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Abstract: Infrared target detection is often disrupted by a complex background, resulting in a high
false alarm and low target recognition. This paper proposes a robust principal component decom-
position model with joint spatial and temporal filtering and L1 norm regularization to effectively
suppress the complex backgrounds. The model establishes a new anisotropic Gaussian kernel dif-
fusion function, which exploits the difference between the target and the background in the spatial
domain to suppress the edge contours. Furthermore, in order to suppress the dynamically changing
background, we construct an inversion model that combines temporal domain information and
L1 norm regularization to globally constrain the low rank characteristics of the background, and
characterize the target sparse component with L1 norm. Finally, the overlapping multiplier method
is used for decomposition and reconstruction to complete the target detection.Through relevant
experiments, the proposed background modeling method in this paper has a better background
suppression effect in different scenes. The average values of the three evaluation indexes, SSIM, BSF
and IC, are 0.986, 88.357 and 18.967, respectively. Meanwhile, the proposed detection method obtains
a higher detection rate compared with other algorithms under the same false alarm rate.

Keywords: anisotropy; spatio-temporal filtering; robust principal component decomposition model;
infrared target; detection

1. Introduction

The infrared detector has the advantages of all-weather, strong anti-interference ability,
and high resolution. They are widely used in target monitoring, space debris detection,
medical detection instruments, and automobile driving assistance systems. Therefore, schol-
ars have researched infrared target detection algorithms and have achieved corresponding
research results.

The literature mainly detects infrared targets through traditional spatio-temporal
filtering methods, machine learning, and deep learning methods. The traditional spatio-
temporal filtering method models the background or the target based on the target’s local
characteristics and the information in the time and space domains to separate the back-
ground and target [1–5]. Li et al. [1] proposed a technique that suppresses the background
by improving the anisotropic diffusion function. They also established a new adaptive
pipe diameter filtering algorithm to extract the target, which achieved good results. Li [2]
combined two filtering techniques to extract the bright and dark targets and increase the
targets through local comparison. The Laplacian of Gaussian (log) filter and negative log
filter can obtain bright and dark targets. Deng [3] describes the local features of an image
through multiscale gray difference, which effectively suppresses the background and en-
hances the target. Xiong [4] proposed a retrieval technique for infrared target images based
on the distinct properties of the background, target, and clutter of the infrared gradient
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vector field. The target of the infrared image was extracted. Then, the clutter is further
eliminated, and the target energy is enhanced through the flux of the infrared gradient
vector field. Fan [5] enhanced the target energy through high-order accumulation.The
traditional spatio-temporal filtering method is based on the local features of the image
to separate the background and the target. In the face of complex environments such as
lighting changes, dynamic textures, and weak targets without obvious features, traditional
spatio-temporal filtering methods often achieve poor detection results.

The literature has employed deep learning to undertake an in-depth exploration of
target realization detection in recent years, owing to its great representation capacity, which
can more correctly characterize the properties of the target and further increase the target
detection rate [6–8]. Wang [6] combined RGB camera data with event camera data, employ-
ing a cross attention method and a self-attention mechanism to produce good detection
results. Gao [7] combined the resolution of the deep and shallow layers of an image. The
authors proposed an end-to-end neural network model df-rcnn using deformation con-
volution and an ROI pool to overcome a non-perfect detection problem of dense vehicles.
Hu [8] proposed a convolution neural network algorithm based on background prior by
combining a saliency algorithm and a convolution neural network. Their algorithm uses
the region of interest as a prior model through a convolution neural network to obtain good
detection results. The deep learning detection approach necessitates many training samples
for the model to have strong representation capacity, resulting in a time-consuming system.
The pre-trained model parameters are difficult to adapt to when the observation scene
changes dynamically with time.

The literature has applied machine learning methods to the target detection problem
by transforming it into a convex function optimization problem through compressed sens-
ing, matrix reconstruction, and other methods. Then, the convex function is optimized to
obtain the target image [9–12]. Gao [9] proposed an IPI model, which makes full use of
the nonlocal autocorrelation of an image. Their proposed approach divides the image into
blocks through a sliding window, transforming the target detection problem into low-rank
and sparse matrix restoration to achieve good detection results. Wang [10] constructed
a target detection model, focusing on the impact of noise and clutter on the model in
an actual scene, which achieved a better detection performance and an optimal solution
faster than the original model [9]. Wang [11] established a total variation (TV) regular-
ization term based on the IPI model to constrain the low-rank background for a better
detection effect despite a complex edge contour background. Wu [12] proposed a gradient
difference regularization factor to further suppress the edge contour in the background,
obtaining a better detection effect. Zhou [13] proposed a detection method combining
spatial feature map regularization and l1,2 norm based on the IPI model; the advantage
of this method is to fuse data and features manifold with the help of the graph Laplacian
form, deeply explore the geometric information of data and feature space, which is used to
achieve further constraint on sparse components, and obtain a better target extraction effect.
However, the above method only constrains the background by a simple nuclear norm,
which leads to the inability to suppress the strong edge contours when facing a complex
background containing many strong edge contours, resulting in a high false alarm rate in
the detection results. In order to effectively restore the background to extract the target, Sur
Singh Rawar [14] proposed the Total Variation Partial Sum Minimization of Singular Values
(TV-PSMSV) model based on infrared patch image nuclear norm minimization to detect
the target. This model integrates the total variation model into the background modeling
model, achieving the purpose of background suppression and energy enhancement. How-
ever, the calculation of total variation will make the restored image excessive reduction
and the loss of detailed information of the image, that is not conducive to target detection
in complex scenes. In the spatial-temporal features measure model (STFM) proposed by
Mu [15], firstly, local grayscale difference model is proposed based on the local information
of target imaging to analyze the local information, and then short-term energy aggregation
model is proposed based on the local information to enhance the energy of dim and small
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targets in the local region of interest. Finally, combined with energy enhancement and local
information analysis, the ong-term trajectory continuity detection model is proposed to
obtain the difference image, and perfect results are achieved. It shows that it is important
to detect dim and small targets based on the use of spatio-temporal domain information.
Dai [16] proposed an infrared patch tensor (IPT) model, extending the dim and small
target detection model from a two-dimensional matrix to a three-dimensional tensor field.
Zhang [17] combined the weighted kernel norm and l1 norm based on the IPT model
to constrain the background. Guan [18] improved [17] by combining the tensor kernel
norm with the Laplace function, better approximating the non-convex l1 norm. Zhang [19]
proposed a non-convex optimization detection method based on lp norm constraint(nolc).
Their proposed nolc method strengthens the lp norm sparse item constraint and achieves
good detection results. Target detection algorithms based on machine learning do not fully
utilize local feature information.To further explore the inter-frame information of sequence
images, Sun [20] extends the traditional spatial block tensor model to the spatio-temporal
block tensor model, obtains the inter-frame information of images with the help of spatial-
temporal TV regularization, and combines the weighted tensor kernel norm to suppress
the strong edge contours of the background, and obtains a good background forecasting
effect. On the basis of the IPI model, Fang [21] suppresses clutter and edge noise by TV
regularization and constrains the non-target using a weighted l1 norm, and finally obtains
a better target detection effect. However, the total variance regularization factor established
by the two methods in papers [20,21] only focuses on the difference between a pixel and
its neighboring individual pixels, which only simply achieves the effect of smoothing
the background, and this regularization factor is not sufficient to completely describe the
complex background information in the face of complex scenes. A target with strong edge
contour and noise in the detection process breaks the low-rank background characteristics,
resulting in detection results that cannot eliminate the impact of contour and noise.

In summary, the above algorithm target detection effect is not satisfactory when facing
the complex background. To overcome the shortcomings of the existing detection meth-
ods, we propose a detection method based on joint spatio-temporal filtering and L1 norm
regularization. The main contributions of this paper are as follows:

1. A new anisotropic Gaussian kernel diffusion function, which makes full use of the
local spatial feature information of the image, effectively suppresses the edge contour
of the image background;

2. By combining the time-domain information and L1 norm regularization, the temporal-
domain information of the image is used to globally constrain the low rank char-
acteristics of the background, and the L1 norm is used to characterize the sparse
characteristics of the target, which effectively suppresses the dynamic background
and achieves good detection results;

3. The overlapping multiplier method is used to solve and reconstruct the image to
better separate the background and target components.

2. Anisotropic Function Description

In recent years, the anisotropic filter function has achieved an outstanding performance
in target detection. The detection model first conducts background modeling on the target
image to obtain the difference image containing the target and background image after the
background modeling is completed and then conducts the target detection by extracting the
relevant features of the difference image. However, in the presence of complicated ground
backgrounds, the target’s contour is frequently suppressed as the background in identifying
big infrared targets due to the constraint of its nuclear diffusion function as an S-shaped
curve, resulting in the scene of target detection failure. Therefore, this paper improves
the anisotropic kernel diffusion function by constructing a new monotonically increasing
kernel diffusion function based on Gaussian filtering to suppress the background of an
image. The Gaussian filtering reduces the noise of the image to reflect the real signal better.
The Gaussian filtering is integrated into the anisotropy to construct the Gaussian kernel
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diffusion monotonically increasing model. It can suppress the background and effectively
retain the relevant information of the target, laying the foundation for the subsequent
target detection.

2.1. Preliminary Work

The target detection based on anisotropy, such as the operating model [22], has
achieved good results using the pixel gradient and kernel diffusion functions. The al-
gorithm can suppress the edge contour and noise in the image for a good background
modeling effect. Therefore, this study applies the advantage of anisotropic background
suppression to infrared target detection for background suppression. The theory of the
gradient perception of nuclear diffusion function is reproduced for the methods in [22,23].
The relevant nuclear diffusion function and anisotropic detection models are as follows:

C1 = 1− exp−(∇I/k)2

C2 = 1− 1
1+(∇I/k)2

C3 = 1
1+exp[−M(||∇I||/k−1)] ,

(1)

where C1 and C2 are the revised kernel diffusion function [23], C3 is the kernel diffusion
function [22], ∇I is the gradient value between pixels, k is the gradient threshold, C3 is
the larger parameter introduced by M. When ∇I approaches 0, the gradient perception
of the diffusion function can be adjusted by adjusting the value M, and different pixel
gradients can be calculated to achieve the purpose of adaptive background modeling. The
background modeling model combined with the anisotropic gradient is as follows:

∆ fU = f (i, j)− f (i− step, j)
∆ fD = f (i, j)− f (i + step, j)
∆ fL = f (i, j)− f (i, j− step)
∆ fR = f (i, j)− f (i, j + step),

(2)

where f is the input image, ∆ fU , ∆ fD, ∆ fL, and ∆ fR refer to the gradient difference in the
up, down, left and right directions centered on the pixel f (i, j), and step represents the step
size between two pixels. The anisotropic filtering function finally defined by combining the
gradient in four directions with the kernel diffusion function is as follows:

f ′(i, j) = λ[c(∆ fU)× ∆ fU + c(∆ fD)× ∆ fD + c(∆ fL)× ∆ fL + c(∆ fR)× ∆ fR], (3)

where λ represents constant parameter, generally not more than 0.25, (i, j) represents the
coordinate position of pixel point; f ′(i, j) is the difference result graph, and c(•) shows the
background construction calculation under the corresponding kernel diffusion function
combined with gradient.

This study simulates the gradient perception of the aforementioned three nuclear
diffusion functions to analyze the gradient perception of the aforementioned nuclear
diffusion. The corresponding curve is shown in the following Figure 1.

As shown in Figure 1, the gradient perception between pixels of the kernel diffusion
function in [22,23] rises gently, indicating that various anisotropic models can retain more
edge noise and contour in background modeling the target before detecting the real target.
In contrast, the kernel diffusion function [22] has obvious gradient division. The gradient
perception is directly separated into fixed gradient values for background modeling by
taking advantage of the large gradient difference between the single point target in the
image and the neighboring pixels. This method has good applicability to different scenes.
It can filter out the targets with the large gradient in the image, contrary to the purpose
of large-area infrared target detection. As a result, it is necessary to reconstruct a kernel
spread function sensitive to gradient perception. It has a strong inhibition ability to model
the image’s background to achieve background suppression while retaining the target’s
information to provide conditions for subsequent detection.
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Figure 1. Gradient perception curve of kernel function.

2.2. New Anisotropic Gaussian Kernel Diffusion Function

Following the analysis of the aforementioned anisotropic kernel function in back-
ground modeling, it was discovered that Gaussian filtering achieves the effect of image
denoising in target detection, which is consistent with the need to improve the model’s
background suppression ability. Therefore, this study considers applying the Gaussian
filtering to the anisotropic kernel diffusion function so that the anisotropic model can have
a strong gradient perception ability. A strong background suppression ability is utilized
to suppress the image’s background, and the target information with a large gradient can
be kept to complete the background modeling. The proposed nuclear diffusion model
combined with the Gaussian function is as follows:

Cnew(∇ f ) =
1

1 + M× e−(∇ f /2)×(k)2 . (4)

In the formula, Cnew(•) is introduced into the anisotropic kernel diffusion function,
as shown in Equation (4). M means that the proposed kernel diffusion function is the
introduced constant parameter. Different parameter values can be introduced in different
scenes to control the gradient perception to achieve the optimal target detection. ∇ f is the
gradient value between pixels, and k = 0.1 is the gray value threshold. Gradient perception
analysis is performed on the created nuclear diffusion function and the aforementioned
nuclear diffusion function, and the related gradient perception curve is drawn, as shown in
Figure 2.

The constructed nuclear diffusion function is a monotonic increasing function, indi-
cating a strong background suppression ability. The difference between each pixel of the
large contour and volume target in the case of infrared target detection is not substantial.
The background modeling can be conducted with the same diffusion function value in the
target area background modeling to retain that part of the information. Different diffusion
function values are used outside the target contour to suppress the background and pre-
serve the infrared target information.



Sensors 2022, 22, 6258 6 of 32

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

V
al
ue

Gradient

 C1
 C2
 C3
 Cnew

Figure 2. Comparison of gradient perception of kernel diffusion function. All functions were plotted
for k = 0.1.

Considering that the target energy diffuses radially to the surrounding during target
movement and that the pixel gradients of the target in the up, down, left, and right
directions change, each direction has varied background suppression capabilities during
background modeling. There is a large difference in the retention of target information.
After calculating the pixel gradients in Equation (2), only the average value of the diffusion
functions in the four directions in Equation (3) is used as the final filtering result. When the
pixel is in the edge contour region, the diffusion function values are large in at least two
directions. The diffusion function values of the pixel in the region and the target region
will have little difference after simple mean processing. As a result, it is difficult to keep the
edge contour region in the background modeling process, resulting in increased edge noise
in the distinct images, which is not conducive to extracting the target points. Therefore,
this study uses the model result of Equation (5) as final filtering to effectively reduce noise
interference on the target signal and achieve the goal of target enhancement. The specific
extraction model is as follows

Data = [c(∆ fU)× ∆ f , c(∆ fD)× ∆ fD, c(∆ fL)× ∆ fL, c(∆ fR)× ∆ fR]
B = sort(Data,′ ascend′)
cusm = B(1) + B(2)
G = mean(cusm),

(5)

where Data is the set of diffusion function values in each direction, B is the set sorted
by diffusion coefficients in each direction, cusm is the sum of diffusion functions in the
minimum two directions in set B, G is the mean value of diffusion function values in the
minimum two directions, and is the final anisotropic filtering result. The overall process of
the model is shown in Algorithm 1.
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Algorithm 1: Anisotropic Gaussian kernel diffusion function background mod-
eling process.
1. Input image;
2. Initializing Gaussian anisotropic kernel diffusion function parameters M = 20 and

k = 0.1 in Formula (4) as follow Cnew(∇ f ) = 1
1+M×e−(∇ f /2)×(k)2

.

3. Setting anisotropic filtering pixel gradient step in Formula (2) step = 4 as follow
∆ fU = f (i, j)− f (i− step, j)
∆ fD = f (i, j)− f (i + step, j)
∆ fL = f (i, j)− f (i, j− step)
∆ fR = f (i, j)− f (i, j + step).

4. Combining Formulas (2) and (4) to calculate the pixel gradient of the pixel in
4 directions, and output the result as ∆ fU , ∆ fD, ∆ fL, ∆ fR.

5. Using the result in step 4 and the constructed anisotropic filtering model
Formula (5) as follows

Data = [c(∆ fU)× ∆ f , c(∆ fD)× ∆ fD, c(∆ fL)× ∆ fL, c(∆ fR)× ∆ fR]
B = sort

(
Data, ascend ′

)
cusm = B(1) + B(2)
G = mean ( cusm ).

6. Finish background modeling and output the Difference diagram as G.
7. end

3. The Proposed Detection Model

After relevant scene experiments, the proposed anisotropic Gaussian kernel diffusion
filter effectively models most of the background. However, in the process of infrared target
detection, it becomes impossible to suppress the dynamic background components by
merely employing the spatial domain of the image. To further constrain the low-rank
characteristics of the background, an infrared target inversion model combining time
domain information and l1 norm regularization was proposed. The following focuses on
the construction and solution processes of the model. The literature [9] proposes a robust
principal component analysis model, which has the following expressions:

min rank(B) + λ‖T‖0
s.t.B + T = D,

(6)

where B, T and D represent low-rank, sparse, and original matrix, respectively, and λ
represents sparse weight. Equation (6) is an NP-hard problem. Therefore, we use the kernel
norm to replace the rank of the matrix and the l1 norm to approximate the l0 norm. The
model obtained after the replacement is as follows [10]:

min ‖B‖∗ + λ‖T‖1
s.t.B + T = D,

(7)

where ‖•‖∗ represents the kernel norm of the matrix, ‖•‖1 represents the l1 norm of the
matrix, and λ represents the sparse weight. For the infrared target detection model, this
study uses the overlapping multiplier method to solve [24]. The augmented Lagrange
function of Equation (7) is:

LA(B, T, Y, γ) = ‖B‖∗ + λ‖T‖1 + 〈Y, D− B− T〉+ γ

2
‖D− B− T‖2

F, (8)
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where 〈•〉 is the inner matrix product, γ is the penalty parameter, and Y is the Lagrange
operator. The overlapping direction multiplier technique sets one parameter in the model,
uses the objective function to minimize the other parameters, and then iterates to find the
best solution for the entire model. Update B according to Equation (8). In k + 1 iterations,
B can be expressed as:

Bk+1 ← arg min LA(Bk, Tk, Yk, D)

= arg min
∥∥∥Bk

∥∥∥
∗
+ γ

2

∥∥∥D− Bk − Tk + γ−1Yk
∥∥∥2

F
.

(9)

This problem can be solved using the singular value threshold method [25],

Bk+1 = SVD 1
γ
(D− Bk − Tk + γ−1Yk), (10)

where SVDτ(•) is a singular value threshold operator, which is defined as follows

SVDτ(Y) = Udiag[(σ− τ)+]VT

(σ− τ)+ =

{
σ− τσ > τ
0 otherwise.

(11)

Update T according to Equation (8). In k + 1 iterations, T can be expressed as:

Tk+1 ← arg min LA(Bk, Tk, Yk, D)

= arg min λ
∥∥∥Tk

∥∥∥
1
+ γ

2

∥∥∥D− Bk − Tk + γ−1Yk
∥∥∥2

F
,

(12)

where can be solved using the following operator

Tk+1 = Th λ
γ

(
D− Bk − Tk + γ−1Yk

)
, (13)

where Thε(•) is the threshold operator, and the definition is as follows:

Thε(w) =


w− εw > ε
w + εw < ε
0 otherwise .

(14)

Update Y according to Equation (8). In k + 1 iterations, Y can be expressed as:

Yk+1 = Yk + γ(D− Bk − Tk). (15)

For the γ in Equation (8), the following formula is used to update the iteration process:

γk+1 = cγk, (16)

where c = 1.5, which is a constant. In the model solution, we define the error tolerance
factor, which controls the error between the background, target, and original images.
Simultaneously, the number of iterations was limited to prevent overfitting in the model
solution. The definition expression of the error tolerance factor is

tol =

∥∥∥D− Bk − Tk
∥∥∥

F
‖D‖F

. (17)



Sensors 2022, 22, 6258 9 of 32

Thus far, we have proposed a complete model and a solution method. Algorithm 2
shows the algorithm flow chart. The corresponding algorithm flow chart is shown in
Figure 3.

Algorithm 2: Combined spatio-temporal filtering and L1 norm regularization
model.
input: image matrix D, parameters λ, c.
1. Initialize: Bk = Tk = Yk = 0, max_Iter = 500, tol = 5× 10−7.
while not converged do
2. Fixed other parameters and update Bk+1 by

Bk+1 = SVD 1
γ
(D− Bk − Tk + γ−1Yk).

3. Fixed other parameters and update Tk+1 by
Tk+1 = Th λ

γ

(
D− Bk − Tk + γ−1Yk

)
.

4. Fixed other parameters and update Yk+1 by
Yk+1 = Yk + γ(D− Bk − Tk).

5. Fixed other parameters and update γk+1 by
γk+1 = cγk.

6. Check the convergence conditions:
‖D−Bk−Tk‖F

‖D‖F
< tol or Iter > max_Iter.

7. Update Iter : Iter = Iter + 1.
end while
Output: B, T.

1 
t 

1 

t .
.
. 

m×n×t m×n×t 

1 

m×n 

1 

m×n 

.

.

. 

.         .         . 1 1 
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.         .         . 
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Target image 

Infrared target detection model and solution results 

Figure 3. The flow chart of the proposed method.

4. Results and Analysis

In this section, in order to verify the superiority of this algorithm compared with other
algorithms and the robustness of this algorithm in different scenes, the detection effect of
this algorithm was compared with seven advanced algorithms in the field of dim and small
target detection on eight sequences of representative images, and also draws and analyzes
the ROC curves of this algorithm and other algorithms on eight sequences.
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4.1. Experimental Scenes

Eight scenarios are selected for relevant experiments to effectively reflect the back-
ground suppression effect of the Gaussian kernel function constructed in this paper in
target detection. The specific datasets are described in the following Table 1.

Table 1. Detailed descriptions of eight real sequences.

Scene Target Size Image Size Number of Scene Frames Target Motion Description

Scene A 20 × 20 360 × 240 30 Multiple pedestrian movements on campus
Scene B 20 × 20 360 × 240 18 Multiple pedestrian movements on campus
Scene C 20 × 20 360 × 240 18 Multiple pedestrian movements on campus
Scene D 20 × 20 320 × 240 103 Multiple pedestrian movements on campus
Scene E 15 × 15 256 × 256 88 Large aircraft moving in low altitude complex background
Scene F 5 × 5, 3 × 3 256 × 256 599 Large aircraft moving in low altitude complex background
Scene G 7 × 7 256 × 256 30 Large aircraft moving in low altitude complex background
Scene H 5 × 5 256 × 256 28 Large aircraft moving in low altitude complex background

As shown in the table below, to reflect the background modeling effect of the con-
structed model paper in infrared target detection, eight infrared scenes are selected for the
experiment. A representative diagram of the images of the eight sequences is shown in
Figure 4.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 4. (A–H) are representative images of eight sequences.

4.2. Background Modeling Results and Analysis

This study employs structural similarity (SSIM), background suppression factor (BSF),
and contrast gain (IC) to evaluate and compare the pictures after background modeling
to indicate the background modeling effect of the developed nuclear diffusion function in
infrared target detection. The specific evaluation indicators are defined as follows [26]
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SSIM =
(2µR µF+ε1 )(2σRF+ε2 )

(µ2
R+µ2

F+ε1 )(σ
2
R+σ2

F+ε2 )

BIF = σin/σout

Tin = 1
l×l

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fin(i + xg, j + yg)

Bin = 1
l1×l1

xg1=l1
∑

xg1=−l1

yg1=l1
∑

yg1=−l1
fin(i + xg1 , j + yg1)

Tout =
1

l×l

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fout(i + xg, j + yg)

Bout =
1

l1×l1

xg1=l1
∑

xg1=−l1

yg1=l1
∑

yg1=−l1
fout(i + xg1 , j + yg1)

Cin = |Tin−Bin |
|Tin+Bin |

Cout =
|Tout−Bout |
|Tout+Bout |

I = Cout/Cin,

(18)

where µR and σR are the mean and standard deviation of the input image respectively; σRF is
the covariance between the input image and the background image; ε1 and ε2 are constants;
σin and σout are the mean square deviation of the input image and the difference image,
respectively; and BIF is the background inhibitor. Tin, Bin, Tout, Bout represent the mean
value of different pixel matrices divided by the input image and the output image with the
target point as the center, respectively, wherein (i, j) represents the position of the target,
l, l1 represents different division radii, with values of 1 and 4, respectively; CinandCout
are the contrast of the original image and the difference image, respectively, and I is the
contrast gain of the input image and the output image.

To reflect the progressiveness of the background modeling model more accurately,
seven detection models—Partial Sum of the Tensor Nuclear Norm [17], RPCA [10], Total
Variation regulation and Principal Component Pursuit (TV-PCP) [11], Via Nonconvex Ten-
sor Fibered Rank (VNTFR) [27], Asymmetric Spatial-Temporal Total Variation(ASTTV) [28],
Self-Regularized Weighted Sparse(SRWS) [29] and anisotropic filtering models [22,23]—are
chosen to compare the background modeling. The four detection models selected above
and the anisotropic filtering model are used to compare the background modeling. Only
the experimental results of background modeling under scene A are shown below, and the
rest of the experimental results are detailed in the Appendix A.

The Gaussian kernel diffusion anisotropic filtering model constructed achieves good re-
sults in the background modeling of infrared target detection, as shown in the
Figures 5 and A1–A7. The proposed model suppresses the background and saves the
target signal through the different three-dimensional diagrams, reflecting the algorithm’s
feasibility and adaptability. The structural similarity (SSIM), background suppression factor
(BSF), and contrast gain (IC) of the aforementioned models after background modeling
are evaluated to indicate the originality of the proposed model in the data. The specific
experimental data are shown in the Table 2.
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(a1) (a2) (a3) (b1) (b2) (b3)

(c1) (c2) (c3) (d1) (d2) (d3)

(e1) (e2) (e3) (f1) (f2) (f3)

(g1) (g2) (g3) (h1) (h2) (h3)

(i1) (i2) (i3)

Figure 5. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS, C2,
C3, and the proposed algorithm on sequence A, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.

Table 2. Background modeling evaluation metrics for different algorithms.

Method Evaluation Indicators SeqA SeqB SeqC SeqD SeqE SeqF SeqG SeqH

PSTNN [17]
SSIM 0.8929 0.9643 0.8007 0.9643 0.9707 0.7127 0.9479 0.9704
BSF 16.3978 44.5755 14.5276 44.5755 99.984 78.191 81.58 60.2096
IC 1.7549 4.4669 NaN 4.4669 9.7552 10.77 46.7006 NaN

RPCA [10]
SSIM 0.8992 0.743 0.8457 0.743 0.9807 0.9814 0.906 0.9035
BSF 22.7456 17.3042 18.9079 17.3042 51.09 53.682 26.6465 23.1095
IC 1.7333 1.8644 52.0959 1.8644 12.037 7.9779 9.5817 39.1915

TV-PCP [11]
SSIM 0.9418 0.9825 0.9118 0.9825 0.998 0.7412 0.9848 0.8935
BSF 31.1774 55.5603 26.0405 55.5603 157.32 18.67 57.7783 24.4123
IC 1.2946 2.5605 51.9887 2.5605 12.429 3.3153 15.9996 465.7584

VNTFRA [27]
SSIM 0.9733 0.9251 0.9599 0.9251 0.9784 0.8536 0.9281 0.6475
BSF 19.259 13.9744 17.4709 13.9744 45.428 43.729 19.4073 5.4145
IC 3.9947 2.7721 NaN 2.7721 20.881 0.9476 8.0377 350.5143

ASTTV [28]
SSIM 0.838 0.8154 0.8533 0.9684 0.928 0.927 0.9386 0.7944
BSF 12.026 11.953 13.809 22.861 13.07 13.54 11.482 5.8283
IC 19.931 25.002 113.28 2.3377 17.1 11.07 13.4227 3.9597

SRWS [29]
SSIM 0.9707 0.9832 0.9647 0.9965 0.999 0.996 0.991 0.9298
BSF 40.144 53.383 36.94 118.64 184.2 113 73.5345 25.2542
IC 3.8509 3.8715 52.096 3.6856 52.01 12.9 46.0748 218.8171

C2 [22]
SSIM 0.9096 0.8929 0.8756 0.9594 0.9967 0.9933 0.9922 0.9155
BSF 22.9123 21.6956 20.2689 33.5829 122.63 86.64 79.1137 19.9491
IC 1.9262 1.417 16.0295 2.5389 6.501 3.9545 3.7964 81.1303

C3 [23]
SSIM 0.9239 0.9135 0.9339 0.9594 0.9971 0.995 0.995 0.9594
BSF 24.3321 23.942 26.7567 32.2585 132.31 99.797 98.9412 22.7394
IC 1.477 1.4636 NaN 4.5367 11.957 7.5737 12.8887 NaN

Proposed
SSIM 0.9827 0.9889 0.9685 0.9819 0.9989 0.9962 0.9965 0.9774
BSF 53.8529 68.4012 41.3969 57.6583 211.49 115.01 114.9036 45.1366
IC 4.175 3.5205 10.4192 8.776 12.375 12.915 29.4573 70.1029
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The table above shows that the proposed Gaussian kernel anisotropic background
modeling model is better than the proposed background modeling model in terms of struc-
tural similarity (SSIM), background suppression factor (BSF), and contrast gain (IC). The
average structural similarity (SSIM) reached 0.986. The average background suppression
factor (BSF) reached 88.357, indicating that the background modeling has a good ability to
suppress the background. The average value of the contrast gain IC reached 18.967, which
shows that the target information is effectively preserved in the difference map. Simul-
taneously, it reflects that the Gaussian kernel diffusion anisotropic filter achieved good
results in background modeling, satisfying the purpose of background suppression and
preserving the target signal. It also shows that the constructed model has good feasibility
and scene adaptability and can meet the requirements of infrared target detection.

4.3. Detection Results

To verify the effectiveness of the algorithm, this paper lists and compares the proposed
algorithm with the PSTNN, TV-PCP, VNTFR, anisotropic algorithm, ASTTV, SRWS, and
RPCA algorithms in eight different scenarios. The detection results of the eight algorithms
under scenario A are shown below, and the detection results of the remaining scenarios are
shown in the Appendix A.

The aforementioned detection results show that the PSTNN algorithm constrains the
low-rank components of the background by combining the tensor kernel norm and the
weighted L1 norm. The VNTFR algorithm approximates the tensor kernel norm of the
logarithmic operator as the tensor fiber rank and then suppresses the noise with the help
of the hypertotal variation. However, from Figures 6 and A8, the PSTNN and VNTFR
algorithms face the edge contour of a large background with high energy. The background
cannot be completely suppressed, resulting in interference signals in the detection results.
As shown in Figure A10, when facing the target sunk in the highlighted background, the
PSTNN algorithm cannot completely recover the target information, resulting in the loss
of target information. The TV-PCP algorithm suppresses the background using a total
variation. However, Figures 6 and A8–A14. show that when facing strong noise in the
background, the interference of noise cannot be eliminated in the detection results obtained
using the algorithm. The anisotropic algorithm describes the background by calculating
the difference in each direction between the pixel and the adjacent pixel with the help of
the diffusion function. From Figure A10, the anisotropic algorithm cannot suppress the
background because the difference between the pixel and each direction is small under
a large strong edge contour background. A large amount of background contour noise
appears in the final detection result. From Figures 6 and A8–A10, the RPCA algorithm
cannot completely recover the sparse components of the model when recovering the target
information, resulting in the loss of the target signal. From Figures 6 and A8–A12, it can be
found that the SRWS algorithm suppresses the target energy while suppressing the back-
ground, resulting in unclear targets in the detection results. Figures 6 and A8–A14. show
that the proposed algorithm combines spatio-temporal filtering and the principal compo-
nent decomposition model. First, the background is suppressed through the improved
anisotropic function. Then, the target and background information are further separated
through the principal component decomposition model to achieve a good detection effect.

ROC curves of eight scenarios are drawn to further explore these algorithms’ perfor-
mances, where the horizontal axis is the detection rate (PD) and the vertical axis is the false
alarm rate (PF). According to Formula (19), ntdt is the number of real targets detected and
nfdt is the number of false alarm targets detected; NT is the total number of real targets in
the image, and NP is the total number of targets detected in the image. The ROC curve is
shown in Figure 7. 

Pd = NTDT
NT × 100%

Pf =
NFDT

NP × 100%
(19)
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As shown in Figure 7a–h, compared with the other seven algorithms, the proposed
algorithm achieved a better target detection effect and noise suppression ability on the
sequence images based on the robust principal component decomposition model combined
with the sequence images of the space–time domain information. As shown in Figure 7a–c,
the anisotropic algorithm can effectively separate the background and pedestrians by
modeling the background through the description function in the scene with simple back-
ground pedestrian detection. The traditional anisotropic description function is not ideal
for background modeling when the background is a complex forest, clouds or other scenes
with many edge contours, resulting in a high false alarm rate, as shown in Figure 7d,h.
Figure 7a–e,h shows that the low-rank characteristics of the background will be destroyed
when the background contains more edge contours and strong energy interference noise.
The target and background images will be recovered only through the global information of
the image. The results of algorithms such as PSTNN, VNTFR, ASTTV, SRWS, TV-PCP, and
RPCA are not ideal. Under the same detection rate, the false alarm rate is high. As shown
in Figure 7a–h, the proposed principal component decomposition model, which combines
the local and global information of the image, shows high robustness in different scenarios.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 6. (A–H) show the detection results of eight algorithms PSTNN, TV-PCP, VNTFR, anisotropy,
ASTTV, SRWS, RPCA and propose methods, respectively, under sequence A.
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Figure 7. (a–h) show the ROC curves of eight sequences, respectively.

5. Conclusions and Future Direction
5.1. Conclusions

In this paper, we propose a target detection method that combines temporal and
spatial filtering and the L1 norm to solve the challenge of high false alarm and low target
recognition rates in target detection. A new anisotropic Gaussian kernel diffusion function
is established to describe the background information. The principal component decompo-
sition model is used to further constrain the low rank features of the background by using
the global information of the image. Experimental results show that the proposed method
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has high SNR, background suppression factor and SNR gain in different environments.
The ROC curve shows that the proposed detection algorithm has a higher detection rate
and background suppression ability in various sequence scenes.

5.2. Future Direction

In the process of model inversion, when facing a scene with more edge contours,
only the L1 norm is used to constrain the sparse components of the target. Because the
characteristics of the edge contours and the target characteristics are not obvious, the
decomposition model contains more false alarm targets. In future work, we can consider
building corresponding constraint models to constrain the low rank characteristics of
the background and the sparse components of the target at the same time, or combine
tensor theory to describe the difference between the target and the edge contour to further
highlight the target signal.
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Appendix A. Experimental Results

Appendix A.1. Results of Background Modeling Experiments

In this section, we show the background modeling results of the background mod-
eling method proposed in this paper with the other seven algorithms for the remaining
seven scenarios.
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Figure A1. (a–i) denote the detectionresults of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence B, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.
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Figure A2. Cont.
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Figure A2. Cont.
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(i1) (i2) (i3)

Figure A2. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence C, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.
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Figure A3. Cont.
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Figure A3. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence D, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.
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Figure A4. Cont.
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(i1) (i2) (i3)

Figure A4. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence E, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.
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Figure A5. Cont.
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(i1) (i2) (i3)

Figure A5. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence F, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.
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Figure A6. Cont.
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Figure A6. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence G, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.
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Figure A7. (a–i) denote the detection results of the PSTNN, RPCA, TV-PCP, VNTFR, ASTTV, SRWS,
C2, C3, and proposed algorithm on sequence H, respectively, where (a1–a3) denote the background
map, the differential map, and the 3D map of the obtained differential map, respectively.

Appendix A.2. Test Results

In this section, we show the target detection results of the algorithm in this paper with
the other seven algorithms for the remaining seven scenarios.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure A8. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence B.
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Figure A9. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence C.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure A10. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence D.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure A11. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence E.
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Figure A12. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence F.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure A13. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence G.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure A14. (A–H) shows the detection results of eight algorithms PSTNN, TV-PCP, VNTFR,
anisotropy, ASTTV, SRWS, RPCA and propose method, respectively, under sequence H.
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