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Abstract: Economic and social development is hardly influenced by electric power production and
consumption. In this context of the energy supply pressure, energy production and consumption must
be monitored and controlled in an intelligent way. Due to the availability of large data measurements,
prediction algorithms based on neural networks are widely used in accurate power prediction.
Firstly, the particularity of our work is represented by the size of the dataset consisting of 4 years of
continuous real-time data measurements collected from the CETATEA photovoltaic power plant, a
research site for renewable energies located in Cluj-Napoca, Romania. Secondly, the high granularity
of the dataset with more than 4.2 million unified production and consumption power values recorded
every 30 s guarantees the overall prediction accuracy of the system. Performance metrics used to
evaluate the prediction accuracy are the mean bias error, the mean square error, the convergence time
of the prediction system, the test performance, and the train mean performance. Test results indicate
that the predicted unified electric power production and consumption closely resembles the unified
electric power measured values.

Keywords: power prediction; neural networks; photovoltaic panels; real dataset; unified power
production and consumption

1. Introduction

On a global scale, energy represents the key ingredient for economy development.
Continuous increase in the energy demand [1] and the necessity to reduce pollution [2–4]
make the renewable energy transition essential [5]. According to World Energy Outlook,
in 2019 renewables had a share of global electricity generation of 23.2% [6]. Among wind,
hydro-power, biomass, and geothermal, solar power is one of the most important renewable
energy sources [7]. Unfortunately, the solar power at the ground level has the disadvantage
of not being permanent and it is highly dependent on atmospheric parameters [8].

In the context of the overall energy supply pressure growing tension, both electric
power production and consumption have increased progressively year by year. The ran-
domness of solar power generation has three fundamental problems. Firstly, if too much
power is generated and the grid cannot absorb it efficiently or store it in large batteries
units, it becomes excess. Secondly, if there is not enough power generated and the grid
cannot provide the requested energy, extra supply must be provided from the electric grid.
Thirdly, if a system’s work is entirely dependent on the solar power generation, the owner
cannot know if the system is available for a future application, or if there is enough time
for the current running application to end successfully. Consequently, by providing a good
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estimation of both electric power generation and consumption (considering realistic limits
and expectations), local power supply provisioning from other sources can be planned
more efficiently.

In this context, the scope of this work is to provide a predictive method for unified elec-
tric power production and consumption for CETATEA, a building within the National Insti-
tute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca,
Romania. CETATEA is a research site for renewable energies (i.e., photovoltaic-solar en-
ergy conversion, concentrated solar energy, lead-acid batteries, wind energy, hydroelectric
energy, energy recovery from mechanical vibration and electromagnetic pollution (electros-
mog), thin layer thermoelectric transducers, unconventional treatments in microwave field,
and fuel oil recovery from waste oils). Meantime, CETATEA is integrated with the national
electric grid, and it is fully equipped with a photovoltaic (PV) system (i.e., photovoltaic
panels, inverter, switch box, batteries, and electric meters).

When a predictive system is tested and evaluated in a real environment, it is recom-
mended to consider that the system is as good as the training input data and its processing.
This implies that the prediction increases proportionally to the distance and difference
in the location. Most of the energy prediction systems have a direct dependency to the
location and climate they were designed for. To provide a general predictive system outside
of the area where the data was collected, there are two possible options: (1) either to have
the entire system retrained with a new data set, or (2) to have the system working in a
similar environment. In the first scenario, similar results can be obtained if the input data
has the same parameters and size as the original dataset used. The size of the dataset must
be at least the same or greater. In the second scenario, the trained system will provide
similar results only if the new selected location has the same properties (i.e., the variables
change in the same way as the weather).

The originality of this work consists of processing a set of real data collected from
the CETATEA photovoltaic power plant. The unified electric power production and
consumption prediction method proposed in this paper considers 4 years of real data
measurements collected from January 2016 to December 2019 (i.e., 3 years for training and
1 year for testing). Unified electric power measured values are collected every 30 s.

The performance metrics used to evaluate the prediction systems are (1) the mean bias
error (MBE), (2) the mean square error (MSE), (3) the convergence time of the prediction
system, (4) the test performance (TEP), and (5) the train performance (TRP).

The main contributions of this work are as follows:

• Firstly, the accuracy of related theoretical prediction solutions is assessed by in-
dicating the need to consider the application-specific particularities (i.e., number
of datapoints in the frame time, neural network configuration in terms of epochs
and regression methods, and the appropriate balance between training, testing, and
computation time).

• Secondly, the impact of different configuration parameters of the proposed prediction
system is evaluated. For the existing real electric power measurements dataset, the
evaluation is performed by analyzing the impact of (1) the network dimensions and
dataset size, (2) the error prediction, and (3) added noise on prediction accuracy.

• Thirdly, the access to a unified real dataset that contains all the information about the
electric power production and all the information about the electric power consump-
tion with a high resolution level (i.e., reported measurements every 30 s) is reported
as a great need for an accurate prediction. The values for produced and consumed
electric power are unified into a singular dataset, creating a complex system with a
complex problem.

• Finally, the proposed electric power prediction method proves to be accurate in terms
of train and test performances, MBE, and MSE, being capable of providing a conver-
gence time required by long-term prediction. Test results indicated that the prediction
model closely resembles the unified electric power measured values.
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The remainder of this paper is organized as follows. Section 2 presents the state-of-art
regarding prediction methods for electric power production and consumption. Section 3
provides a detailed description of unified power production and consumption chain at
the CETATEA building. Meantime, in order to confirm if there is any power production
drop of the PV farm, a thermal inspection of the solar panels is performed using a drone.
Sections 4 and 5 outline the implementation details of the prediction system and evaluate
the impact of different configuration parameters on the prediction. Training results and
validation of the power prediction model are presented in Section 6. Finally, Section 7
concludes the paper.

2. Literature Review
2.1. Electric Power Production Using Photovoltaics Systems

Photovoltaic (PV) systems can produce electric power in every place (at a certain levels)
being the ones with the highest solar potential among renewable energy resources [9].
Previous study showed that covering 16% of the world’s surface with 10% photovoltaic
panels will produce two times the amount of energy compared to fossil fuels [10]. This
extends the PV panels use and many PV systems were installed, starting from house use
(few kW) to big farms (hundreds of MW) [11–14]. The increasing penetration of energy
produced by PV systems into the power distribution grid has a negative effect by inducing
voltage fluctuations due to the randomness of PV power production [15,16]. However,
an accurate prediction of PV power production is of great help in finding the adequate
methods of reducing the voltage fluctuations in the power distribution grids.

Solar PV and storage systems are classified into three types: (1) grid tied or grid direct
PV system, (2) off grid PV system, and (3) grid/hybrid or grid interaction system with
energy storage [17]. There are many types of PV panels produced today: mono-crystalline
silicon, polycrystalline silicon, amorphous silicon, etc. Their efficiency is tested at standard
conditions, 25 ◦C, and radiation level of 1000 W/m2 [18–20]. However, there are several
factors that influence the PV panels’ efficiency and the amount of energy produced when
the panels are installed in real working conditions. Evaluating different PV panel types,
installed in different locations at different atmospheric conditions, stationary or mounted
on one- and two-axis solar tracking systems, have been the subject of many studies [21–36].

2.2. Electric Power Production and Consumption Prediction

Yadav and Chandel [37] reviewed a series of promising results over various imple-
mentations of artificial neural networks with various combinations of input parameters.
Such parameters are: the theoretical sunshine duration (TDSH), the measured sunshine
duration (MDSH), the month, the maximum daily temperature, the monthly mean of
theoretical sunshine duration (MTSH), the monthly mean of measured sunshine duration
(SH), the extraterrestrial radiation (ER), etc. Most examples used either TDSH or MDSH, or
a combination, alongside other parameters. The networks are implemented with a small
number of hidden layers (1 or 2) and between 20 and 80 neurons per hidden layer. The
results show a percentage root mean square error (RMSE %) between 5% and 14% with
more than half of those values being around the 6% mark. Other examples mention as an
indicator the absolute fraction of variance, the R2 score, or the coefficient of determination
as a percentage, with values ranging from as low as 88.9%, for a network with 3–11 inputs
and only 6 neurons in the hidden layer, to values above 99% over a few examples, with
most being above 95%.

Marzouq et al. [38] present a similar case for solar radiation prediction, with a review
over 32 papers from various journals, over several years, with locations all over the world.
The presented results show a series of low values, or percentages, for different error types,
such as MBE or RMSE, with high correlation or coefficient of determination. The special
mention in this case represents the small network size used in each example, with an
average of 5–6 input nodes, 16 hidden layer nodes, and 23 total nodes per neural network,
along with most networks using only 1 hidden layer.
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Kuzlu et al. [39] use several explainable artificial intelligence tools to check which
input parameters influence solar power prediction for a neural network the most. Out
of a total of 13 input parameters, the ones with the highest importance marked by the
tools are: surface solar radiation down (SSRD), the hour of the day (HOUR) and top net
solar radiation (TSR), with the TCIW, surface thermal radiation down (STRD), and relative
humidity (HUM %) showing in the following positions across different tools.

Across the literature, it is recommended to keep a 70–30 ratio between the training
data and testing data [39]. In this case, it would require that the training data spans over
3 years while the testing data spans over 1 year, or less. While the testing data could be
smaller, the training data must have a fixed span with 1 year periodicity to ensure an equal
training development and to avoid biasing over specific months.

In machine learning, a different part during the training process is represented by the
learning rate. This is represented by a set of constants that decrease the learning time (e.g.,
the number of iterations required to minimize the function), and the error. These constants
are calculated using a cross-validation set, which represents a part of the data set that is not
used during the training or for evaluating the system. For this purpose, a different way to
split the data is 60–20–20, where 60% of the data set is used for training, 20% is used for as
cross-validation, and the final 20% is used for testing.

In our work, the collected dataset of 4 years of real measurements is split in a
75–25 ratio for training–testing phases, while keeping the cyclic component in the pre-
diction process. Furthermore, the 75% dataset used in training is split into a 75–25 ratio
between actual training and validation process (i.e., 56.3–18.7% of the total dataset).

2.3. NARX-Based Model for PV Power Prediction

In this work, an NARX-based model (Nonlinear AutoregRessive with eXternal input)
implemented in MatLab [40] is used for the PV power prediction. An NARX-based model
is known for its application for chaotic time series analysis generated by nonlinear dynamic
systems (e.g., the renewable energy sources) [41–43]. NARX is a partial recurrent neural
network (RNN) as its memory is embedded into the network (i.e., network inputs include
autoregressive terms apart from the external variables). In this way, the long-term dynamics
(i.e., the cyclic property of the year, the day of the week, and the time of the day) captures
the short-term dynamics of the system.

A large number of representative papers in the literature [41–54] show that the NARX
neural network notably outperformed the other persistence models, and it is better than
linear regression models. Accordingly, comparative test results analysis with other predict-
ing methods in terms of similar statistical error measurements (i.e., mean bias error, mean
absolute error, mean square error, root mean square error, normalized root mean squared
error, and/or mean absolute percentage error) confirms NARX-based model prediction
performances when it is used for renewable energy forecasting, as follows: (1) wind speed
prediction [48,50,55,56], (2) solar irradiance prediction [45,51], (3) energy storage systems
in photovoltaic installations [52], (4) output power prediction of the PV panels [53], electric
power prediction [1], and (5) electrical load forecasting for buildings [47,48,57,58]. All
these indicate that the NARX-based model has been implemented since the last decade
for energy prediction issues and particularly it was widely adopted for forecasting the PV
power output in relevant literature [41–43,47,49,53,57,58].

As the NARX-based prediction models have been widely adopted for forecasting the
PV power output, the network dimensions were extensively tested to find the optimal
NARX neural network configuration. In order to further improve the prediction accuracy,
the performances of the NARX-based models were compared with two other prediction
methods: (1) the error prediction approach and (2) the added noise over the original
dataset approach.

With respect to previous published work in the area of forecasting energy prediction
using an NARX-based approach, the following objective improvements are worthy of
mention for the optimal network configuration:



Sensors 2022, 22, 6259 5 of 24

• A high-resolution of the dataset (i.e., 30 s of continuous real-time measurements of
unified electric power collected over a span of 4 years) up to 30 times the size of other
reported datasets (i.e., from 5 to 15 min observations of PV power parameters over the
course of 2, 3, or 4 years [41,43,49,57];

• Up to 20 times improvement in terms of prediction accuracy (i.e., MBE = −0.000089
and MSE = 0.0554) compared to reported network configurations [41–43,47,49].

3. CETATEA Photovoltaic Power Plant

In the context of renewable energy transition, the National Institute for Research
and Development of Isotopic and Molecular Technologies (INCDTIM) form Cluj-Napoca,
Romania, implemented a grant financed by the Sectorial Operational Program “Increasing
economic competitiveness”, Investments for your future and co-financed by the European
Regional Development Fund. Consequently, the CETATEA building was built, and the
photovoltaic system was installed in 2015.

Figure 1 illustrates the CETATEA building and the photovoltaic farm.

Figure 1. The CETATEA building at the National Institute for Research and Development of Isotopic
and Molecular Technologies, Cluj-Napoca, Romania.

3.1. CETATEA Photovoltaic System

The photovoltaic (PV) system is an island type, the maximum generated electric power
is 25 kW. The produced energy is consumed locally but the excess is either transferred to
a CellCube battery, that has a storage capacity of 40 kWh or is injected into the national
power grid. The CETATEA photovoltaic system includes the following major blocks:
(1) photovoltaic panels, (2) inverter, (3) switch box, (4) batteries, and (5) electric meters.

The electric connections diagram of the PV system is illustrated in Figure 2.
The PV farm consists of 102 PV panels. The PV panels are stationary having 22◦

southwest orientation and 10◦ from the horizontal. PV panels are grouped in 17 rows with
6 panels per row. Each two consecutive rows are connected in a series circuit except for
the last three that are connected together (i.e., 7 string of 2 rows each, while the last string
has 3 rows). Even the open circuit voltage of the 3 rows string is different compared to the
2 rows strings, the inverter has multistring capability with input voltage of up to 1000 V.
The solar panels involved in this study are polycrystalline type, JC245M-24/Bb model,
produced by ReneSola Jiangsu Ltd. company [59].

Figure 3 illustrates the PV panels installed at the CETATEA building.
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Figure 2. Electric schematic of the CETATEA photovoltaic system.

Figure 3. PV panels installed at the CETATEA building.

Main characteristics of the PV panels are presented in Table 1.

Table 1. PV panels’ main characteristics.

Parameter Value

Maximum Power (Pmax) 245 W
Power Tolerance 0/+5W

Open Circuit Voltage (Voc) 37.3 V
Short Circuit Current (Isc) 8.73 A

Maximum Power Voltage (Vmp) 29.9 V
Maximum Power Current (Imp) 8.19 A

Maximum System Voltage 1000 VDC
Maximum Series Fuse Rating 20 A

Dimension (L × W × H) 1640 mm × 992 mm × 40 mm
Weight 19 kg

The energy produced by the PV panels is transferred to an SMA Sunny Tripower
25,000 TL-30 inverter via two electric junction boxes. The inverter has multistring capability
with DC input voltage of up to 1000 V and a maximum efficiency of 98.4%.

From the inverter the energy is transferred further to the consumer/storage unit/national
power grid. The storage unit is a Vanadium redox flow battery FB 10–40. It has a power
output of 10 kW and a storage capacity of 40 kWh.

The storage unit is illustrated in Figure 4.
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Figure 4. The storage unit attached to the PV system at the National Institute for Research and
Development of Isotopic and Molecular Technologies, CETATEA building, Cluj-Napoca, Romania.

The batteries and the associated control panels are presented in Figure 5.

Figure 5. The batteries attached to the PV system including the digital meters of the monitoring panels.

There are nine digital electric meters that monitor the power produced by the PV
system and the power consumed in different electric circuits of the CETATEA building.
The digital electric meters provide information regarding (1) current intensity, (2) voltage,
(3) active power, (4) reactive power, and (5) total energy yield. The dataset used in the
present work includes the unified active power production and consumption values.

The monitoring panel (i.e., digital electric meters) of the electric power produced/consumed
locally/stored/injected into the national power grid is presented in Figure 6.

Figure 6. The monitoring panel of the PV system with nine digital electric meters.

The electric meter computes the power transfer (P) between two parts of the electric
circuit (as indicated in Figure 2). On the one hand there is the PV system, battery unit, and
critical consumers (e.g., expressed as electric load 1), and on the other hand there is the
power grid and non-critical consumers (e.g., expressed as electric load 2).
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The critical consumers require a permanent energy source and are directly connected
to the battery unit (i.e., the battery unit operates in case of failures like an UPS unit). When
the power is transferred from the power grid to the electric load 1 (critical consumers) or to
charge the battery the p value is positive (please see red zone in Figure 7). Negative values
of p indicate that the electric power is directly transferred from the PV system and/or
battery unit to electric load 2 (non-critical consumers) and/or grid (please see green zone
in Figure 7). Consequently, computed unified electric power produced and consumed is
given by the following equation:

P = Pelectric load 1 − PPV − Pbattery, (1)

Figure 7. Unified electric power production and consumption over 24 h (1 March 2019).

The Pbattery have positive values when the battery is in charging mode and negative
values when the battery is in discharging mode.

The unified electric power production and consumption measurements over one day
(1 March 2019) are presented in Figure 7.

3.2. Photovoltaic Panels Efficiency

Panel elements can break one by one over time, and the impact is felt over long
intervals, directly into the power loss and financials. To confirm if there is any power
production drop of the PV farm considered in our study, a thermal inspection of the
panels was performed using a drone. This solution is reliable, precise using state-of-
the-art equipment for the best quality data. We used an industrial-grade drone (i.e.,
model DJI M300 RTK, DJI, Shenzhen, China) equipped with a thermal vision specialized
camera (i.e., Zenmuse H20N sensor with a 640 × 512 pixels image resolution for thermal
images). It generates automatic reports with pinpointed anomalies and certain numbers for
comparisons. The scene range is from −20 to 150 ◦C (High Gain) and from 0 to 500 ◦C (Low
Gain). The spectral band is 8–14 µm and sensitivity (NETD) is ≤50 mK for aperture f/1.0.

Three types of solar cell anomalies were inspected: (1) solar cell anomalies, (2) diode
defects, and (3) inverter anomalies.

Firstly, the PV panels were inspected for hot spots or solar cell anomalies. This type
of anomaly is the most common. Shade on the module or a defective cell can change the
module from power production to power consumption resulting in heating the cell which
will show as a hot spot in a thermal image. Defective cells have a higher electrical resistance,
which converts power into heat.

A comparison between RGB image and thermal view of the PV farm is presented in
Figure 8.
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Figure 8. Thermal scanning using drone inspection displays the hot spot on the PV farm.

The PV solar park configuration on the building rooftop is made of 102 panels with
60 cells each, obtaining a total of 6120 cells. We identified 3 panels with faulty cells caused
by solar anomalies and a total of 8 cells were identified as faulty, which means 99.87% of the
park is working properly. This kind of defect is hard to spot using traditional methods, that
require an actual technician to manually check every panel and cell to pinpoint the faulty
ones. By using the thermal vision camera, defective cells have a higher electrical resistance
which converts power into heat. Hence, on the visual spectrum, the faulty cells will look
brighter or darker. For very big areas of PV plants, artificial intelligence algorithms are
used to count the faulty cells based on the input pictures captured with drones. In our case,
a grid matrix is applied to inspect the 60 solar cells of each PV panel.

A closer view inspection reveals the 8 brighter faulty cells that are present on the PV
farm (i.e., on the 3 solar panels), as illustrated in Figure 9.

Figure 9. Hot spots indicating solar cell anomalies in the faulty panels (left side). Grid analysis on
thermal images reveals the faulty cells as brighter spots in the visual spectrum (right side).

There are reported temperature values of the solar cells between 55.6 (SP2) and 79.3 ◦C
(SP3), as indicated in Table 2.

Table 2. Temperature measurements on different points of the PV systems.

Spot Temperature Measured Value

SP1 62.0 ◦C
SP2 55.6 ◦C
SP3 79.3 ◦C
SP4 61.1 ◦C
SP5 63.2 ◦C
SP6 58.4 ◦C
SP7 68.5 ◦C
SP8 59.3 ◦C

For a healthy PV panel, thermal scanning indicates the minimum working temperature
of 58.6 ◦C and the maximum temperature of 60.9 ◦C. The highest temperature values in
Table 2 (i.e., SP3 of 79.3 ◦C, SP5 of 63.2 ◦C, SP7 of 68.5 ◦C) confirm the hot spots on the
3 faulty panels (i.e., a total of 8 cells).
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Secondly, the PV panels were inspected for diode defects and inverter anomalies. This
are two other common types of failure of the solar cells. Statistically, taking into account
the impact on energy production, the number of individual affected cells is higher than the
diode defects. Additionally, one additional negative factor with high impact is caused by
inverter anomalies. Those are rare and they affect the entire strings of modules. We did not
identify those two types of defects or anomalies in our analysis.

Concluding, the thermal inspection indicates that the power production using the PV
panels at CETAREA is efficient, and the produced power is similar to the estimated one.

4. Neural Network Approach for Energy Prediction
4.1. Neural Network Parameters

The dataset size and the network dimensions of any neural network impact its perfor-
mance. Parameter optimization is meant to provide an accurate prediction of the unified
energy production and energy consumption for the selected use case, namely the CETATEA
building in Cluj-Napoca, Romania.

In our work, a set of tests were performed over a 4-year unified energy production
and energy consumption dataset (i.e., real measurements collected from January 2016 to
December 2019) to identify the optimal configuration of the neural network parameters.
The monitoring system of the CETATEA building provides over 4.2 million unified pro-
duced and consumed power values in kilowatts (kW) (i.e., electric power measured values
reported every 30 s). The electric power measured values reported for every 30 s results in
a subset of 83.000–89.000 datapoints per month (e.g., the number of datapoints per month
varies with the number of days in a month).

Considering the large size of the dataset, the actual training and testing is performed
over a smaller number of unified energy measured values or points in the dataset. The
dataset size may be adjusted by the value of the time division between the unified power
measured values, but the user could also modify it by selecting a specific subset or by
adding more data, if available. In this work, the time division indicates the time interval
over which consecutive measurements are computed as a single average value. It controls
the resolution of the dataset, namely the total number of points used in prediction.

The neural network has two dimensions which can be configured: (1) the length of the
input delay and (2) the number of hidden layers.

The length of the input delay accounts for the number of previous points in the dataset
used to predict the next one. The length of the input delay variation allows the user to
monitor how a specific change in the value of the network dimensions impacts the overall
prediction results. Hence, the larger the value of the input delay length gets, the better the
result will be.

In our work, the unified power measurement values are averaged over a larger time
division (i.e., the value of the time division is of minutes and hours) in order to reduce the
dataset size, while still preserving year cyclicity information. Reducing the dataset size
results in a faster training period (i.e., 10 or even 20 times faster). However, the scope of
this initial set of tests is to evaluate the impact of dataset size and network dimensions on
the overall power prediction, and to analyze the network parameter variation relative to
each other (e.g., to check how a specific change in the network configuration parameters
impacts the success of the prediction). The time division size determines the number of the
data point measurements used in the training and validation sets. In our tests, the results
will have the same dimension, representing an average over the selected time division.

To optimize the neural network performance, the selected values for the network
dimension are meant to be on the smaller end (i.e., tens or hundreds of nodes, up to a
few thousands), along with a reduced dataset to shorten the required training period
(i.e., between tens of thousands to hundreds of thousands of values). This avoids both
inconsistent results for a very small network sizes (i.e., networks with less than 10 nodes),
and long computation training duration for larger networks (i.e., networks with tens of
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thousands of nodes). Nevertheless, the final set of tests (e.g., containing the optimal network
configuration) was performed using the entire dataset.

4.2. Neural Network Configuration

According to the machine learning system description, the system is bound to have
a good prediction only between the interval included within the training data. In this
case, the system has a better energy prediction within a time frame, if that time frame had
previous examples within our dataset. Hence, by a time frame we define a sliding window
of a given length (i.e., a specified period of time of 3 years).

As a general overview, the prediction system is built using a neural network approach
combining linear and logistic regression. The network contains several hidden layers that
use a feedback loop to build on top of the next prediction. The logistic regression nodes are
used to predict the chance of collecting solar power, while the linear regression nodes are
used to predict the unified power production and consumption values.

There are a several options that allow time series processing and prediction. The
configuration used in our work is an NARX neural network, a nonlinear autoregressive
neural network with exogenous input [8,60], as indicated in Figure 10.

Figure 10. Conceptual design of the electric power prediction model developed in MatLab (x(t)—input
data; y(t)—output data; w—weight; b—bias; 1:n—input delay length).

The configuration parameters of the NARX-based neural network are: (1) the input
delay length, (2) the number of hidden layers, and (3) the time division. They are configured
before training phase. Network coefficients (also known as weights or the matrix param-
eters) are computed using the Scaled Conjugate Gradient algorithm. The training phase
automatically closes when generalization stops improving, as indicated by an increase in
the mean square error of the validation samples.

The network can be used in three specific ways: (1) open-loop, (2) closed-loop, and
(3) multistep-ahead. In this study, the network is used in open-loop mode. As an open-
loop system, the network can be referred to as a neural network with memory, where the
memory represents an input delay buffer.

The input block represents a matrix formed by the input data (i.e., date and time), and
the desired output, which must cover the same time frame, representing the input delay
buffer. The size of the buffer represents the number of input data points used to predict a
single value of the following point. This time frame is shifted by every iteration towards
the next value until the end of the entire dataset.

The hidden layer consists of a set of weights through which the data is processed to
improve the prediction. The hidden layer uses a sigmoid function. It is used in successive
combinations and provides classification or regression [61]. The output block consists of
a linear regression block that will predict the next value of the iteration. The trade-off is
performed between the number of hidden nodes in each layer and the total number of
hidden layers. Increasing the number of hidden nodes increases the system complexity,
while improving the prediction. On the other hand, reducing the number of hidden nodes
results in a more simplified system, while decreasing the training and computation time.

As a note, the data needs to be biased before it gets introduced in an NARX-based
network because of how the sigmoid function behaves along the MatLab implementation
of the linear regression output. On the one side, the unified produced and consumed
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measurements in the dataset are both positive and negative values (i.e., ranging between
+10 and −15 kW; for details, see Figure 7). On the other side, the sigmoid function outputs
values only between 0 and 1. By default, NARX model implementation is not able to
correctly predict the negative values and considers them to be a prediction error. In this
context, an initial bias is added to the entire dataset. It forces all input values to be strictly
positive and match the output condition. In the end, the bias is subtracted from the output
values, positioning the prediction back in the expected interval.

All NARX-based neural network simulations are performed in a MatLab environ-
ment using the Neural Network Time Series available in the Machine Learning and Deep
Learning Toolbox (i.e., version R2020b, MathWorks, Natick, Massachusetts, United States
of America). Detailed implementation of the NARX neural network structures is indicated
in the neural network toolbox of MatLab [40].

All the simulations were completed using a laptop with an intel i7 2.6 GHz processor
and 16 GB of RAM. The energy prediction flowchart is illustrated in Figure 11.

Figure 11. Unified electric power prediction workflow.

4.3. Power Prediction Metrics

The prediction indices used in this work are as follows: (1) mean bias error (MBE),
(2) mean square error (MSE), (3) convergence time of the prediction system, (4) test perfor-
mance (TEP), and (5) train performance (TRP).

MBE indicates the system accuracy pointing out if any value out of bias exists in the
system. MBE is used to evaluate long-term prediction and has a direct relation to the real
value the system goes towards. It has a form of consistency over same-sized networks
or same-sized datasets and is degraded when comparing different network or different
dataset sizes. MSE is used to compare different network configurations running the same
dataset. MSE is a good indicator for short-term prediction, correlating the width of the
graph under which the errors are found. MSE degrades drastically if the initial dataset size
is increased, showing a direct correlation in the overall network test performance.
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Convergence time represents the minimum amount of time it takes for the network
to train, while achieving an optimal result (e.g., the amount of time it takes for all the
weights to be adjusted). This metric is a measure of system efficiency and indicates how
fast the network computes the entire network weights for the overall power production
and power consumption prediction measures. In some cases, the longer the network is
trained (e.g., a higher convergence time), the lower the error becomes. However, after a
certain amount of time, or a set of iterations, the network can overfit the training dataset.
In this case the system tries to provide an answer far more complex than the real one. In
this work, the convergence time is used to evaluate if the network training span is worth
the error reduction.

The test/train performance functions return the error vs. number of iterations (i.e.,
epochs) lowest values during testing/training phases.

5. Neural Network Parameter Optimization

To improve the overall electric power prediction, the impact of the configuration
parameters of the proposed neural network are evaluated. Consequently, for the exist-
ing energy measurements dataset, the effect of (1) network dimensions and dataset size,
(2) error prediction, and (3) added noise is evaluated.

5.1. Impact of Dataset Size and Network Dimensions on the Overall Power Prediction

The first method to improve the overall power prediction of a neural network is to
evaluate the impact of the network dimensions (i.e., input delay length and number of
hidden layers) and the dataset size (i.e., time division). In the first step, the impact of the
input delay length is evaluated.

Table 3 shows the network static configuration parameters.

Table 3. Network static configuration parameters (when evaluating the impact of input delay length).

Parameter Value

Time division 20 min
Number of hidden layers 20
Number of training points 79,400

Number of test points 26,700

The impact of increasing the input delay length is illustrated in Table 4.

Table 4. The impact of input delay length variation.

Input Delay Length
(Number of Previous Points) 10 40 60 100 140

Train performance 0.51 0.55 0.61 0.52 0.47
Test performance 0.82 0.89 0.98 0.87 0.82

MBE 0.0058 −0.0036 −0.086 0.16 −0.0039
MSE 0.42 0.72 0.82 0.7 0.68

Convergence time (seconds) 32 43 38 68 107

The results indicate a noticeable increase in error for an input delay length of 60 points
which decreases afterwards. The MBE and MSE values are significantly smaller for an
input delay length of 10 points vs. an input delay length of 100 points, while maintaining
similar values for performance. This is acknowledged for long-term prediction since the
average over the entire prediction set might be very close.

Meanwhile, the results show a poor prediction for a small number of previous points
since there is not enough information to correctly predict the next value. Therefore, a
network with a small input delay length has a bad performance for short-term predictions.
However, the length of the input delay does not impact the convergence time only for a
large network size (i.e., input delay length above 100 points).
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Secondly, the impact of the time division is evaluated. The time division impacts the
number of data points used for training and testing phases.

Table 5 shows the network static configuration parameters.

Table 5. Network static configuration parameters (when evaluating the impact of the time division).

Parameter Value

Input delay length 40
Number of hidden layers 20

The number of hidden layers is kept at 20 (consistent with the one mentioned in
Table 3). The selected input delay length is of 40 points as it is the smaller value for which
the network provides a similar MBE to the one at 140 points and MSE similar to the one at
100 points

The impact of time division variation is illustrated in Table 6.

Table 6. The impact of the time division variation.

Time Division
(Minutes) 60 45 30 20 15 5

Train points 26,400 35,000 52,900 79,400 105,800 317,600

Test points 8800 11,800 17,700 26,700 35,600 106,900

Train
performance 0.82 0.73 0.61 0.48 0.47 0.32

Test
performance 1.57 1.3 1 0.78 0.7 0.38

MBE −0.21 0.0094 −0.22 −0.022 0.0083 0.0016
MSE 2.66 2.05 1.12 0.6 0.4 0.12

Convergence
(seconds) 13 16 24 56 56 297

In this experimental scenario, the decrease in the value of the time division (e.g., a
larger number of data points), results in an improvement in the neural network in terms
of train and test performances. While the average error seems to dip between the 60 and
30 min time divisions, the MSE decreases smoothly with the increased performance in the
training and testing sides. The trade-off for test performance is the convergence time: the
more data points a network is trained over, the longer the convergence time.

Thirdly, the impact of the number of hidden layers variation is evaluated for two
network dimensions.

Table 7 shows the 1st network static parameters.

Table 7. The 1st network configuration values (when evaluating the impact of number of hidden layers).

Parameter Value

Time division 20 min
Input delay length 40

Number of training points 79,400
Number of test points 26,700

The impact of increasing the number of hidden layers for the 1st network configuration
is illustrated in Table 8.
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Table 8. The impact of number of hidden layers variation (in the case of the 1st network configuration).

Number of Hidden
Layers 5 10 20 40 60 80

Train performance 0.53 0.52 0.48 0.49 0.48 0.46
Test performance 0.82 0.8 0.78 0.81 0.76 0.76

MBE −0.095 −0.053 −0.022 −0.083 −0.046 −0.098
MSE 0.34 0.62 0.6 0.66 0.64 0.71

Convergence
(seconds) 45 38 56 77 135 289

The results shows that the larger the number of hidden layers, the more errors are
introduced into the prediction process. For a side comparison, a 2nd network is configured.
The network dataset size is doubled (i.e., from 79,400 points to 158,800 points) by reducing
the time division in half (i.e., from 20 min to 10 min), as indicated in Table 9.

Table 9. The 2nd network configuration values (when evaluating the impact of number of hidden layers).

Parameter Value

Time division 10 min
Input delay length 40

Number of training points 158,800
Number of test points 53,400

The impact of increasing the number of hidden layers for the 2nd network configura-
tion is presented in Table 10.

Table 10. The impact of number of hidden layers variation (in the case of the 2nd network configuration).

Number of Hidden
Layers 5 10 20 40 60 80

Train performance 0.343 0.43 0.38 0.322 0.314 0.312
Test performance 0.404 0.59 0.53 0.370 0.374 0.365

MBE 0.028 0.028 −0.003 −0.022 −0.028 −0.0056
MSE 0.149 0.158 0.119 0.106 0.133 0.128

Convergence
(seconds) 153 153 322 488 902 1100

The results further demonstrate that there is a clear advantage in increasing the dataset
size. It can be noticed that, for the same network size, the overall test performance is
doubled (i.e., the value is decreased by half), while error decreases considerably. As
the results indicate, for a number of 20 hidden layers, both MBE and MSE are lower
independently of the network configuration. As a drawback, for 20 hidden layers, both
MBE and MSE are several times lower.

Hence, by doubling the dataset size, the convergence time for the 2nd network config-
uration is about 3–5 times longer than the 1st one. This is due to a tweak in the network size,
where the input delay length might be not sufficient to cover the information contained in
a dataset twice as large.

5.2. Impact of Error Prediction on the Overall Energy Prediction

The second method investigated to improve the electric power prediction is the
prediction of the actual error. In this case, the leftover error at the end of the initial
prediction phase is used as input in the next iteration step.

The network is retrained using the leftover error as its input, as indicated in Figure 12.
After each step, the result is subtracted from the leftover. If successful, the leftover error
should decrease after each step.
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Figure 12. System configuration when evaluating the impact of error prediction (X—input data;
Y—measured data; Y’—predicted output data; E—initial error; E’—leftover error predicted in the 1st
iteration step; E”—leftover error predicted in the 2nd iteration step).

The impact of error prediction on the overall electric power prediction is evaluated in
two experimental scenarios.

The neural network configuration parameters for two experimental test scenarios are
indicated in Table 11.

Table 11. Network parameters used to evaluate the impact of added noise.

Parameter Experimental Scenario #1 Experimental Scenario #2

Time division 10 min 10 min
Input delay length 60 80

Number of hidden layers 40 60
Number of training points 158,800 158,800

Experimental prediction results when using the error prediction method in four itera-
tion steps are presented in Table 12.

Table 12. Unified power prediction results for the error prediction in four iteration steps.

Error Prediction Iteration Step 1 2 3 4

Experimental
scenario #1

Test performance 0.410 0.393 0.392 0.395
MBE −0.0123 −0.0131 −0.0118 −0.010
MSE 1.023 0.992 0.985 0.98

Experimental
scenario #2

Test performance 0.371 0.373 0.375 0.381
MBE −0.0176 −0.0175 −0.0168 −0.0176
MSE 0.947 0.943 0.941 0.948

The results indicate that the prediction is not significantly improved by the error
prediction method in terms of test performance, MBE, or MSE. In the case of the first
experimental test scenario, the MBE barely decreases by 0.002 over four iteration steps,
while the MSE decreases by 0.04. Meanwhile, the second experimental scenario does not
indicate any improvement in the results in terms of test performance or error indexes
over several steps. As expected, the total convergence time increases multiplicatively with
the number of iteration steps because each iteration step for predicting the error took on
average about the same time as the initial prediction step.

As a conclusion, the error prediction method does not improve the overall prediction
due to a high number of measurement values in the dataset (i.e., unified electric power
measurement values every 30 s). However, this method should still be considered in
different scenarios or environments with a low-resolution dataset.
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5.3. Impact of Added Noise on the Overall Electric Power Prediction

The third potential method to improve the prediction is to add noise over the original
dataset. This method creates more data points in the training dataset, which is expected to
improve the overall prediction.

In this scenario, the initial dataset is completed using data with added noise. In this
case, the goal is not to reduce the error rate, but to improve the shape of the predicted signal
to match the measurement variation in time. This approach is more suited for short-term
prediction where time precision is more important than the actual value.

To evaluate the impact of added noise for the overall energy prediction, two types of
random arrays are implemented. The first type of array contains random values in the interval
[−0.05; +0.05], while the second type of array contains values in the interval [−0.1; +0.1]. The
length of the random arrays matches the length of the original dataset, and the individual
random arrays are different. Each newly added dataset is formed by the original dataset to
which one of the two types of random arrays is added to (i.e., original data and noise).

The system configuration used to expand the size of the training dataset by adding
noise is illustrated in Figure 13.

Figure 13. System configuration used to expand the size of the training dataset by adding random
noise (X—input data; Y—measured data; Y’—predicted data; Y+Y1—added noise in the 1st iteration
step; Y + Y1 + Y2—added noise in the 2nd iteration step).

The network configuration parameters used in these tests are indicated in Table 13.

Table 13. Network configuration parameters used to evaluate the impact of added noise.

Parameter Value

Time division 20 min
Number of hidden layers 40

Number of training points (no randomness) 79,400
Number of test points 26,700

The impact of adding random noise over the initial training dataset is evaluated in
two experimental scenarios: (1) the original dataset and three variations of added noise
using the first random noise array, and (2) the original dataset, three variations of added
noise using the first random noise array, and three variations of added noise using the
second random noise array. Moreover, each of the experimental tests is performed using
three different input delay length values.

The experimental test scenarios are performed in four iterative steps, as indicated in
Table 14.
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Table 14. Prediction results for added noise and input delay length variation.

Randomness No
Randomness Experimental Scenario #1 Experimental Scenario #2

Number of added sets
0 1 2 3 2 4 6

Delay

Test
performance

40 0.82 0.75 0.75 0.73 0.76 0.86 0.78

60 0.77 0.75 1.17 0.75 0.76 0.72 0.72

80 0.76 0.77 1.44 0.75 0.75 0.84 0.72

MSE

40 0.5 0.54 0.79 0.58 0.72 0.65 0.62

60 0.53 0.55 1.08 0.72 0.57 0.9 0.85

80 0.55 0.66 0.88 0.67 0.61 0.89 0.81

Convergence
(seconds)

40 59 212 502 647 495 1375 984

60 86 253 154 719 325 1839 1869

80 133 205 526 701 470 2077 2522

The results indicate that even the test performance has a slight decrease for specific
network dimensions, the overall MSE prediction error increases with the added noise
dataset. Moreover, by adding random noise to the initial dataset, in order to create more
data points in the training dataset, the overall convergence time increases accordingly.

All in all, both error prediction and added noise methods do not improve the overall
unified energy prediction for the current dataset of measurements.

Test results indicate that the initial dataset size has a very good resolution (i.e., unified
electric power values measured every 30 s). Therefore, the most accurate prediction is
provided by selecting the optimal network configuration in terms of time division, input
delay length, and number of hidden layers.

6. Prediction of the Unified Electric Power Production and Consumption

Results show that the main factors that affect the predicted power output are the
network dimensions and the length of the time division, given the existing dataset size.
Error prediction and added noise do not significantly improve the prediction results, for a
high-resolution dataset.

In this context, the feasibility of the proposed prediction method is validated using
the complete dataset of unified electric power production and consumption collected over
4 years (i.e., collected from January 2016 to December 2019). The dataset is split in two
subsets: (1) a time frame of 3 years used for training and validation (i.e., from January
2016 to December 2018), and (2) a time frame of 1 year for testing the performances of the
prediction network (i.e., from January to December 2019). Each time frame duration is
selected to provide a cyclic component in the prediction process. Consequently, the results
are more consistent than running the simulations over an arbitrary time frame.

The proposed implementation of the NARX (Nonlinear AutoregRessive with eXternal
input) neural network was evaluated in three different configurations. Configuration
parameters for each network are illustrated in Table 15.

Table 15. Network configuration parameters.

Parameter Network 1 Network 2 Network 3

Time division 1 min 1 min 1 min
Input delay length 60 80 100

Number of hidden layers 40 60 80
Number of training points 1,588,000 1,588,000 1,588,000

Number of test points 535,000 535,000 535,000
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Predicted unified electric power production and consumption results for each network
configuration are illustrated in Table 16.

Table 16. Unified electric power production and consumption prediction results.

Network Configuration Network 1 Network 2 Network 3

Train performance 0.1965 0.1886 0.1997
Test performance 0.1934 0.1858 0.1977

MBE 0.00105 −0.000089 −0.0019
MSE 0.0592 0.0554 0.0596

Convergence time (minutes) 51 135 180

The analysis of the results in Table 16 indicate that the 2nd network configuration
provides the best performance for the evaluated dataset. Testing results of the 2nd network
configuration are presented in Figures 14 and 15.

Figure 14 illustrates measured and predicted electric power values over the year 2019
(i.e., one-day average electric power).

Measured unified electric power production and consumption over the year 2019
(one-day average electric power) has mostly negative values (i.e., from February 2019 to
November 2019). This corresponds to a higher PV energy production compared to the rest
of the year. Test results confirm that the PV production is correlated with the yearly values
of solar irradiance. Nevertheless, there are also exceptions (positive values) for this time
interval that can be associated with the bad weather conditions.

Next, Figure 15 illustrates measured and predicted electric power values over week
10 of 2019 (i.e., 4 March 2019 to 11 March 2019).

Test results for one week at the hourly average power indicate that the predicted
unified electric power production and consumption as well as the charging/discharging
battery cycle (see details in Figure 7) closely follows the unified power measured values.

Figure 14. Measured (top—blue) and predicted (bottom—orange) unified electric power production
and consumption over the year 2019 (one-day average electric power).
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Figure 15. Measured (top—blue) and predicted (bottom—orange) unified electric power production
and consumption over week 10 of 2019 (one-hour average electric power).

7. Conclusions

The scope of this work was to test and validate a predictive method for electric power
production and consumption using an NARX neural network implementation. The feasi-
bility of the proposed prediction method was validated using real electric power values
collected over 4 years (i.e., from January 2016 to December 2019) from the CETATEA build-
ing. CETATEA is a building within the National Institute for Research and Development
of Isotopic and Molecular Technologies, Cluj-Napoca, Romania, and was designed as a
research site for renewable energies.

The major particularity that differentiates our work from other published papers
is represented by (1) the size of the dataset (i.e., 4 years of continuous electric power
measurements), and (2) the high-resolution of the dataset (i.e., unified electric power
values measured every 30 s). With two measurements per minute, this research computes
over 4.2 million distinct unified produced and consumed power measurement values.
Consequently, a larger dataset size at a higher resolution for the measured values provides
a clear improvement in terms of (3) the prediction accuracy. Moreover, the dataset integrates
(4) continuous real power measurement values collected in the field, with no synthetic or
artificially produced data.

The dataset is split in two subsets: (1) a time frame of 3 years used for training
and validation (i.e., from January 2016 to December 2018) and (2) a time frame of one
year used for testing the performances of the prediction network (i.e., from January to
December 2019).

As the network was trained with real data collected by the CETATEA building, it is
recommended that the proposed system configuration should be tested in similar conditions
(e.g., same geographical latitude or on the opposite side of the equator but with a similar
climate, similar position, and number of panels).

To select the appropriate network configuration parameters, various factors affecting
the predicted electric power output were firstly analyzed. Hence, the impact of network
dimensions and dataset size, error prediction, and added noise were evaluated.
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The evaluation of different network dimension values indicates that the number of
hidden layers and the input delay length require a high number of iterations to select the
best set of parameters, which would yield a result closest to the real measurements.

Regarding the dataset size, the results confirm a clear improvement in prediction
at a higher resolution for the measured values (i.e., the measured values in our dataset
were collected every 30 s). However, if there are constraints for the training period (i.e.,
convergence time), a larger time division must be selected. Next, the evaluation of the
convergence time confirms that the network dimensions and the size of the dataset directly
impact the amount of time required to train the network and the total number of iterations.

To further optimize the neural network’s prediction, the impact of error prediction
and added noise was evaluated in different experimental scenarios. In the case of error
prediction, the system proved to be highly inefficient. This concludes that regardless of
how accurate and precise a system is, randomness, or noise, is impossible to predict since it
holds no information. In the case of added noise, the results indicate a slight improvement
in terms of system performance without losing much on the error side. This concludes that
the size of the added noise can be beneficial for the cases where the system’s complexity,
respectively, the network size, is constrained by hardware. However, the impact of the
added noise should be investigated as it substantially increases the required training period,
and it also introduces the added noise as actual error.

All in all, the results indicated that both the error prediction and added noise methods
do not improve the overall electric power prediction, due to a high resolution of the current
dataset. Therefore, using the current dataset, a more accurate prediction is provided by
selecting the optimal network configuration parameters in terms of the time division, input
delay length, and number of hidden layers.

Finally, the feasibility of the proposed method was validated with the actual dataset
of power generated and consumed. Testing results indicated that the predicted unified
electric power production and consumption as well as the charging/discharging battery
cycle) closely resembles the unified electric power measured values.

As future work, a solution to further improve the prediction performance is to extend
the dataset size and the network dimensions, as well as the computational power.
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solar plants in Serbia. Renew. Sustain. Energy Rev. 2013, 20, 201–218. [CrossRef]

13. Decker, B.; Jahn, U. Performance of 170 grid connected PV plants in northern Germany—Analysis of yields and optimization
potentials. Sol. Energy 1997, 59, 127–133. [CrossRef]

14. EL-Shimy, M. Viability analysis of PV power plants in Egypt. Renew Energy 2009, 34, 2187–2196. [CrossRef]
15. Di Fazio, R.; Russo, M.; Pisano, G.; Santis, M.D. A Centralized Voltage Optimization Function Exploiting DERs for Distribution

Systems. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, 2–4 July 2019;
pp. 100–109. [CrossRef]

16. Ma, W.; Wang, W.; Chen, Z.; Wu, X.; Hu, R.; Tang, F.; Zhang, W. Voltage regulation methods for active distribution networks
considering the reactive power optimization of substations. Appl. Energy 2021, 284, 116347. [CrossRef]

17. Awasthi, A.; Shukla, A.K.; Manohar, M.S.R.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking
technology in solar PV system. Energy Rep. 2020, 6, 392–405. [CrossRef]

18. Jordehi, A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew Sustain. Energy Rev. 2016, 61, 354–371.
[CrossRef]

19. ASTM G173-03(2020); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37◦ Tilted
Surface. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/g0173-03r20.html
(accessed on 2 August 2022). [CrossRef]

20. ASTM G197-14(2021); Standard Table for Reference Solar Spectral Distributions: Direct and Diffuse on 20◦ Tilted and Vertical
Surfaces. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/g0197-14r21.html
(accessed on 2 August 2022). [CrossRef]

21. Carr, A.J.; Pryor, T.L. A comparison of the performance of different PV module types in temperate climates. Sol. Energy 2004, 76,
285–294. [CrossRef]

22. Williams, S.R.; Betts, T.R.; Vorasayan, P.; Gottschalg, R.; Infield, D.G. Actual PV Module Performance Including Spectral Losses in
the UK. In Proceedings of the Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista,
FL, USA, 8 August 2005. [CrossRef]

23. Sharma, V.; Kumar, A.; Sastry, O.S.; Chandel, S.S. Performance assessment of different solar photovoltaic technologies under
similar outdoor conditions. Energy 2013, 58, 511–518. [CrossRef]

24. Mondol, J.D.; Yohanis, Y.; Smyth, M.; Norton, B. Long term performance analysis of a grid connected photovoltaic system in
Northern Ireland. Energy Convers. Manag. 2006, 47, 2925–2947. [CrossRef]

25. Ye, J.Y.; Reindl, T.; Aberle, A.G.; Walsh, T.M. Performance degradation of various PV module technologies in tropical Singapore.
IEEE J. Photovolt. 2014, 4, 1288–1294. [CrossRef]

26. Mieke, W. Hot Climate Performance Comprasion between Poly Crystalline and Amorphous Silicon Cells Connected to an
Utility Mini-Grid. In Proceedings of the Solar 98, 36th Annual Conference Australian and New Zealand Solar Energy Society,
Christchurch, New Zealand, 25–27 November 1998; pp. 464–470. Available online: http://www.meike.com/jilkminggan/Canon-
Solarex.pdf (accessed on 2 August 2022).

27. Akhmad, K.; Kitamura, A.; Yamamoto, F.; Okamoto, H.; Takakura, H.; Hamakawa, Y. Outdoor performance of amorphous silicon
and polycrystalline silicon PV modules. Sol. Energy Mater. Sol. Cells 1997, 46, 209–218. [CrossRef]

28. Ayompe, L.M.; Duffy, A.; McCormack, S.J.; Conlon, M. Measured performance of a 1.72 kW rooftop grid connected photovoltaic
system in Ireland. Energy Convers. Manag. 2011, 52, 816–825. [CrossRef]

29. Cañete, C.; Carretero, J.; Sidrach-de-Cardona, M. Energy performance of different photovoltaic module technologies under
outdoor conditions. Energy 2014, 65, 295–302. [CrossRef]

http://doi.org/10.1016/j.rser.2021.111186
http://doi.org/10.1016/j.erss.2020.101837
https://www.iea.org/fuels-and-technologies/renewables
http://doi.org/10.1109/ACCESS.2019.2906402
http://doi.org/10.17775/CSEEJPES.2015.00046
http://doi.org/10.1016/j.rser.2016.09.051
http://doi.org/10.1016/j.rser.2009.01.022
http://doi.org/10.1016/j.rser.2012.11.070
http://doi.org/10.1016/S0038-092X(96)00132-6
http://doi.org/10.1016/j.renene.2009.01.010
http://doi.org/10.1109/ICCEP.2019.8890206
http://doi.org/10.1016/j.apenergy.2020.116347
http://doi.org/10.1016/j.egyr.2020.02.004
http://doi.org/10.1016/j.rser.2016.03.049
https://www.astm.org/g0173-03r20.html
http://doi.org/10.1520/G0173-03R20
https://www.astm.org/g0197-14r21.html
http://doi.org/10.1520/G0197-14R21
http://doi.org/10.1016/j.solener.2003.07.026
http://doi.org/10.1109/PVSC.2005.1488452
http://doi.org/10.1016/j.energy.2013.05.068
http://doi.org/10.1016/j.enconman.2006.03.026
http://doi.org/10.1109/JPHOTOV.2014.2338051
http://www.meike.com/jilkminggan/Canon-Solarex.pdf
http://www.meike.com/jilkminggan/Canon-Solarex.pdf
http://doi.org/10.1016/S0927-0248(97)00003-2
http://doi.org/10.1016/j.enconman.2010.08.007
http://doi.org/10.1016/j.energy.2013.12.013


Sensors 2022, 22, 6259 23 of 24

30. Del Cueto, J.A. Comparison of energy production and performance from flat-plate photovoltaic module technologies deployed at
fixed tilt. In Proceedings of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002.
[CrossRef]

31. Rehman, S.; El-Amin, I. Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy 2012, 46, 451–458.
[CrossRef]

32. Milosavljevic, D.; Pavlovic, P.; Pirsl, D. Performance analysis of a grid connected solar PV plants in Nis, republic of Serbia. Renew.
Sustain. Energy Rev. 2015, 44, 423–435. [CrossRef]

33. Díaz, P.; Peña, R.; Muñoz, J.; Arias, C.A.; Sandoval, D. Field analysis of solar PV-based collective systems for rural electrification.
Energy 2011, 36, 2509–2516. [CrossRef]

34. Park, K.E.; Kang, G.H.; Kim, H.I.; Yu, G.J.; Kim, J.T. Analysis of thermal and electrical performance of semi-transparent
photovoltaic (PV) module. Energy 2010, 35, 2681–2687. [CrossRef]

35. Makrides, G.; Zinsser, B.; Phinikarides, A.; Schubert, M.; Georghiou, G.E. Temperature and thermal annealing effects on different
photovoltaic technologies. Renew Energy 2012, 43, 407–417. [CrossRef]
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