Case 2—Online or simultaneous detection: the anomaly happens in the current
time, now (in one of the different sub-regions of now), and it is detected now. Here,
the detection and anomaly occurrence are both in the current time, now;

• Time Case 3—Forecasting or anterior anomaly detection: the anomaly will happen
in the future (in one of the different sub-regions of the future), but it is detected now.
Here, the detection of anterior is the anomaly occurrence.

As the underlying (prior) knowledge supporting each of these three cases (Case 1,
Case 2 and Case 3) is different for each of them, one shall involve fully different detection
schemes and approaches. The respective results also have different meanings and relevance
for the specific human monitoring use-cases. Moreover, at least theoretically, the same
observation data that are judged “anomaly” may later (i.e., posterior) be differently viewed
as normal, and vice-versa. This shows a specific aspect of the anomaly-related time dy-
namics of observed situations; that is, a modification of the labeling of the same “observed
situation” as time passes. Indeed, “behavior change” is one of the complex forms of the
“anomaly” concept, which may explain such complex labeling dynamics.

The previous differentiation of cases is sure of high practical relevance. Let us briefly
consider the data processing-related hierarchy and perspective. Essentially, the available
sensors produce “raw data”. Traditional machine learning suggests the following data-
processing-related hierarchy w.r.t. the gradual processing levels. From “raw data” (Level 1),
one extracts or generates “features” (Level 2). From features, one generates “low-level
events” or “activities” (Level 3). From low-level events, one generates/extracts “high-level
events” or situations (Level 4). In principle, an “anomaly” may be located at each of the
listed data processing hierarchy levels: Level 1 to Level 4. Several anomalies at the lowest
levels (Level 1) of this data-processing hierarchy may be due to sensor-related problems
such as “missing data”, electric disturbances in the sensors, sensor system’s electronic
faults, outliers, etc. Most of these anomalies at the lowest level (since they are mainly due
to sensor issues) are of no significance for most human (in bed) monitoring use-cases and
shall be filtered out and addressed by some appropriate pre-processing modules of the raw
sensor data.

Thus far, we have identified various complexity dimensions of the anomaly concept
in general and for our core context (monitoring of a human in bed) in particular: anomaly
types and forms, observation subject dependency, use-case dependency, occurrence time-
related location, relative timing between occurrence and detection, data processing level,
etc. If all that complexity is not sufficient, several modern use-cases come with a particularly
hard although practically very useful characteristic and requirement w.r.t the anomaly
concept: “Anomaly Explainability”. In many use-cases, the anomaly of interest shall
be the ones located at the highest data processing level, namely at Level 4. The basic
bricks of the explainability of anomalies are founded on explicitly modeling the complex
dependencies between different “variables”, which significantly contributes to the ability
to detect anomalous occurrences at a given processing level. Those named “variables” may
be entities of the same and/or lower processing levels (normal or abnormal) or entities
of the same or different time regions or sub-regions. This is valid for all three time cases
described above (posterior, simultaneous, anterior). This explainability dimension is part of
the so-called “Explainable Artificial Intelligence (AI) ” and is very crucial for the practical
user acceptance of monitoring systems of humans in bed. It enables one to explain (it
provides coherent reasoning) why and how the anomaly happens. It is a set of processes
and methods that allows human users to comprehend and trust the anomaly detection
results created. Indeed, “Explainable AI”, according to the literature, is used to describe any
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given “intelligent” model, its expected impact and potential biases. It helps to characterize
model accuracy, fairness, transparency and outcomes in “intelligent system”-powered
decision making. Most human (in bed) observation use-cases clearly need this capability.
“Explainable Anomaly” is therefore very crucial for the target user organizations (examples:
hospitals, care facilities for older people, etc.) in building trust and confidence when putting
“monitoring systems for human bed” into production.

Motivated by the general background just provided, this review and communication
paper intended to provide the following essential contributions; each of these contributions
was addressed in one or more of the next sections of this paper:

1. Briefly describe the basic settings and the general architecture of the monitoring
context of a human in bed;

2. Identify the currently poor definition of the “anomaly” concept and suggest a compre-
hensive and coherent definition that is consistent with systems engineering-related
practical requirements. A comprehensive definition of the anomaly concepts shall
include all important dimensions of its complexity. A clear differentiation to other
closely related and/or coexistent concepts is provided;

3. Furthermore, provide a comprehensive explanation of a series of relevant charac-
teristics of a robust and real-world mature anomaly detection endeavor. For ex-
ample, the following: subject-dependency; use-case dependency; activity/event
attributes/features; anomaly score; uncertainty quantification; unsupervised learning
versus semi-supervised learning versus supervised learning; the complex and time dy-
namic and/or structural relationship between events (at/of different levels of the data-
processing hierarchy), events sequences and anomalies; the relative timing between
detection and occurrence; the observation perspectives of the anomaly phenomenon,
which are, amongst others the following: (a) “condition/entity/event-type related
anomaly”, (b) “time-window related anomaly”, (c) “multiple time-windows related
anomaly”, (d) “conditions/entity/event-sequence related anomaly”, etc.; adaptivity
based on data aging, data dissimilarity forgetting factors and novelty detection;

4. Formulate a comprehensive requirements engineering dossier for a robust and practi-
cally useful anomaly detection system. A subsequent representative specification book
shall be presented. The specification shall distinguish three classes of requirements:
the MUST-HAVE requirements, the NICE-TO-HAVE requirements and the NEVER
HAVE/DO NOT requirements;

5. Comprehensively discuss the verification and validation of the challenge of a robust
and real-world mature anomaly detection system in the context of the monitoring
of humans in bed. Hereby, amongst other concerns, the appropriate setting and
availability of reference datasets are discussed;

6. Then, a comprehensive critical review, identifying respective limitations, of how far
the major schemes/approaches for anomaly detection as per the current state-of-the-
art are capable or not to fully satisfying the major requirements described for the
robust and real-world mature anomaly detection system;

7. Finally, the suggestion and discussion of a tentative general and strategic architecture
of a truly robust anomaly detection scheme, which has the potential of fully satisfying
all of the MUST-HAVE requirements of the formulated comprehensive specification
book. The bricks of this architecture, which have capabilities going beyond those of
competing schemes from the current state-of-the-art (see also the reference system
described in Section 2), are briefly discussed.

2. General Context Description of the Monitoring of Humans in Bed, One Illustrative
Example from the Practice

A typical state-of-the-art representative monitoring system of humans in bed can be
described as follows. A good example of such a system is the one developed by the company
“P.SYS system creation KG” [25]. The aim of this monitoring system is to provide a user-
friendly system that connects older people, or people who generally live independently, in
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the event of irregularities (in their daily behaviors) with help providers from their extended
social environment in a timely and autonomous manner.

The core focus here is on the development and maturing of a bed monitoring system
that detects irregularities in a person’s physical movement patterns while sleeping on a
bed. For related sleeping patterns, the bed monitor collects data from sensors placed under
the bed legs (see Figure 1). The signals form a superposition of body vibrations (movement,
breathing, etc.), the weight distribution of the person lying in bed and external influences.
The bed monitor can, respectively, be used in the care sector and subsequently also in
private households in order to be able to detect exceptions that manifest themselves in
deviations from a person’s normal sleeping behavior and to be able to react to them with
an appropriate alarm.
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Figure 1. Human in bed monitoring through signals generated by sensors placed under the bed.
Under each of the four bed legs, two sensors are placed: one weight sensor and one motion sensor.
Thus, eight sensor measurement values are generated continuously over time for further processing
by the anomaly detection intelligent system [25].

Regarding the intelligent system implemented, it already realizes most of the features
of the related state-of-the-art. Essentially, a model based on advanced statistical methods
(such as hidden Markov models and others) was already developed, which independently
learns the usual patterns in the data and reacts to exceptions. The developed algorithms
work sequentially, with the observations being processed in real time. The data streams
from the sensors are not stored in the model; only the model parameters are adjusted
and stored using the observed data. Beyond detecting exceptions, one can also assess
the quality (eventually in different quality levels) of the sleeping process and/or identify
specific special events. This system can deal with subject-dependency, as it learns individual
behavior and reacts to individual exceptions. It essentially learns from each individual user
under observation on the bed (Figure 2).
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and abnormal ones. (Source of the different image parts: Freepik).
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3. A General Comprehensive Discussion of the “Abnormality Concept” in General
and in Particular w.r.t. the Monitoring Context of Humans in Bed

Traditional home-based context-aware remote monitoring systems [26] use different
techniques such as rule-based reasoning, probabilistic models, data mining, etc., which
can detect abnormalities only when they occur in an ongoing situation. One shall note
carefully that an abnormality happens within an ongoing (or future) situation. Thus, the
situational dimension and concept and its related ontology must be comprehensively
defined and described for the context of monitoring humans in bed. Several such systems
have no option/capability to utilize long-term situational data for modeling each user
state individually and predicting future anomalies ahead of time. It is worth underscoring
this very practically relevant capability of monitoring systems, namely that of a long-term
situational awareness and prediction of future anomalies. This capability refers to a special
“complex early warning system” functionality. Monitoring systems that have this capability
(notice that it is a very tough and very advanced requirement that represents the cutting-
edge), provided that it is reliably and robustly validated (e.g., with a confidence level
above 90% or better even up to 98% to be of immediate relevance for practical, real-world
implementations [27,28]), are able to alert care-takers or any other relevant personnel or
family member about the incoming changes before the situation becomes critical.

As already stated above, there is considerable and serious confusion regarding a com-
prehensive and universally solid, valid and accepted definition of the concept “anomaly”.
The first semantic problem is that several authors suggest that “anomaly” is an independent
entity, which is a wrong perception. Indeed, and more correctly, one shall rather state that
an “anomaly” is always information, a judgment or a rating of one or more particular
“behavioral entities” of the system under observation. A complex system under observation
may have various types of entities operating/occurring at different system levels and/or
from different system observation perspectives.

First of all, it is important to separate (assume they are pre-filtered from the analysis)
the faults, signal perturbations and other imperfections related to the electronic measure-
ment sensor system from the “behavioral entities” that are solely linked and part of the
system under observation. Thus, we focused mostly on anomalies related to the intrinsic
physical activity behavior of the human in bed under monitoring.

Assuming there is a consensus w.r.t. the understanding that “anomaly” is always
information, judgment or a rating of one or more particular “behavioral entities” of the
system under observation, one can now suggest the description of a comprehensive on-
tological and semantic framework of the anomaly concept. This framework considers a
series of dimensions:

1. Hierarchy levels (data-processing related) of the behavioral entities;
2. Form-type related anomaly classification;
3. Observation-context perspective related anomaly classification;
4. Learning strategy and learning context-related perspective. Examples: “black” ver-

sus “white” versus “gray” versus “subject-dependent” versus “use-case dependent”
modeling and identification of anomalies;

5. Novelty-related anomaly classification (see “novelty” detection; see also continual learning);
6. Subject-dependency-related anomaly detection.

3.1. Consider the Hierarchy Levels (Data-Processing Related) of the Behavioral Entities

We suggested the following hierarchy of data-processing levels, which is consistent
with traditional machine learning pipelines; see Figure 3. We defined five core data
processing levels, namely Level 0, Level 1, Level 2, Level 3 and Level 4.
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Consider Level 0. The acquisition; structuring; and various combinations, abstractions
and pre-processing of the raw sensor data are managed at Layer 0. Level 0 produces
a multivariate dataset that enables Level 1 to better identify the first race of different
entities (i.e., Level 1 entities), which are relevant for the overall system-related behavioral
characterization. In Level 0, we did not define entities of relevance. Of particular interest
at Level 0, one may nevertheless point out aspects such as grouping certain sensors,
aggregating sensor data and extracting from the raw sensor data various “metadata” that
are perceived to be useful.

Consider Level 1. This is the first level at which relevant behavioral entities were
defined, identified and/or detected. At this level, the entities are called ACTIVITIES. The
signature of a Level 1 entity is one of the possible/observed patterns provided by the
Level 0 complex multivariate time series. If there is no supervision at all, the Level 1
entities are determined through fully unsupervised learning. Otherwise, semi-supervision
or full supervision is always possible and welcome. Indeed, depending on the specific
monitoring use-case, some of the Level 1 entities may be known or suggested from the
given application context, thus enabling at least a semi-supervision. In the worst case,
at least a fully unsupervised identification is always possible, the most naïve of them
being a form of deep-clustering. As is discussed more in later sections, amongst others for
laying the ground for the so-called ”explainability” (see the “explainable AI” paradigm)
characteristic, as part of the most advanced and cutting-edge specification book of most real-
world monitoring of “human in bed” use-cases, for all relevant detection tasks, we favored
clustering schemes involving advanced forms of graph convolutional neural networks. The
explainability strongly supports the dependability of the monitoring system, as it provides
information of relevance for humans who are in very sensitive and/or dangerous/critical
states of health or feeling. A further very sensitive issue for cutting-edge anomaly detection
is related to the behavioral evolution over time. Level 1 is the first level at which the first
signs of behavioral evolution are detected, although the changes are still relatively small.
Each entity of this Level 1 has attributes. Thus, the evolution of the global system behavior
may/shall be perceived at this level in one or more of the following ways: (a) soft-evolution,
where the value of one or more attributes of one or more Level 1 entities changes over time
(slowly or fast); (b) hard-evolution, where a novel Level 1 entity (i.e., not yet encountered
until now) happens on the scene; and (c) a mixed-evolution, where both hard-evolution
and soft-evolution occur simultaneously.

By carefully reviewing and analyzing various real-world observations of humans
in bed in all possible use-cases, we can state that the occurrence of these three forms of
behavioral evolution is very likely to be present in the behavior dynamics of the humans to
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be observed. Consequently, a robust and reliable continual learning capability is required
in each advanced intelligent system architecture taking charge of the various Level 1
detection endeavors.

Consider Level 2. This is the second level at which relevant behavioral entities are
defined, identified and/or detected. At this level, the entities are called SIMPLE EVENTS.
Here, we have a second behavior-related aggregation/abstraction of the information pro-
vided by the observed Level 1 entities, coded by the sequences over time of those named
Level 1 entities. All remarks and observations described for Level 1 w.r.t. the explainability
requirement, the learning strategy (unsupervised learning, semi-supervised learning, self-
supervised learning, continual learning) and the behavior evolution ways are also valid
in Level 2.

Consider Level 3. This is the third level at which relevant behavioral entities are de-
fined, identified and/or detected. At this level, the entities are called COMPLEX EVENTS.
Here, we have a further behavior-related aggregation/abstraction of the information pro-
vided by the observed Level 2 and Level 1 entities, as coded by the sequences over time
of those named entities. All remarks and observations described for Level 1 and Level 2
w.r.t. the explainability requirement, the learning strategy (unsupervised learning, semi-
supervised learning, self-supervised learning, continual learning) and the behavior evolu-
tion ways are also valid at this Level 3.

Consider Level 4. This is the fourth level at which relevant behavioral entities are
defined, identified and/or detected. At this level, the entities are called BEHAVIOR
INSTANCES. Here, we have a further behavior-related aggregation/ abstraction of the
information provided by the observed Level 3, Level 2 and Level 1 entities, as coded by
the sequences over time of those named entities. All remarks and observations described
for Level 1, Level 2 and Level 3 w.r.t.; the explainability requirement; the learning strategy
(unsupervised learning; semi-supervised learning; self-supervised learning; continual
learning); and the behavior evolution ways are also valid at this Level 4.

3.2. Consider the Form-Type Related Anomaly Classification

Most of the anomaly-related literature, especially the ones related to machine systems
observations, defines a series of simple and complex forms and types of the anomaly; we
can call them “anomaly patterns”. The anomaly concept shall be associated with or linked
to a given entity of one of the four highest levels of the hierarchy presented in Figure 3.
Indeed, each entity of levels 1 up to 4 (see Figure 3) has a series of attributes that may
be hand-crafted by a human designer. Examples of illustrative attributes (just illustrative
examples; for a concrete monitoring use-case, the use-case engineer shall determine/define
them) of an entity of level 1 up to level 4 (i.e., the levels according to Figure 3):

• Attribute 0: It is a binary attribute indicating whether this entity is new (see novelty
detection) or it was already encountered once in the past;

• Attribute 1: Relative occurrence-time difference(s) w.r.t. to one or more of the latest
occurrence(s) of the same entity at a given level;

• Attribute 2: Relative occurrence-time difference(s) w.r.t. to one or more of the latest
occurrences of other entities of the same given level;

• Attribute 3: Time duration of the current occurrence of the same entity;
• Attribute 4: Selected time-duration-related metadata related to the current and previ-

ous occurrences of the same entity;
• Attribute 5: Number of occurrences of the entity with a given time window;
• Attribute 6: Relative number of occurrences of the same entity with a given time

window w.r.t. one or more other entities of the same level;
• Attribute 7: Selected metadata w.r.t. one or more of the previous attributes (i.e., Attribute 1

up to Attribute 6);
• Etc.
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Some entity attributes may be simple and represented by a single real number/value.
However, some other attributes may be complex and represented in the form of vector(s)
or matrix/matrices of real and/or binary numbers. Moreover, a coherent normalization
of all individual entity attributes values may be of high practical relevance, especially
when considering the variety of approaches that may be involved in the anomaly detection
endeavor. As one can imagine, an abnormal behavior may be related either to just one
or to multiple attributes of a given entity. If one can reliably detect abnormal behavior
while involving only a small number of attributes for the individual entities, the better
it is. It is also thinkable to merge (this merging may involve an appropriate, eventually
complex formula) all several attributes of an entity into one combined, resulting global
attribute expressed as a real number. After merging, the combined global attribute (that
is, one occurrence in the related time series of its evolution over time), a single real value,
may be used as the input for the anomaly detection intelligent scheme.

It is also evident that some of the entity attributes are generated from fully different
intelligent processing modules; this is, for example, the case for Attribute 0.

Before discussing the various possible “anomaly patterns”, let us first state that the
anomaly assessment may/shall be performed, in parallel, in principle at all four levels of
the data-processing hierarchy structure presented in Figure 3. Indeed, the same inherent
physical abnormal behavior must be seen at all the five hierarchy levels, starting from Level
0 up to Level 4. One can, however, assume that the related “anomaly scores” (the anomaly
score concept is discussed later in the section where the anomaly detection schemes are
presented) are not necessarily the same, nor shall the detection be synchronous, respectively,
simultaneous at all those data-processing hierarchy levels.

Table 1 below presents and briefly explains the various forms (i.e., types) of anoma-
lies, which can be observed while analyzing one simple or one global attribute of an
entity at any level of the hierarchy presented in Figure 3. In order to be of good use
for the practically very important explainability requirement, the anomaly detection
scheme/intelligence shall be able to provide the anomaly type and, surely, also the de-
tection confidence level. Without an appropriate posterior adaptation and/or extension,
most anomaly detection schemes cannot fulfill these two requirements of providing
the specific type of the detected anomaly and the related confidence level. Thus, the
anomaly detection shall indicate the entity concerned and its level and the anomaly type
along with its related confidence level.
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Table 1. Overview of all anomaly patterns that may be observed/detected w.r.t. a given simple or global attribute of an entity belonging to any of the four highest
levels of the data-processing hierarchy of Figure 3.

Anomaly Pattern Name
and ID

Point Observation vs. Burst Observation
Versus Interval Observation Related Illustrative Graphical Illustration Remarks and Other Useful Hints and/or Considerations

Outlier
(AN-1) Point observation
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Table 1. Cont.

Anomaly Pattern Name
and ID

Point Observation vs. Burst Observation
Versus Interval Observation Related Illustrative Graphical Illustration Remarks and Other Useful Hints and/or Considerations
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Table 1. Cont.

Anomaly Pattern Name
and ID

Point Observation vs. Burst Observation
Versus Interval Observation Related Illustrative Graphical Illustration Remarks and Other Useful Hints and/or Considerations
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3.3. Consider the Observation-Context Perspective Related Anomaly Classification

In this sub-section, we argued that the correct understanding of what an anomaly is
strongly depends on the specific observation context perspective. Further, the simultaneous
observation of the system from different perspectives also provides a form of theoretical
information fusion, which significantly increases the confidence of the anomaly detection
process in case a true abnormal behavior is effectively occurring.

The wording “anomaly observation context perspective” refers to the specific element
that carries the anomaly label. Indeed, the anomaly predicate shall always be linked to a
particular element of the scene or of the system under observation.

The following observation context perspectives (OCP) appear to be of high relevance
for the “monitoring of human in bed” general use-case:

1. OCP 1: “Condition-type” or better “entity type”-related anomaly. See the entities of
the four upper levels of the hierarchy presented in Figure 3. Each of those entities
at different levels does define a particular system condition. Indeed, every single
time, the system state is represented by a particular entity at each of the four upper
hierarchy levels in Figure 3. The condition may be current, past or future; see OCP 5;

2. OCP 2: “Conditions-sequence”-related anomaly. The conditions-sequence may be
current, past or future; see OCP 5;

3. OCP 3: “Single time-window”-related anomaly. Notice that the time window may be
current, future or past (see OCP 5);

4. OCP 4: “Multiple time-windows”-related anomaly. Notice that some of these time
windows may be current, future or past (see OCP 5).;

5. OCP 5: “Time-Case“ perspective of anomaly detection. The “Time-Case” concept
was defined in Section 1 above. Indeed, this is an additional context feature to be
combined with each of the four previous observation context perspectives. Let us
recall here those in Section 1 already explained three time cases: (a) Time case 1, the
posterior anomaly detection; (b) Time case 2, the online or simultaneous anomaly
detection; (c) Time case 3, the forecasting or anterior anomaly detection.

Consider the “Condition-type”-related anomaly perception (OCP 1). In this case, the
anomaly is linked to an entity of a given level (see Figure 3). As explained in Section 2, a
given occurrence of an entity of a given hierarchy level carries the label abnormal whenever
one or several of its attributes (as comprehensively explained in Section 2) present one of
the abnormality patterns presented in Table 1. To provide an illustrative example related to
a human in bed, “standing-up from the bed” (let us call it entity SB) may be seen as one
entity belonging to Level 2 (level 2 is the level of simple events) of Figure 3. Thus, at a
particular time, the system state at Level 2 may be represented by this entity named SB
and thereby have the label “anomalous” (this depending on the attributes related to it at
that time).

Consider the “Conditions-sequence”-related anomaly perception (OCP 2). In this case,
the anomaly is linked to an observed sequence of conditions. Here, there is an abnormal
behavior if one or more attributes related to this sequence of the condition presents one of
the abnormality patterns presented in Table 1. Here, it is a given sequence of conditions
at a given level in Figure 3 that obtains the label “anomalous”. Let us define a sequence
involving the above-defined entity SB of level 2. A sequence example may be to consider
the time between the occurrences of two SB events (immediately consecutive or not) at
Level 2 of Figure 3.

Consider the “Single time-window”-related anomaly perception (OCP 3). In this case,
the anomaly is linked to a specific time window under observation. The attributes of an
observation time window are related to those of the entities at all four hierarchy levels
(see Figure 3), which are present therein. Hence, from this perspective, there is abnormal
behavior whenever one or more attributes of the target “observation time window” present
one of the abnormality patterns presented in Table 1. The length of the time window may
be fixed by the monitoring use-case engineer. Here, to involve the above-defined level 2
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entity SB, an illustrative example of this use-case may be the consideration of the number
and respective time spacings of SB entities within a given “time-window”. Time window
examples include the last 6 h, the next 6 h, the last 12 h, the next 24 h, etc.

Consider the “Multiple time-window”-related anomaly perception (OCP 4). This case
is very similar to OCP 3 above. The only difference is that more than one time window
is observed simultaneously. One or more of these time windows may lie in either past or
future or be current.

Consider the “Time-Case”-related anomaly perception (OCP 5). As already explained
above, this perspective is complementary to one of the previously described ones, i.e.,
OCP 1 up to OCP 4. As already discussed in Section 1, one has different sub-regions in the
time dimension (see also Figure 4). The element to be assessed (see OCP 1 up to OCP 4)
regarding abnormality or not is always located in one of the time sub-regions indicated in
Figure 4. The different time cases and how they are specifically named are comprehensively
presented in Table 2.
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Table 2. Illustration of the time case (i.e., relative timing situation between detection and occurrence
of the element to be assessed) perspective; see Figure 4.

Time of the
Detection Process

Location (in the Time
Dimension) of the Element to Be
Assessed (See OCP 1 to OCP 4)

Time Case Labelling Remarks and Eventual Comments

NOW (see Figure 4) Sub-region 1/N Online detection
(Time case 2/a)

Here, the processing speed of the detection
algorithm is critical. This depends on the

computing infrastructure, namely embedded
systems or processing in the cloud.

NOW (see Figure 4) Sub-region 2/N Near to online detection
(Time case 2/b)

NOW (see Figure 4) Sub-region 3/N Late online detection
(Time case 2/c)

NOW (see Figure 4) Sub-region 1/P Closest posterior detection
(Time case 1/a)

This may be a new re-assessment of those past
elements. This may be necessary in view of the
time-varying system dynamics of the human

under observation. It is theoretically possible that
events that were perceived normal become later
perceived abnormal after the system dynamics

have evolved, and vice-versa.

NOW (see Figure 4) Sub-region 2/P Close posterior detection
(Time case 1/b)

NOW (see Figure 4) Sub-region 3/P Late posterior detection
(Time case 1/c)

NOW (see Figure 4) Sub-region 1/F Nearest anterior detection
(Time case 3/a)

Here, one is looking into the future. In case one
can see anomalies in that future, one has then a

case of early warning: from a “close” early
warning up to a “far” early warning situation.
The elements to be assessed are coming from

forecasting of the future system behavior at all
levels in Figure 3.

NOW (see Figure 4) Sub-region 2/F Close anterior detection
(Time case 3/b)

NOW (see Figure 4) Sub-region 3/F Far anterior detection
(Time case 3/c)
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3.4. Consider the Learning Strategy and Learning Context Related Perspective for
Anomaly Perception

In this sub-section, we discussed the various situations or contexts of the state of
eventual prior knowledge about the normal system behavior for a given human in bed
observation use-case. Some other relevant information from the real-world context may
also be of some use.

The following situations (learning strategies) and issues were analyzed in this sub-section:

1. Unsupervised learning and related system behavior identification, i.e., a “blind” approach;
2. Semi-supervised learning and related system behavior identification, i.e., a “gray” approach;
3. Supervised learning and related system behavior identification, i.e., a “white” approach;
4. The subject-dependency concern w.r.t. behavior identification; there may be some

interlinking to either “blind” or “white” approaches;
5. The monitoring use-case dependency; there may be some interlinking to either “blind”

or “white” approaches;

Consider the “Global Task” to be realized by the intelligent monitoring system. Inde-
pendently of all the above-listed situations (learning strategies), the core global task is that
of identifying four components of the system to be monitored: (a) Subtask A: identifying
the entities of the levels 1 to 4 of Figure 3; (b) Subtask B: behavior monitoring through the
evolution over time of the attributes (see Section 3.2) of the identified entities; (c) Subtask C:
identification of anomalies while considering the use-case relevant perspective out of those
presented in Section 3.3 (see the perspectives OCP 1 up to OCP 5); Subtask D: system
behavior evolution identification through either the appearance of novel entities or through
the disappearance of entities at one or more levels of Figure 3 or through the time evolution
of some of the entity attributes at one or more levels of Figure 3; Subtask E: system behavior
forecasting (at the levels 1–4 of Figure 3) for one or more of the future sub-regions indicated
in Figure 4.

The learning strategies related discussion in this sub-section is related principally, in
the first stage, to Subtask A on the one hand, but also, in the second stage, to the other
Subtasks. Indeed, the outcome of Subtask A is the basic infrastructure of the anomaly
detection intelligent system. Thus, the other Subtasks (B, C, D and E), which are solved by
very advanced models and algorithms, use and are built around attributes and properties
of the basic bricks coming from Subtask A.

Consider the situation “Unsupervised learning and related system behavior identifica-
tion (i.e., a “blind” approach)”. Here, one assumes that no sufficient explicit knowledge is
available to identify the entities of levels 1 to 4 of Figure 3. The straightforward and naïve
way to identify the behavior of the system under observation is to involve unsupervised
learning to identify all entities of levels 1 to 4 of Figure 3 (see Subtask A). The literature is
full of approaches capable of reliably performing unsupervised learning; some examples,
just to name a few: hidden Markov models, self-organizing maps, various versions of
neural graph networks, etc. From the deep-learning literature, a variety of unsupervised
learning methods can be found: deep belief networks (DBNs), generative adversarial
networks (GANs) [29], variational autoencoders (VAEs), denoising autoencoders (DAEs)
and adversarial autoencoders (AAEs) [30]. A particular challenge is, however, to handle
the fact that in the context of monitoring a human in bed, the system behavior changes
over time. This evolution may result in the appearance of new entities at one of levels 1
to 4 of Figure 3 (see Subtask D). A further issue is that the human samples that may be
monitored may have various fully different behavior patterns (example: a 90-year-old lady
in a coma; a pregnant woman; a fit, athletic young man who has just been injured in a car
accident, etc.). The unsupervised learning performance shall always be the highest possible
despite the variety of behaviors amongst the possible human samples to be monitored.
The unsupervised learning is real-world realistic and needed, as one generally lack precise
information about the specific entities (at the four levels of Figure 3) of a given human in
bed sample for monitoring.
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Consider the situation “Semi-supervised learning and related system behavior identi-
fication (i.e., a “gray” approach). In some real-world monitoring use-cases, some reliable or
reference information may be available regarding specific entities of levels 1 to 4. These
specific entities may be the ones of special high interest for the given monitoring use-case.
Examples of entities, just for illustration, which may be of interest are: from a sitting
position on the bed, the human stands up and leaves the bed; the human is sitting on the
bed; the human turns over in the bed, etc. The known entities of special interest may be
identified through supervised learning, whereby the other ones, at all hierarchy levels, are
identified, for a given human in bed observation sample, through unsupervised learning.
Therefore, the overall learning process becomes semi-supervised. Moreover, the unknown
behavior evolution always imposes that part of the learning process remains unsupervised.

Consider the situation “Supervised learning and related system behavior identification
(i.e., a “white” approach). As discussed above, for semi-supervised learning, fully super-
vised learning is not realistic for the case of the monitoring of humans in bed. Because a
significant behavior evolution can always be assumed, a fully supervised learning strategy
is not appropriate. However, self-supervision is welcome and can support the system
behavior evolution.

Consider the situation “The subject-dependency concern w.r.t. behavior identification”.
Subject-dependency is a very sensitive issue in human-related monitoring systems, which
may be intrusive or non-intrusive.

It is well-known from the broad research involving the machine learning-based
observations of the dynamics of human beings in various use-cases and applications
such as “emotion detection”, “stress detection”, “pain detection” and “activity monitor-
ing/classification” that there is a significant subject-dependency in the data patterns. For
example, just for illustration, the data patterns corresponding to a given emotion, such as
“joy” for a subject/person A, may be fully/very different from the data pattern correspond-
ing to the same emotion, “joy”, for a different subject/person B. For our core use-case of
monitoring a human in bed, one activity, “standing-up to leave the bed”, may produce data
patterns that may be significantly dissimilar depending on the specific subject under obser-
vation (see Figure 2). Some objective reasons explaining the difference in those patterns
may be a difference in age, difference in gender, difference in weight, difference in health
conditions, difference in mood, difference in fitness status, difference in race/tribe, etc.

An interesting question for the related research is however to holistically comprehend
whether there is some significant subject-dependency of relevance for the learning processes
(either supervised or unsupervised or semi-supervised) to ensure the reliable detection
of anomalies in our target core context of monitoring a human in bed. A particularly
interesting issue is whether data to be used for training and/or testing can be shared
amongst subjects or not. Such a sharing is meaningful for models involving neural networks
and/or deep-learning while applying the so-called transfer learning [31–33]. Another issue
is how far subject-dependency can be taken into account in the endeavors related “data
augmentation” [34] and “artificial data-set generation” [35]. It is well known in the relevant
scientific community that these two last-named endeavors are very important for the
development and tuning of truly robust models (for anomaly detection and forecasting),
but also for the stress-testing, the verification and the validation of developed robust and
adaptive abnormality detection models. We discussed these concerns more deeply in a
sub-section (see Section 6) further below.

Consider the situation “The monitoring use-case dependency”. Some aspects or
requirements of a given monitoring use-case may be relevant for or have a significant
influence on the learning process setting. Indeed, each of the humans to be monitored may
have their own specific issues. Additionally, the core monitoring objective may be very
specific for each case. Some illustrative examples of “use-case specific perspective (USP)”
may be given for a better understanding: (a) For a given client under monitoring, only one
or more entities of the levels 1 to 4 of Figure 3 are of interest; (b) For a given client, one has a
clear expectation of the evolution of one or more behavioral patterns; (c) For a given client,
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only the prediction of the “occurrence time” of a particular event or of specific behavior
to be either below or higher than a fixed threshold is what is of high interest; (d) For a
given client, it is the absence of a given event or of a specific behavior over a fixed time
period which is of interest (this time period may cover or not a part of the past, a part of the
current times and a part of the future time), etc. Moreover, the same client may undergo at
different consecutive times two different of these so-called USPs. For example, a person is
sick (they had a stroke) and is being treated for a couple of weeks; in this period, there may
be a particular clear/known expectation w.r.t. behavior, a given USP. Then he recovers,
but he must also be further observed for a certain time of some weeks; for this second
observation period, the expectations are (or may be) fully different and expressed by a
different USP. In general, one may have USP-specific observations but also fully neutral
observations, which detect abnormalities fully blindly. These few examples suggest that
the background and the overall prior knowledge of the use-case engineer may be of very
significant relevance for the training process settings and even for the definition of the
above described OCPs (observation context perspectives). One also understands that the
use-case engineering may fix or determine which, amongst the various anomaly patterns
presented in Table 1, are highly relevant and interesting for a given subject monitoring case.
From practical regard, if the same intelligent system must be reconfigured to fit the use-case
nuances/objectives/specifics of different patients to be monitored on the same or different
beds, the overall systems engineering must seriously find an appropriate way to integrate
the “subject and use-case”-specific complex reconfigurability capacity of the “anomaly
detection intelligent system”. The overall requirements engineering shall therefore decide
whether a USP neutral and universal abnormality detection is wished or whether one rather
needs a detection system that can be dynamically reconfigured by the system operators
depending on various USP they may have. Essentially, the USPs can be viewed as special
augmentations of the OCPs.

3.5. Consider the “Novelty Related Anomaly” Perception

According to the literature [36], novelty detection can be defined as the task of recog-
nizing that the data being observed now differ in some respect from the data that were
observed until now (e.g., during training). Its practical importance and challenging nature
led to many approaches being proposed in the literature.

Indeed, the last decades witnessed significant developments related to the need for
self-adaptive and self-organizing systems capabilities. A fundamental ingredient in such
systems is the ability to recognize unanticipated and dynamic conditions, which require
robust autonomous learning capabilities. A common fundamental assumption, which is
valid for the monitoring of a human in bed, is that the distributions of normal data (at
all five levels of Figure 3) are eventually non-stationary and time-variant. This means
that they change (eventually significantly) over time. This property is traditionally called
“concept-drift”; it expresses a “behavioral change”, which is a very sensitive issue.

It is very crucial to properly and carefully differentiate and feel the sensitive nuance
between “anomaly” and “novelty” from a very general and holistic perspective [37]. The
traditional definition of novelty from the machine learning literature is too vague as it
states that “novelty detection is the task to identify observations that differ from previous
experiences or expectations”. We rather prefer and agree with the other statement from the
related literature that reads as follows: one cites, “one shall refer to novelties as agglom-
erations of coherent anomalies (i.e., abnormal observations), representing a fundamental
change in the underlying processes generating the observations”. A deep analysis of our
suggested structuring of possible occurrences of anomalies in Table 1 suggests that some
of those defined anomaly patterns are already usable or relevant for a merging with some
forms of novelty patterns (see AN-4 to AN-9). A later deeper analysis of the various novelty
patterns sheds more light in this respect. Overall, outliers (but also all anomaly patterns
AN-1 to AN-3 in Table 1) are considered to be isolated non-systematic deviations from the
“normal” behavior. A novelty can be practically viewed/assessed by means of a deviation
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or a distance between a set of current observations forming a model of the (past/historical)
perception (i.e., generated at startup time or in previous observation cycles) and a model of
the expected (now/future) observations.

It is important to differentiate clearly between “anomaly” and “novelty”. These
two concepts may partially overlap. Indeed, the “anomaly” concept (and its related
detection) is related to an independent observation at a given time point. In contrast, the
“novelty” concept is located at a conceptually higher level, whereby one observes patterns
of successive occurrences of “anomaly” observations. These patterns may show structures,
one of them being agglomerations or bursters of “anomalies” in the form of clusters. Thus,
the history of observed and/or predicted anomalies or anomaly pattern is the essential
input of the novelty detection functionality. A part of the anomaly patterns described in
Table 1 is already very supportive of the novelty identification functionality (see AN-4 to
AN-9). Another strong support of the novelty modeling and identification provided in/by
our overall here suggested ontological framework is the various OCPs (anomaly-related
“observation context perspectives”), which are comprehensively presented in Section 3.3.

It is thus clear and understood that the systematic occurrence of multiple anomalies
is usually a reliable indicator for a significant change that requires a model adaptation.
Novelty detection is, therefore, essentially and precisely the detection of such systematics
of multiple anomalies. It is therefore very good that our multidimensional ontological
context structuring w.r.t. anomaly identification (see OCP 1 to OCP 5 in Section 3.3) lays a
solid ground on which a robust “novelty detection” functionality can reliably operate.

Some sources in the literature look at the novelty phenomenon just from a “temporal
perspective” (see Table 3, which is not even yet exhaustive). In order to be holistic and
more comprehensive, we suggest that the novelty detection/analysis be based on the
more comprehensive anomaly perception involving all five reference OCPs described
in Section 3.3; one shall even additionally integrate the so-called USPs (use-case specific
perspectives; see Section 3.4), if any, in order to ensure that all practical concerns of relevance
are effectively taken into account. The perspective described in Table 3 is, therefore, de
facto significantly extended by the considerations of both the OCPs and the USPs.

Table 3. Temporal view of the novelty patterns—some illustrative examples (non-exhaustive).

Novelty Pattern Name and ID Related Illustrative Graphical Illustration Remarks

NOV 1:
Sudden novelty
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Table 3. Cont.

Novelty Pattern Name and ID Related Illustrative Graphical Illustration Remarks

NOV 4:
Reoccurring behavior/concept
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3.6. Subject-Dependency Related Anomaly Perception, Detection and Related Nuances

The general framework formulated in this paper is such that the general architecture
presented in Figure 3 is valid for any human subject to be considered for observation in a
bed. There are, however, differences (from small to big) in instances of the architecture of
Figure 3 between two given different subjects that are related to the following aspects:

(a) The number of entities at each of the 4 four upper levels of Figure 3;
(b) The specific patterns of each entity at all four upper levels of Figure 3;
(c) The attributes’ values related to each entity at all four upper levels of Figure 3.

Beyond these three listed differences, which are subject-dependent, all other dimen-
sions and perspectives of the “abnormality” concept (which are extensively presented and
discussed in this paper) are independent of a given subject and are universally valid for all.

Our core focus here is the context monitoring of humans in bed. However, humans
may behave very differently regarding their physical movements in the bed. A small
child, a pregnant woman or a 95-year-old lady do not behave the same while lying in a
bed. Moreover, their respective health status and/or dynamics may impact their physical
movements in the bed. This is the first important difference between a human and a
machine. Machines of the same type are expected to display the same nominal behavior.
However, this is not the case for humans. Even two humans with profiles close to each
other (e.g., same age, same weight, same health status, same gender, etc.) may nevertheless
behave fully differently regarding their physical activity-related behavior(s) in the bed.

The first monitoring intention for a human in bed is essential to classify instants (or
time windows) of subject-dependent normal and/or regular behavior and instants (or
time windows) of abnormal behavior. Here, the “normality” perception is specific and
related to each individual human sample under monitoring. An intelligent model trained
with data from one given human sample does not perform well if tested on a different
human sample; abnormality will/would be detected at all levels of Figure 4. Nevertheless,
subject-dependently trained models may be used (if needed) for identification purposes of
individuals known a priori.

Furthermore, the data archive used for models trained on a huge number of different
human samples may be later used for a comprehensive clustering of the human samples
(i.e., human population) observed so far. Such clustering may lead to the definition of a
reference dataset and/or reference users representing each of the fixed/defined clusters
(of human samples). This is very meaningful in the current area of big data. Moreover,
for benchmarking and validation purposes of different models that can be developed for
abnormality detection and forecasting, such reference datasets (and users) for the various
clusters are a very precious resource. Moreover, for better training of the various models
under development, especially those involving neural networks and deep learning, those
reference datasets can also be used to construct generative models to be used for extensive
and reliable data augmentation endeavors through the generation of artificial data, which
are nevertheless sufficiently reflecting the real-world conditions of real humans. Generative
adversarial models trained on real field data can be used to generate more and still very
realistic artificial data [38,39]. Such artificial data have some interesting features when
compared to real data collected from real human samples: (a) they are anonymous, (b) they
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can be available in a huge quantity and (c) they also fill the gap of providing a reliable
dataset to be used for comprehensive system verification and system validation endeavors
of intelligent models developed for anomaly detection and/or forecasting in the case of
monitoring human in bed.

Due to the technical possibilities of transfer learning [40], a model training over data
from the various above-mentioned possible human sample clusters shall also potentially
lead to more accurate and more robust models for both detecting and forecasting nor-
mal/abnormal behavior.

A particularly innovative modeling concept/framework may be based on the extensive
data mining of the extensive reference datasets mentioned above, which may include, in
addition to the data collected from a very high number of human samples that are fully
representative of the target population of humans, a significant portion of artificially
generated but still realistic reference data.

Hereby, one can define one or more “reference time lengths” for BEHAVIOR SEG-
MENTS. For example, for illustration: (a) reference behavior length of 1 h; (b) reference
behavior length of 6 h; (c) reference behavior length of 12 h; (d) reference behavior length
of 1 day; (e) reference behavior length of 3 days; (f) reference behavior length of 7 days.

After the different reference time lengths have bee defined, extensive data mining
can be performed over the huge above-mentioned reference datasets. Thereby, for each
reference behavior time length, a clustering of the respective behavior segments (contained
within the huge reference dataset) is performed. One then obtains the following situations,
presented in this form for illustration purposes:

(a) Reference Clusters for behavior segments of length 1 h: each cluster shall be consid-
ered as a class, examples: 1HC1, 1HC2, 1HC3; . . . ; 1HCN1. Hereby, N1 is the total
number of classes of length 1 h;

(b) Reference Clusters for behavior segments of length 6 h: each cluster shall be consid-
ered as a class, examples: 6HC1, 6HC2, 6HC3; . . . ; 6HCN2. Hereby, N2 is the total
number of classes of length 6 h;

(c) Reference Clusters for behavior segments of length 12 h: each cluster shall be con-
sidered as a class, examples: 12HC1, 12HC2, 12HC3; . . . ; 12HCN3. Hereby, N3 is the
total number of classes of length 12 h;

(d) Reference Clusters for behavior segments of length 1 day: each cluster shall be
considered as a class, examples: 1DC1, 1DC2, 1DC3; . . . ; 1DCN4. Hereby, N4 is the
total number of classes of length 1 day;

(e) Reference Clusters for behavior segments of length 3 days: each cluster shall be
considered as a class, examples: 3DC1, 3DC2, 3DC3; . . . ; 3DCN5. Hereby, N5 is the
total number of classes of length 3 days;

(f) Reference Clusters for behavior segments of length 7 days: each cluster shall be
considered as a class, examples: 7DC1, 7DC2, 7DC3; . . . ; 7DCN6. Hereby, N6 is the
total number of classes of length 7 days.

(g) Etc.

The clustering (of the different behavior segment lengths) may involve just one level
(e.g., just Level 1 or just Level n (n = 1, 2, 3, 4)) or more levels of Figure 3.

For each reference behavior time length, there is a given number of reference behavior
clusters. Each of these clusters may be called a “behavior class” of the respective length.
Thus, the behavior of a given human under observation may be described by the sequence
of behavior classes of the different reference lengths. In this way, the ontology for a universal
behavior description would be that of indicating the sequence of observed and/or predicted
behavior classes (of given reference lengths, of uniform or mixed lengths) for a given human
under observation. One can view the reference length as a form of observation granularity
or observation resolution. In a given observation case, one has several choices w.r.t. the
observation resolution, for example, just to name a few: (a) consider a sequence of one
single resolution; (b) consider simultaneously two sequences of different resolutions in
parallel; (c) consider a sequence of mixed resolutions.
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These defined behavior classes are essentially just a form of the universal alphabet
(this alphabet is fully user-independent) for universally describing the behavior of a given
individual, “human in bed”, under observation. The reference clusters (i.e., classes) defined
above provide a universal subject-independent naming of the entities that can be observed
at all four levels of the architecture presented in Figure 3. This universal alphabet fits well
in our present area of big data.

All the perspectives defined in this paper for the understanding of the anomaly
concept can now be linked and/or adapted to this new alphabet of behavior segment
classes. As already discussed above, this new alphabet requires a good reference dataset
(ideally open data), which shall be accepted and considered as a standard for all. Thus,
the subject-dependent anomaly detection and/or forecasting can now be learned and
performed according to the different OCPs (observation case perspective) described in
Section 3.3.

4. Comprehensive Discussions of Selected Key Advanced Characteristics of Robust
and Real-World Mature Anomaly Detection Schemes

The overall context of this study and review is the monitoring of the physical activity
of human beings in bed. The system (or samples of it) to be monitored has some of the
most difficult system modeling-related characteristics, namely: (a) two different samples of
the system do not behave similarly; (b) the system dynamics display a significant stochastic
flavor; (c) the system behavior is time-variant; (d) the observation time horizons, in which
abnormality related warning(s) is/are expected, may vary from short-term (some minutes
to some hours), middle-term (some days) to long-term (several weeks); (e) the knowledge
about the future evolution of the system behavior may be involved in the assessment
of the current status; (f) because of the system evolution, a previously rated abnormal
behavior may be at a posterior time viewed normal and vice-versa; (g) a certain tolerance
level/grade, which may be different due to the situation of different human samples, can be
relevant for the abnormality assessment; (h) in several cases, the abnormality information
has a significant meaning/implication w.r.t. the health/medical status of the given system
sample, this makes the system samples to be observed to be ranked/assimilated into
the so-called (in this case “soft”) “safety”-critical systems; (i) amongst others because of
(soft) safety-criticality the abnormality detection must also include a related uncertainty
information or confidence level; (j) amongst others because of the (soft) safety-criticality, an
explainability of both the abnormality assessments/predictions and the system evolution’s
detections is needed and very useful for most application scenarios.

Because of the complexity of the system (and the related diversity amongst the
system samples) to be monitored (activities of a human in bed) and the above-described
characteristics, a mature monitoring system integrates the functionalities described in
Table 4.

Table 4. Selected advanced characteristics of a robust and real-world mature abnormality detection
system in the monitoring of humans in bed.

Selected Advanced Characteristics and
Their Naming

Importance of a Real-World Mature
Monitoring System Remarks

REQ 1: Self-learning and continual learning
capability, for either single individuals or

groups of individuals
Very high

Continual learning can be understood as a concept of learning
a model for a large number of “tasks” sequentially without

forgetting knowledge obtained from the preceding tasks,
whereby the data in/of the old tasks are not available

anymore while training new ones. The learning relates to
either the behavior of an individual person currently under

monitoring or to the behavior of an individual person within
the contextual background of the behaviors of several other

persons (a group of persons) who have been
priorly monitored.

REQ 2: Identification of and adaptivity to
novelty/evolution Very high

After the novelty has been identified, the model adapts to the
confirmed behavior change. This means essentially adjusting

to change over time.
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Table 4. Cont.

Selected Advanced Characteristics and
Their Naming

Importance of a Real-World Mature
Monitoring System Remarks

REQ 3: Comprehensive uncertainty
model/assessment for all subtasks (A–E)

described in Section 3.4.
Very high

Anomaly detection in the case of monitoring a human in bed
requires a high level of trust in its results. A key to this trust is

the ability to assess the uncertainty of the computed
results appropriately.

REQ 4: Prediction capability of the system
status at levels 1 to 4 of Figure 3 for one or more

future time sub-regions
Very high See Subtask E described in Section 3.4.

REQ 5: Reconfigurability w.r.t. USPs
(user-specific perspectives) Very high Since the USP are practically of high relevance, related

reconfigurability of the intelligent system is needed.

REQ 6: Reconfigurability w.r.t. OCPs
(observation context perspectives) Very high Since the OCP are practically of high relevance, related

reconfigurability of the intelligent system is needed.

REQ 7: Explainability of the identification of
entities at levels 1–4 of Figure 3 Very high/MUST To avoid the lack of interpretability, this characteristic

is needed.

REQ 8: Explainability of the anomaly detection
(considering USPs and OCPs) Very high To avoid the lack of interpretability, this characteristic

is needed.

REQ 9: Explainability of the evolution detection Very high To avoid the lack of interpretability, this characteristic
is needed.

REQ 10: Explainability of the uncertainty grade
or confidence level for all Sub-tasks (A–E)

described in Section 3
Very high/MUST To avoid the lack of interpretability, this characteristic

is needed.

REQ 11: The possibility of a performance
tuning/improvement through either partial

human assistance (via some form of feedback)
or evolutive/reinforced learning or involving
artificially generated data out of some reliable

“generative adversarial” process or a
combination of some or of all of the above.

Very high/MUST

The trained personnel that operates the advanced intelligent
monitoring system can, through an appropriate

human–machine interface, confirm or inform some of the
predictions/detections. Alternatively, self-learning triggered

reinforcement learning can also be used.

REQ 12: The reconfigurability w.r.t. tolerance
level/grade/margin related to the abnormality

assessment (or, in other words, related to the
anomaly detectability). The operators of the

intelligent system for anomaly detection in the
monitoring of “human in bed” is able to modify,
even dynamically, the tolerance level/margin of

the anomaly detection. This characteristic
complements the so-called USPs described in

Section 3.4; see also REQ 5.

Very high/MUST

For most technical systems, the acceptable tolerance level w.r.t.
key system parameters is very important and very sensitive

from a practical point of view. Indeed, in real-world
applications and practice, in general, a low tolerance margin
may result in a significantly much more expensive system. A

bigger tolerance is thus resulting in a more interesting
cost/benefit ratio. It is evident that the abnormality detection

endeavor can therefore not ignore the tolerance level
dimension. This is especially very sensitive in view of two

critical facts related to the human monitoring scenario: (a) the
sensor data obtained from the Level 0 of the architecture

shown in Figure 3 are surely never perfect and thus full of
uncertainties originating from various pure sensor systems
related imperfections and disturbances; (b) the time-variant

and stochastic physical activity related behavior pattern of the
system “human in bed”; (c) the variance w.r.t. behavior
pattern amongst different samples of the system under

observation (i.e., the “human in bed”).
This characteristic surely also impacts the interpretation of the

anomaly score.
In practice, the use-case engineer should know or at least be

able to fix how much tolerance margin is really needed.
Indeed, it makes no sense to fix/set a very small tolerance
margin (which is very expensive to realize), although the

given use-case can well be satisfied by a much bigger
tolerance margin.

In the various and extensive experimentation in the frame of a
comprehensive verification process, it is worth closely

studying the sensitivity of the tolerance margin w.r.t. the
robustness of the intelligent anomaly detection system.

REQ 13: Tolerance to non-ideal training data VERY HIGH/MUST

This is one practical requirement expressed by P.SYS.
Essentially, data imperfection have several faces: (a) sensors
related imperfections such as low update rate, low accuracy,

noise and/or bias in the data, signal-related faults,
etc.; (b) sensor’s drifts and/or other nonlinear, eventually
time-varying disturbing phenomena; (c) data size related
imperfections (this may be related to the effective (short)

duration of the data recordings (i.e., observations and/or to
the number of human samples involved, etc.; (d) involving

only one of maximum two sensor modes or types (e.g., solely
piezo-electric sensor and vibration sensors).
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Table 4. Cont.

Selected Advanced Characteristics and
Their Naming

Importance of a Real-World Mature
Monitoring System Remarks

REQ 14: The complete intelligent system is
capable of running fully on COTS embedded

platforms (i.e., the intelligent system is fully
Embedded AI), which are essentially

low-computing power; this to ensure both low
cost and data security while satisfying use-case

specific real-time processing deadlines.

HIGH or LOW/MUST
(A) VERY HIGH for a significant part of the

target application scenarios.
(B) “LOW” for application scenarios that wish

or must involve IoT technologies

This requirement ensures that the intelligent system is low
cost, has a relatively low power consumption, is

application-scenario-dependently real-time capable and can
operate almost self-sufficiently without involving remote

computing infrastructure(s) and/or data.
However, in the age of Cloud Computing and IoT, another

part of the application scenarios may wish to enjoy the
benefits of these recent, very advanced infrastructures. For

these parts of the applications universe, the importance and
criticality of this requirement (REQ 14) are rather low. Under
the hypothesis (which is, however, not yet fulfilled at present)
that “data security” is well and strong-reliably ensured in an
“IoT and cloud computing” based networked universe, the

core benefits of the “fully embedded system” version (which
are essentially: low cost, low power consumption (by the end
devices), real-time processing) become also fully satisfied by

an Intelligent System architecture involving IoT and
Cloud computing.

REQ 15: Short learning duration and/or fast
detection of/and adaptation to

behavior changes
VERY HIGH/MUST

This requirement also integrates, additionally, the fast
detection of behavior change. It factually complements REQ 2.
An issue here is, however, to clearly specify what “short” or
“fast” means in the context of this requirement. This may be

use-case dependent, as the use-case determines the basic time
constant of the system. For example, some hours, some days,

some weeks, etc.
The effective “learning duration” length may/shall impact or

strongly correlate with the performance metrics “Anomaly
Detectability (MET-4)” that is described further below in

Table 5.

Table 5. A selected collection, just for illustrative) of performance evaluation metrics (METs),
which can be relevant for a comprehensive verification and validation of an anomaly detection-
and-prediction system developed for the monitoring of a human in bed.

Metric Name and ID Metric Description Remarks

MET 1: Accuracy
It is simply defined as the mean squared error
(MSE) between the model’s predictions and

the target values.

Although this metric is named “accuracy”, it is
actually a measure of error, and a low value

is desired.

MET 2: Self-sensitivity

For self-associative empirical models, a robust
model does/shall produce small changes in all
of its outputs for (in the face of) small errors in

the (model) inputs.

The self-sensitivity is a measure of an
empirical model’s ability to make correct
anomaly predictions when the respective

anomaly-related score value is incorrect due to
some sort of uncertainty (or fault).

MET 3: Cross-sensitivity
Cross-sensitivity measures the effect a faulty

(model) input has on the other
(model) predictions.

MET 4: Anomaly detectability

This metric help to determine the smallest drift
(in the relevant input data values of the
detection system) that can be identified.

Therefore, this anomaly detection performance
metric is used to determine the smallest

process parameter change that can be detected.

MET 5: Precision
The precision answers the question: “What

proportion of identified anomalies are
true anomalies?”

This is a classical metric

MET 6: Recall
The recall is used to answer the question:

“What proportion of true anomalies
was identified?”

This is a classical metric

MET 7: F1 Score

The F1 score identifies the overall performance
of the anomaly detection model by combining

both recall and precision, using the
harmonic mean.

This is a classical metric
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5. Comprehensive Requirements Engineering Dossier for a Robust Anomaly
Detection System

Essentially, Section 4 already provided the quintessence of the truly very tough require-
ments dossier for a modern advanced monitoring system of a human in bed w.r.t. abnormal
behavior identification and forecasting (see Table 4). It is evident that this requirements
dossier reaches far beyond the current state-of-the-art, although major model bricks that
can be used to satisfy all of the requirements listed in Table 4 are already available in the
literature [41–45]. Nevertheless, an appropriate tuning, adaptation and integration of those
model bricks are necessary.

For a given observation scenario, the use-case engineer defines or fixes the appropriate
USP and OCP configurations. Regarding the overall anomaly detection system(s) w.r.t.
taking into account the practical needs of the real-world scenarios, almost all the hard
requirements (see REQ 1 to REQ 11) described in Table 4 must be fully or partially satisfied.

The comprehensive requirements dossier presented in Table 4 is a first conceptual
benchmarking of all anomaly detection schemes developed for human activity monitoring.
This also has significant implications for (a) the verification and validation of human activity
monitoring schemes and (b) the critical review of the relevant literature (related works)
w.r.t., establishing how far the various relevant anomaly detection-and-prediction models
and systems fulfill or do not fulfill the requirements presented in Table 4.

6. Comprehensive Verification and Validation Challenge for a Robust Anomaly
Detection System

“System verification” is an important part of the overall systems engineering process.
Essentially, it checks the correctness of either a complete system or a system sub-component
or both. This covers the complete life cycle of any technical system.

More precisely, verification is the process for determining whether or not a product
(here, it is the anomaly detection-and-prediction system) fulfills the requirements or specifi-
cations established for it (here, the requirements are presented in Table 4). On the other
hand, “System Validation” is the assessment of a planned or delivered system to meet
the sponsor’s operational needs in the most realistic environment achievable (here, the
real-world setting or real field data must be involved), which is also very important.

For both verification and validation, appropriate data must be available, which are
good and/or satisfactory w.r.t. quality and quantity. Since field data are generally very
expensive to collect, a very pragmatic question is whether usable data (having a minimum
required quality) can be generated artificially. Such a generation is, therefore, a form of
dependable “data augmentation” strategy. This data augmentation, especially for the
verification exercise, provides more data samples (each sample representing a different
human under observation) covering a longer time horizon (each data sample is much
longer regarding time). In a later subsection, we suggested that a series of generative
adversarial models, especially from the deep-learning literature, already have a significant
maturity level to enable the generation of an extensive, dependable artificial dataset that
can then be used for comprehensive verification. Regarding the validation, after a very
comprehensive verification, solely real-world field data must be involved.

Regarding both verification and validation, however, good and appropriate perfor-
mance metrics are needed. Some interesting metrics were suggested in the relevant lit-
erature [46]. Before one defines better ones or additional ones, these metrics are briefly
described and commented on in Table 5.

7. Modelling the Basic Infrastructure of the “Monitoring System of Humans-in-Bed”
in the form of a Graph Network

The general structure and infrastructure of the intelligent monitoring system presented
in Figure 3 can be (and shall be) represented in the form of a “Graph Network”. Because
of the time evolution, a so-called “Dynamic Graph Network” is more appropriate. As is
explained below, using graph networks for modeling the complex system at stake has a
lot of unique advantages [47], especially while considering the very tough requirements
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presented in Table 4. The graph network representing the scene of Figure 3 is thus a good
platform on top of which the various intelligent processing bricks are integrated in the
effort to satisfy most (if not all) of the requirements described in Table 4. The review paper
of Xiaoxiao Ma et al. (2021) [47] provides a more than sufficient review of the potential of
dynamic graph networks for modeling a given monitoring scene for the purpose of robust
abnormality detection. We just need a careful mapping of all elements of the architecture of
Figure 3 into a dynamic graph network, which integrates/models all relevant perspectives
and issues: OCPs, USPs, entities—attributes (see levels 1–4), Figure 4, etc.

Consider the dynamic graph network representing the scene, see Figure 3. Here, the
instances (or entities) of layers 1 to 4 of Figure 3 are represented by nodes of the dynamic
graph network. Additionally, the so-called attributes of those instances, see Section 3.2
(Attribute 1 to Attribute 7, etc.), are represented in attributes of edges between relevant
nodes. Moreover, the so-called OCPs and USPs (see Sections 3.3 and 3.4) can be integrated
(modeled appropriately) into the attributes of edges between relevant nodes.

In Table 6, we summarized a series of hard reasons pleading for the use of graph
networks for comprehensive modeling of the scene presented in Figure 3 in the perspective
of abnormal behavior detection while considering, additionally, the OCPs, USPs, Figure 4
and Tables 2 and 4.

Table 6. Discussion of comprehensive main seven reasons [48] that make graph-based approaches to
anomaly detection vital and necessary.

Reason Supporting the Use of
Graph Networks Explanation How Far Is It Relevant for Our Target Context

of Monitoring a Human in Bed

Strong inter-dependence between entities
and data

Data objects are often related to each other and exhibit
dependencies. In fact, most relational data can be thought of as

inter-dependent, which necessitates accounting for related
objects in finding anomalies.

Highly relevant

Powerful representation ability

Graphs naturally represent the inter-dependencies by the
introduction of links (or edges) between the related objects. The

multiple paths lying between these related objects effectively
capture their long-range correlations. Moreover, a graph

representation facilitates the representation of rich datasets
enabling the incorporation of node and edge attributes/types.

Highly relevant

The relational nature of problem domains

The nature of anomalies could exhibit itself as relational. An
illustration example can be given from the performance

monitoring domain, where the failure of a machine could cause
the malfunction of the machines dependent on it. Similarly, the
failure of a machine could be a good indicator of the possible

other failures of machines in close spatial proximity to it
(e.g., due to an excessive increase in humidity in that particular

region of a warehouse).

Highly relevant

Graphs are a robust machinery

One could argue that graphs serve as more adversarial robust
tools. For example, in fraud detection systems, behavioral clues

such as log-in times and locations (e.g., IP addresses) can be
easily altered or faked by advanced fraudsters. On the other

hand, it may be reasonable to argue that the fraudsters could not
have a global view of the entire network (e.g., money transfer,

telecommunication, email, review network) that they are
operating. As such, it would be harder for a fraudster to fit into

this network as good as possible without
knowing its entire characteristic structure and

dynamic operations.

Highly relevant

Dynamic Graphs offer unique capabilities for
anomaly detection

The anomaly detection in dynamic graphs can be based on the
following situations: feature-based events, decomposition-based

events, community or clustering-based events and
window-based events.

Highly relevant(for example, see some of
the OCPs)

Strong graph-based anomaly
description capability

This is underscored by the following capabilities that are well
documented in the relevant literature: (a) interpretation-friendly

graph anomaly detection; (b) interactive graph querying and
sense-making.

Highly relevant
(see REQ 7 to REQ 10 in Table 4)

Several proven application examples of
graph-based anomaly detection in highly

complex real-world applications

Following applications examples can be found in the relevant
literature: anomalies in telecom networks; anomalies in opinion
networks; anomalies in auction networks; anomalies in the web

network; anomalies in account networks; anomalies in social
networks; anomalies in security networks; anomalies in

computer networks; anomalies in financial networks

Highly relevant
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While using the framework of a graph network for modeling objects or entities, these
can have one of two possible anomaly-related attributes: (a) the object or the relation is
“standard”, “normal” or “expected”, and (b) the object or the relation is “abnormal”. The
traditional schemes, which represent real-world objects as feature vectors, are incapable
of enabling methods capable of detecting the inherently complex relationship(s) between
objects. The incapability to grasp and detect the relationships between objects is a severe
limitation. Because in our target context of “monitoring a human in bed” (see Figure 3
and the OCPs and USPs), these complex relationships are very important. Indeed, in
real-world contexts, beyond the standard attributes related to an object itself, eventually
various and rich relationships between objects belonging to the same context also exist.
These various relationships provide additional and/or complementary information, which
supports the robust detection of anomalies related to either objects/entities or rather to the
relations between objects. In the graph-based modeling paradigm, nodes/vertices relate
to real-world objects. Furthermore, edges relate to relationships between objects/entities.
Moreover, sub-graphs, which include both nodes and edges, are another level of entities
(i.e., complex entities) that can also bear, at a given time, the attribute of being either
“normal” or “abnormal”.

For illustrative purposes, Figure 5 highlights the essential difference between con-
ventional anomaly detection and graph-based anomaly detection. One can see that the
graph-based anomaly detection detects anomalies in a much more complex, broader and
richer ontological framework: object anomaly (node anomaly), relation anomaly (edge
anomaly), group of objects related anomaly, sub-graph related anomaly, etc.
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Graph based anomaly detection does differentiate at least three types of anomalies:

(a) Node-related anomalies, which can be either local or global. A node that is labeled
globally abnormal is thereby compared to all other nodes of the whole graph. How-
ever, a node may also be locally abnormal when it is compared to the other nodes
belonging to a local sub-graph (around a given node) of the whole graph;

(b) Structure-related anomalies. Structural information focuses on the relationships
amongst objects/entities, which are represented by the edges connecting the nodes in
the whole graph. Here, the abnormality is related to the different connection patterns.
Evidently, the abnormality of an edge does also affect the involved nodes;

(c) Community anomalies. Here, one considers a sub-graph of the whole graph that
is called abnormal. Hereby, information related to both node attributes and edge
attributes is involved in the assessment of the status “abnormal” for a given sub-graph.

These graph-based anomaly perspectives complement/extend the anomaly classifica-
tion presented in Tables 1 and 2.

Due to the very significant good characteristics and features of a graph network-based
scene modeling, we pleaded, for our target context of “monitoring of a human in bed”,
that the comprehensive global anomaly detection intelligent system be based on a dynamic
graph network paradigm. Essentially, it shall be (mapping Figure 3 at the basis) a complex
“Attributed Dynamic Graph”. Details are provided in Section 9 below. There are a series of
interesting works that provide useful basics on how to represent a dynamic scenario, such
as the one presented in Figure 3 (including the OCPs and USPs) through a dynamic graph,
just to name a few; e.g., [49]. Indeed, it is well known that learning graph representations
are a fundamental task aimed at capturing various properties of graphs in the vector space.
The real-world system/network presented in Figure 3 (when considering OCPs and USPs)
evolves over time and has undoubtedly varying complex dynamics. Ensuring a good
capturing of such an evolution is key to predicting the properties of unseen networks. In
order to understand how the network dynamics affect the prediction performance, one
must design an appropriate embedding approach (one example from the recent literature
is “dyngraph2vec”, which may be extended/adapted to fit the appropriate mapping of the
scene presented in Figure 3; other examples from recent literature are “dynamicTriad” [50]
and “dynGEM” [51]) that learns the structure of the evolution in the underlying dynamic
graphs and can then predict unseen links and nodes (and their respective attributes) with
higher precision.

After a scene modeling through a dynamic graph network is performed, now given
the observed temporal snapshots of graphs (at some consecutive discrete times), a key
goal is then to learn a representation of nodes and edges at each time step while capturing
the dynamics such that one can then predict their future configurations or structural
patterns (nodes, edges and related attributes). Learning such representations is a knowingly
challenging task. Indeed, a dynamic graph embedding, which considers multiple snapshots
(at consecutive discrete times) of a graph and obtains a time series of vectors for each
node/edge, is highly needed and very useful.

On top of a dynamic graph embedding (see Goal et al. (2020) [49]), a merging of both
pattern mining and feature learning can be integrated to realize a robust graph-based anomaly
detection as suggested for example by Zhao et al. (2021) [52], Ma et al. (2021) [47], etc.

8. Comprehensive Critical State-of-the-Art Review of Core Approaches Usable to
Construct a Robust Anomaly Detection System

The broad relevant literature on anomaly detection in general, including the works
related to human activity monitoring in particular, can be divided into three major avenues
or approaches (abbreviation used later for “major avenue/approach: MAJA) and/or a
combination/merging of some or all of them. In this section, each of these major approaches
(MAJA) is briefly presented/described, and a couple of related representatives’ most recent
works/papers are referenced. Indeed, a very rich literature on each of the MAJAs exists,
and even very useful, very comprehensive related survey papers. The critical qualitative
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critical review consists of checking and assessing how far the quintessence of these major
avenues is potentially capable of satisfying (fully or at least partially) the particularly hard
requirements presented in Table 4. For each requirement of Table 4, the discussions and
statements related to each of the MAJAs shall be underscored by one or more representative
published works.

8.1. Brief Description of the Quintessence of the Four Major Usable Approaches/Avenues/
Paradigms (i.e., Anomaly Detection Paradigms) for Human Activity Monitoring

A careful survey of the relevant and most recent literature reveals the following major
approaches or paradigms for anomaly detection and/or forecasting, which are also an
application for the target context of “monitoring the physical activity of a human in bed”:

1. MAJA 1: Statistical- or “stochastic processes”-based methods;
2. MAJA 2: Deep-learning- and neural network-based methods;
3. MAJA 3: Graph-network-based methods, combined with either traditional ML (ma-

chine learning) methods or MAJA 1;
4. MAJA 4: Graph neural network (or Graph-based DL) based methods.

The quintessence of each of these lastly listed MAJAs is comprehensively presented in
Table 7. It gives a sufficiently comprehensive global view (i.e., a big picture) of all those
different paradigms. The described respective core quintessence of each of the approaches
identifies both the potential and limitations of each of the major approaches.

Table 7. A comprehensive overview of the four major approaches or paradigms for anomaly detection
and/or forecasting, which are also an application for the target context of “monitoring the physical
activity of a human in bed”.

Paradigm-
Identifi-Cation Core Quintessence of the Paradigm Selected Representative Related Works Related to

Anomaly Detection and/or Prediction

MAJA 1:
Statistical or “stochastic

processes” based methods

A good representative of these methods are the so-called hidden
Markov models (HMM). HMMs are statistical models to capture

hidden information from observable sequential symbols/values. In an
HMM, the system being modeled is assumed to be a Markov process
with unknown parameters, and the challenge thereby is to determine
the hidden parameters from the observable parameters. HMMs are

sequence models. Thus, given a sequence of inputs, an HMM
computes a sequence of outputs of the same length. An HMM model is

a graph where nodes are probability distributions over labels, and
edges give the probability of transitioning from one node to the other.

Together, these can be used to compute the probability of a label
sequence given the input sequence. By using HMM, it is possible to
predict future states based on the current observations as well as the
sequence of states from an observed sequence. For a process under

observation over time, the possible states, which are hidden
parameters, are generally “normal”, “abnormal” and “critical”.

Forkan et al. (2014) [26];
Girdhar, Mansi, et al. (2021) [53]

Note:
After appropriate tuning, the concept presented in
these selected references can be used to model the
scene described in Figure 3, at least for some of the
defined OCPs and USPs. Each OCP is displayed by

a different HMM model. Multiple OCPs can be
considered simultaneously, resulting in much more

complex HMM architectures.

MAJA 2:
Deep-learning and neural

networks (DL) based methods

Deep-learning (DL) concepts use complex neural networks for
modeling time series and are thereby capable of detecting and/or
predicting anomalies. DL models are very good at modeling the

“temporal context” of a dynamically evolving system.
The family of DL concepts of relevance for anomaly

detection/prediction is well represented by five core models, which are:
RNN (recurrent neural network), CNN (convolutional neural network),

HYBRID (that is, a merging of the two previous ones), ATTENTION
(refers to the so-called attention-based models), HTM (hierarchical

temporal memory) and HTM.
Each of these models displays specific interesting features w.r.t. the

capability to capture the temporal context: (a) CNN: recognizes pattern
sequences and predicts expected values, determines anomalies by

identifying the differences between the predicted and actual signals,
learns long-term dependencies by determining the number of previous
states to keep or forget at every time step, extract multi-scale features

while modeling long-term dependencies.
CNN: instead of explicitly capturing the temporal context, it learns

patterns in segmented time series; in order to comprehend behaviors
appearing over a long period, a temporal convolution is used; three
properties of the temporal convolutions: (i) they are causal, meaning
that they ensure no information leakage from the future to the past;

(ii) they can take a sequence of any length, just as with an RNN;
(iii) they can look quite far into the past to forecast futures.

A sufficiently exhaustive inventory of schemes
within this family of (DL-based) methods is

provided in the survey by
Kukjin Choi et al. (2021) [54].

Consider RNN, two examples of models: (a) LSTM
family (e.g., LSTM-VAE, SPREAD, MAD-GAN),

(b) GRU-gated recurrent unit) family (e.g., THOC,
GGM-VAE, S-RNN).

Consider CNN, two examples of models:
(a) traditional CNN family (e.g., MU-Net, BeatGAN),
(b) Temporal Convolutional Networks (TCU) family

(e.g., HS-TCN, TCN-GMM).
Consider HYBRID, one example of model: the

Convolutional LSTM (ConvLSTM) family
(e.g., MSCRED, RSM-GAN).

Consider ATTENTION, one example of models: the
self-attention or transformer family

(e.g., MTSM, GAT).
Consider HTM: one example of a model: RADM, a

concept that integrates HTM and a Bayesian
network [55].
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Table 7. Cont.

Paradigm-
Identifi-Cation Core Quintessence of the Paradigm Selected Representative Related Works Related to

Anomaly Detection and/or Prediction

MAJA 2:
Deep-learning and neural

networks (DL) based methods

HYBRID: when monitoring time-series data with a sliding window, the
detectable anomaly pattern varies according to the window size; it

considers the spatial information and temporal dependencies
simultaneously; it solves the solve the spatiotemporal

sequence-forecasting problem; eventually, a temporal “attention
mechanism” adjusts the contribution of the previous feature maps to

update the current one. The so-called “attention mechanism” was
introduced to improve the performance (this it is a tuning) of the

encoder-decoder model for machine translation. The idea behind the
attention mechanism was to permit the decoder to utilize the most

relevant parts of the input sequence in a flexible manner by a weighted
combination of all of the encoded input vectors, whereby the most

relevant vectors are attributed the highest weights.
ATTENTION: by paying attention to the input weights that contribute
more to the output, the so-called attention-based models can capture a

very long-range dependence with relative importance to each data
point; its remarkable achievements in NLP (natural language

processing) motivated an application also in the time-series anomaly
detection domain.

HTM: it can reliably capture and predict sequence patterns and thus is
beneficial to anomaly detection in time-series data; it is considered to

be one of the most promising next-generation deep learning
approaches; it is especially unique in that it does continuously learn

temporal patterns from streaming data without backpropagation.

A sufficiently exhaustive inventory of schemes
within this family of (DL-based) methods is

provided in the survey by
Kukjin Choi et al. (2021) [54].

Consider RNN, two examples of models: (a) LSTM
family (e.g., LSTM-VAE, SPREAD, MAD-GAN),

(b) GRU-gated recurrent unit) family (e.g., THOC,
GGM-VAE, S-RNN).

Consider CNN, two examples of models:
(a) traditional CNN family (e.g., MU-Net, BeatGAN),
(b) Temporal Convolutional Networks (TCU) family

(e.g., HS-TCN, TCN-GMM).
Consider HYBRID, one example of model: the

Convolutional LSTM (ConvLSTM) family
(e.g., MSCRED, RSM-GAN).

Consider ATTENTION, one example of models: the
self-attention or transformer family

(e.g., MTSM, GAT).
Consider HTM: one example of a model: RADM, a

concept that integrates HTM and a Bayesian
network [55].

MAJA 3:
Graph-network-based methods,
combined with either traditional
ML (machine learning) methods

or MAJA 1

Data objects representing a scene like the one in Figure 3 cannot always
be treated as points lying in a multi-dimensional space independently.

In contrast, they may exhibit inter-dependencies that should be
accounted for during the anomaly detection process. Indeed, graphs

provide powerful machinery for effectively capturing these long-range
correlations amongst inter-dependent data objects.

Anomaly detection methods for static graph data concern both
unlabeled (plain) and labeled (attributed) graphs. Moreover, change or

event detection approaches for time-varying or dynamic graph data,
based for, e.g., on edit distances and connectivity structure, are

available. Of particular interest is the so-called “anomaly attribution”,
which consists of revealing the root cause of the detected anomalies

and presenting anomalies in a user-friendly form. This provides tools
that could/do enable/facilitate the post-analysis of detected anomalies

for the crucial task of sense-making. Indeed, qualitative analysis
techniques for the sense-making of spotted anomalies are very

important and needed.

A sufficiently exhaustive inventory of schemes
within this family of (graph-based) methods is

provided in the survey by
Leman Akoglu et al. (2015) [48]

MAJA 4:
Graph neural network

(Graph-DL) based methods

A very significant change in the last years is that graph anomaly
detection (see MAJA 3) has evolved from relying heavily on the

domain knowledge of human experts towards rather machine learning
techniques that eliminate human intervention and, more recently,

various deep learning technologies. These deep learning techniques are
not only capable of identifying potential anomalies in graphs far more

accurately than ever before, but they can also do so in real-time.
Consequently, MAJA 4 can be viewed as a synergetic merging of MAJA
3 and MAJA 2. Moreover, certain bricks of MAJA 1 and of fuzzy logic

may be easily casually integrated (e.g., Bayesian networks, certain
HMM architectures, etc.).

Conventional techniques (see MAJA 1 and MAJA 2) typically represent
real-world objects as feature vectors and then detect outlying data

points in the vector space. Although these techniques (see MAJA 1 and
MAJA 2) showed power in locating deviating data points under

tabulated data format, they inherently discard the complex
relationships between objects. This discarding of relationships is a

significant limitation especially, amongst others, from the perspective
of “explainable anomaly detection and prediction” on hand and of the

capability to model/map appropriately the complex scene of
“monitoring a human in bed”, as was described in Figure 3 (while

additionally considering the above so-called OCPs and USPs) on the
other hand.

Moreover, in real-world scenarios, many objects have rich relationships
with each other, which can provide valuable complementary or

dedicated special information for anomaly detection. Or the
observation perspective from which the anomaly is detected can

change even dynamically over time (see the above so-called USPs
and OCPs).

A sufficiently exhaustive inventory of schemes
within this family of (graph DL-based) methods is

provided in the survey by
Xiaoxiao Ma et al. (2021) [47].
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Table 7. Cont.

Paradigm-
Identifi-Cation Core Quintessence of the Paradigm Selected Representative Related Works Related to

Anomaly Detection and/or Prediction

MAJA 4:
Graph neural network

(Graph-DL) based methods

It is well known that non-deep-learning-based techniques (see MAJ-1
and MAJ-3) generally/essentially lack the capability to capture the

non-linear properties of real objects [56]. Consequently, the
representations of objects learned by them are not expressive enough to
fully support a robust anomaly detection capability. In order to tackle
these limitations, more recent studies seek the potential of adopting

deep learning techniques to identify anomalous graph objects.
By extracting expressive representations such that graph anomalies and

normal objects can be easily separated, or the deviating patterns of
anomalies can be learned directly through deep learning techniques,

graph anomaly detection with deep learning is starting to take the lead
in the forefront of anomaly detection. As a frontier technology, graph

anomaly detection through integrated deep learning, hence, is expected
to generate more fruitful results w.r.t. accuracy and robustness in

detecting anomalies.

A sufficiently exhaustive inventory of schemes
within this family of (graph DL-based) methods is

provided in the survey by
Xiaoxiao Ma et al. (2021) [47].

8.2. Assessment of How Far the Four Major Approaches/Avenues Do Fulfil or Not the
Comprehensive Real-World Requirements Formulated in Section 5 (see Table 4)

In this section, we carefully analyzed/assessed the four major approaches presented
in Table 7 w.r.t. their capabilities to fully or partially satisfy the challenging requirements
dossier presented in Table 4. The comprehensive outcome of this deep and careful assess-
ment is summarized in Table 8. As one can see from Table 8, MAJA 4 (that is, the graph
DL approach) is unequivocally the approach with the truly highest and best potential
for fully satisfying the hard requirement dossier, which takes all real-world and practical
needs into consideration, especially for the target context of “monitoring a human in bed”.
Overall, DL and graph involving approaches appear to have more potential to tackle the
tough real-world requirements. MAJA 4 is the frontier (that is, cutting-edge) approach that
offers the maximum flexibility and reliability to satisfy the complete requirements dossier
expressed in Table 4 fully.

Table 8. A deep and comparative analysis of how far the four major approaches are capable or not of
modeling and address the tough specifications expressed in the requirements dossier of the target
context of “monitoring a human in bed”.

Requirement ID
and Description

Capability of MAJA 1
to Fulfil the

Requirement [57–63]

Capability of MAJA 2
to Fulfil the

Requirement [64–69]

Capability of MAJA 3
to Fulfil the

Requirement [48,70,71]

Capability of MAJA 4
to Fulfil the

Requirement [69,72–75]
Remarks

REQ 1: Self-learning
and continual learning

capability, for either
single individuals or
groups of individuals

Possible but relatively/
eventually limited Possible Possible but relatively

limited Possible All approaches can
handle this requirement

REQ 2: Identification of
and adaptivity to

novelty/evolution

Possible but relatively/
eventually

limited [26,37]
Possible [41,76] Possible but relatively/

eventually limited [77] Possible (a) [78] (b) [79]

All approaches can
handle these

requirements, whereby
DL involving ones

are better

REQ 3: Comprehensive
uncertainty

model/assessment for
all subtasks (A–E)

described in Section 3.4.

Not possible Not possible Possible but relatively/
eventually limited Possible [80–84]

Only graph-based
approaches can handle

this requirement

REQ 4: Prediction
capability of the system
status at levels 1 to 4 of

Figure 3 for one or more
future time sub-regions

Possible but relatively/
eventually limited Possible Possible but relatively/

eventually limited Possible [85–89]

All approaches can
handle these

requirements, whereby
DL involving ones

are better

REQ 5:
Reconfigurability w.r.t.

USPs (user-specific
perspectives)

Not possible Not possible
Eventually

possible but very
limited

Possible [90–93]
Only graph-based

approaches can handle
this requirement

REQ 6:
Reconfigurability w.r.t.

OCPs (observation
context perspectives)

Not possible Not possible
Eventually

possible but very
limited

Possible [90–93]
Only graph-based

approaches can handle
this requirement
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Table 8. Cont.

Requirement ID
and Description

Capability of MAJA 1
to Fulfil the

Requirement [57–63]

Capability of MAJA 2
to Fulfil the

Requirement [64–69]

Capability of MAJA 3
to Fulfil the

Requirement [48,70,71]

Capability of MAJA 4
to Fulfil the

Requirement [69,72–75]
Remarks

REQ 7: Explainability [94]
of the identification of
entities at levels 1–4 of

Figure 3

Not possible
Eventually

possible but
very limited

Eventually
possible but
very limited

Possible [95–103]

Only graph and/or
DL-based approaches

can handle
this requirement

REQ 8: Explainability of
the anomaly detection

(considering USPs
and OCPs)

Not possible Not possible
Eventually

possible but
very limited

Possible

Only graph and/or
DL-based approaches

can handle
this requirement

REQ 9: Explainability of
the evolution detection Not possible

Eventually
possible but
very limited

Eventually
possible but
very limited

Possible

Only graph and/or
DL-based approaches

can handle
this requirement

REQ 10: Explainability
of the uncertainty grade
or confidence level for

all subtasks (A–E)
described in Section 3

Not possible
Eventually

possible but
very limited

Eventually
possible but
very limited

Possible

Only graph and/or
DL-based approaches

can handle
this requirement

REQ 11: The possibility
of a performance

tuning/improvement
through either partial
human assistance (via

some form of feedback)
or evolutive/reinforced

learning or involving
artificially generated

data out of some
reliable “generative

adversarial” process or
a combination of some

or all of the above.

Not possible
Eventually

possible but
very limited

Eventually
possible but
very limited

Possible [104–107]

Only graph and/or
DL-based approaches

can handle
this requirement

REQ 12: The
reconfigurability w.r.t.

the tolerance
level/grade/

margin related to the
abnormality assessment

(or, in other words,
related to the anomaly

detectability). The
operators of the

intelligent system for
anomaly detection in the
monitoring of “human in
bed” shall able to modify,

even dynamically, the
tolerance level/margin of
the anomaly detection.

Not possible
Eventually

possible but
very limited

Eventually
possible but
very limited

Possible

Only graph and/or
DL-based approaches

can handle
this requirement

REQ 13: Tolerance to
non-ideal training data

Possible (however,
some adaptations may

be necessary)

Possible (however,
some adaptations

(e.g., in the form of
pre-processing layers or
dataset augmentations)

may be necessary)

Eventually possible but
after adaptations Surely possible

Almost all approaches
can handle this

requirement, although
adaptations, which may
be very substantial, may

be necessary

REQ 14: The complete
intelligent system shall
be capable of running

fully on COTS
embedded platforms

(i.e., the intelligent
system shall be fully

Embedded AI), which
are essentially

low-computing power;
this is to ensure both low

cost and data security
while satisfying use-case

specific real-time
processing deadlines.

Possible (however,
some adaptations may

be necessary)

Possible (however,
some significant
architecture and

pipeline adaptations
may be necessary)

Eventually possible
(however, some

significant architecture
and pipeline

adaptations may
be necessary)

Eventually possible
(however, some

significant architecture
and pipeline

adaptations may
be necessary)

For this requirement, the
approaches involving
DL are not superior to
the intelligent system
version that is “fully
embedded”. For this

system version, MAJA 1
is potentially superior.
However, the situation

significantly changes for
the case of an intelligent

system that can/does
involve IoT and related
infrastructure such as

Cloud Computing
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Table 8. Cont.

Requirement ID
and Description

Capability of MAJA 1
to Fulfil the

Requirement [57–63]

Capability of MAJA 2
to Fulfil the

Requirement [64–69]

Capability of MAJA 3
to Fulfil the

Requirement [48,70,71]

Capability of MAJA 4
to Fulfil the

Requirement [69,72–75]
Remarks

REQ 15: Short learning
duration and/or fast

detection of/and
adaptation to

behavior changes

Possible (however,
some adaptations may

be necessary)

Possible (however,
some significant
architecture and

pipeline adaptations
may be necessary)

Possible (however,
some significant
architecture and

pipeline adaptations
may be necessary)

Possible (however,
some significant
architecture and

pipeline adaptations
may be necessary).

However, more flexible
in the presence of

reconfigurability needs
w.r.t. REQ 11 and

REQ 12

The performance metric
MET 4 (see Table 5) can

influence
(subject-dependently)

this requirement.
For non-reconfigurable
setups, MAJA 1 appears

potentially superior.
However, in the face of
reconfigurability needs,

MAJA 4 becomes
evidently the
superior one.

It is further clear that a monitoring system of humans in bed, which satisfies the
specifications described in Tables 4 and 8, if extensively and comprehensively verified
and validated, is a frontier system in the market and shall enjoy a high acceptance by
the operators.

9. Discussion of a Tentative General Strategic System Architecture Potentially
Satisfying the Formulated Hard Requirements

As comprehensively and extensively discussed in Section 8, a system based on Graph-
DL (MAJA 4) is the one that has the potential to reliably solve the tough endeavor expressed
in Table 4 for the monitoring of humans in bed. The MAJA 4-based system is very innovative
as it is also a truly explainable, interpretable and dynamically reconfigurable anomaly
detection system. Beyond the target context of monitoring humans in bed, this system
is applicable to all other human activity monitoring contexts and use-cases eventually
without exception because of the very strong and flexible expressive modeling graph-based
neural networks. It has indeed very superior characteristics that evidently reach far beyond
the current state-of-the-art.

Since “Graph-DL/MAJA-4” is very flexible and applicable to all human activity
monitoring contexts and use-cases, its verification and validation can be conducted by
using the diverse public datasets, which were used for research and benchmarking purposes
by the relevant research community.

From a practical System Engineering perspectives, the development of the Graph-
DL/MAJA 4 shall follow, roughly, the following key steps: (1) STEP 1: Use-case survey
and use-case engineering after comprehensive survey of all possible application contexts;
(2) STEP 2: Based on the insights provided by STEP 1, comprehensively formulate a
representative set of practically realistic OCPs and USPs (respective realistic tolerance
margin ranges shall also be collected); (3) STEP 3: Comprehensive architecture design,
involving Graph-DL of the architecture in Figure 3 while considering the different OCPs,
USPs and the various explainability and interpretability and reconfigurability concerns
described in Table 4; (4) STEP 4: Architecture tuning, optimization and system verification
by using a selection of public datasets for extensive stress-testing; STEP 5: Final validation
by involving the observation in real-time, over a period of several weeks, of real human
clients of various significantly diverse profiles w.r.t. age, gender, health status, weight,
height, special personal issues/situations (e.g., a lady before and after giving birth, a
person before and after undergoing a chirurgical/medical intervention, a person after
stroke, etc.), etc; STEP 6: User manual formulation for the system operators in the practice
w.r.t. to the configuration for a given use-case and also w.r.t. the complex multi-dimensional
reconfigurability and explainability characteristics.
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10. Conclusions and Outlook

Truly—and the rich literature on the topic underscores it—abnormality detection
and/or prediction is a very hot topic in several technical and socio-technical contexts. In
this paper, we addressed it in the frame of the activity monitoring of a human in bed.
Activity monitoring of humans in bed is very relevant for various applications areas and
contexts: medical, non-medical, some forms of leisure, older people, etc. These various
application contexts result in a huge variety of nuances w.r.t. the appropriate system
configuration needed according to the 15 requirements presented in Table 4.

Essentially, this paper presents a comprehensive formulation of a requirements en-
gineering dossier for the monitoring system of a “human in bed” for abnormal behavior
detection and/or forecasting. Hereby, practical and real-world constraints and concerns are
identified and taken into consideration in the requirements dossier. A comprehensive and
holistic discussion of the anomaly concept is extensively conducted, and it also contributes
to laying the ground for a realistic specification book of the anomaly detection system.
Some other system engineering relevant issues were briefly addressed, e.g., just to name a
few, verification and validation. Of particular interest is the comprehensive and structured
critical review of the relevant literature, which leads to identifying four major approaches
of interest. These four approaches are comprehensively evaluated from the perspective of
the requirements dossier. It is hereby clearly demonstrated that the approach integrating
graph networks and advanced deep-learning schemes is the one capable of fully fulfilling
the challenging issues expressed in the “real-world conditions aware” specification book.
To conclude, a few recommendations regarding system architecture and overall systems
engineering were formulated.

A good number of systems close to the market entrance are mostly built around
MAJA 1. The P.SYS system is a good representative example of them. They enjoy especially
the practically very interesting features of being low-cost and low energy consumption
while ensuring a robust/solid data security and a self-sufficient operation. This is already
sufficient for a huge number of practical, real-world use-cases and/or scenarios. Never-
theless, future systems integrating MAJA 4 provide more superior system-related features
w.r.t. all 15 requirements listed in Table 4.

Indeed, the “Graph-DL/MAJA-4” system concept suggested in this paper is very
innovative as it is also a truly explainable, interpretable and dynamically reconfigurable
anomaly detection system. Beyond the target context of monitoring humans in bed, this
system is applicable to all other human activity monitoring contexts and use-cases without
exception. It has indeed very superior characteristics, which evidently reach far beyond the
current state-of-the-art.

Future works will focus first on a comprehensive scenario and use-case analysis that
considers a sufficiently representative set of realistic application contexts. Then, they shall
follow a careful and holistic system engineering process as suggested in Section 8. After
a comprehensive validation, a monitoring system implementing the system concept of
“Graph-DL/MAJA-4” will be a frontiers (i.e., cutting-edge) system demonstrating a strong
superiority compared to competing systems. The market success chances of a company
owning such a system are great [1].
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