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Abstract: Energy management strategies are vitally important to give full play to energy-saving
four-wheel-drive plug-in hybrid electric vehicles (4WD PHEV). This paper proposes a novel dual-
adaptive equivalent consumption minimization strategy (DA-ECMS) for the complex multi-energy
system in the 4WD PHEV. In this strategy, management of the multi-energy system is optimized by
introducing the categories of future driving conditions to adjust the equivalent factors and improving
the adaptability and economy of driving conditions. Firstly, a self-organizing neural network (SOM)
and grey wolf optimizer (GWO) are adopted to classify the driving condition categories and optimize
the multi-dimensional equivalent factors offline. Secondly, SOM is adopted to identify driving
condition categories and the multi-dimensional equivalent factors are matched. Finally, the DA-
ECMS completes the multi-energy optimization management of the front axle multi-energy sources
and the electric driving system and releases the energy-saving potential of the 4WD PHEV. Simulation
results show that, compared with the rule-based strategy, the economy in the DA-ECMS is improved
by 13.31%.

Keywords: energy management strategy (EMS); equivalent consumption minimization strategy
(ECMS); four-wheel drive (4WD); plug-in hybrid energy vehicle (PHEV)

1. Introduction

With the increasingly serious energy crisis [1–3], plug-in hybrid electric vehicles
(PHEVs) have become an effective solution to alleviate the energy problem, with excellent
energy-saving characteristics. The unique structure of the multi-energy system endows
PHEVs with extraordinary energy-saving potential [4,5]. In PHEVs, the four-wheel-drive
PHEV (4WD PHEV) mostly adopts the structure of split-axle four-wheel drive, and the
multi-power sources and the multi-power components in the front/rear axles are coupled
to form a more complex nonlinear energy system. However, it is a problem to be solved
to explore reasonable energy management strategies, optimally manage the multi-energy
system and realize the maximum energy-saving potential.

At present, researchers have made remarkable progress in energy management, and
the existing energy management strategies are mainly divided into the two following
categories [6]: rule-based (RB) energy management strategies [7–9] and optimization-based
energy management strategies [10–12]. Rule-based strategies mainly adopt fixed thresholds
and fuzzy logic methods to realize the energy management for the vehicle and the strategies
can be equipped with simple structure, mild calculation load and easy online application.
However, the RB strategy was developed through expert knowledge and is rather sensitive
to driving conditions. In addition, the high-performance continuous control cannot be
achieved in actual driving, and the adaptability and robustness of driving conditions are
poor. The energy-saving potential of the 4WD PHEV cannot be fully released.
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Optimization-based energy management strategies are further divided into global
optimization based and instantaneous optimization based [6]. Global optimization-based
strategies, such as dynamic programming (DP) [13–15] and Pontryagin’s minimum prin-
ciple (PMP) [16–18], can solve the best global control sequence by traversal search under
global prior information. However, the global optimization-based strategies are difficult to
apply in practice projects because of the heavy computational load. In addition, it is difficult
to accurately obtain the future driving condition information in the actual driving, resulting
in poor accuracy in the control sequence. The accurate acquisition of prior information
and the calculation load in the control sequence have become thorny problems in practice
projects. As the 4WD PHEV has a complex energy system composed of multi-power
sources and multi-power components, the global-optimization-based strategies fall into the
curse of dimensionality for the complex multi-energy system. Existing energy management
research for the 4WD PHEV, the global-optimization-based strategies, is only adopted
to solve the optimal management of the single energy system [19–21]. In addition, prior
information of the driving conditions cannot be accurately obtained, resulting in the global
optimization strategy unable to give full play to the energy-saving potential of the 4WD
PHEV. Instantaneous-optimization-based strategies, including equivalent consumption
minimization strategy (ECMS) [21–23] and model predictive control (MPC) [24,25], have
the adaptability and robustness of driving conditions and the control effect of the vehi-
cle is considered at the same time. The complex nonlinear energy system puts forward
higher requirements for the energy management strategy in the 4WD PHEV; therefore,
instantaneous-optimization-based strategies have become a better energy management
strategy, with good real-time control and economic optimality for the 4WD PHEV.

In the energy system of the 4WD PHEV, energy management is important control
technology for multiple energy sources. In order to give full play to the energy-saving
potential in the 4WD PHEV, the energy management strategy needs to account for different
constraints from the powertrain, driving conditions and the operating states of the vehicle,
and weighs the economy and real time of control. As an instantaneous-optimization-
based strategy, the MPC strategy takes into account the prior information of future driving
conditions and adopts the optimization algorithm to complete the optimal decision-making
in the rolling time domain. In simple energy systems, the MPC strategy can realize
better energy optimization management and take into account real-time applications
and quasi-optimality [26]. However, with an increase in the future prior information
dimensions, control step size and control dimensions, the real time and control effect all
show a significantly downward trend. In the complex nonlinear energy system of the 4WD
PHEV, the coordination output of multiple energy sources increases the control dimension
and the calculation load in the MPC, resulting in a control delay and affecting the control
effect of the vehicle.

By introducing an equivalent factor, the ECMS equals the consumption of the electric
energy to the fuel consumption and solves the local optimal control. According to the
current power demand in the vehicle and the operating states of the vehicle components,
the optimal energy control sequence is solved at the current time. The ECMS ensures
real-time control and economic effect and becomes the research focus of online application.
With further research on the ECMS in the energy management strategies of the 4WD PHEV,
some experts and scholars have realized the optimal management of energy by introducing
an equivalent factor in the energy system of the 4WD PHEV [19,21]. However, in the current
energy management strategy research of the 4WD PHEV, the impact of energy management
in the power components of the 4WD PHEV on vehicle economy has not been deeply
studied and analyzed. The ECMS still needs further exploration to develop the energy-
saving potential in the 4WD PHEV. In addition, the value of equivalent factor directly affects
the economy of the vehicle as an important parameter of the ECMS. The optimization ability
of fixed equivalent factor is inconsistent under different driving conditions and the stable
economic optimal control is difficult to guarantee. In the current research, the adaptive
equivalent consumption minimization strategy (A-ECMS) is proposed based on the ECMS
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theory [27,28]. The A-ECMS adopts the historical speed information of the vehicle to predict
the future speed information and adjusts the value of equivalent factor to improve the
adaptability of driving conditions according to the prior obtained speed information [29,30].
However, the future speed information is variable in time and space, so it is difficult to
establish a model to accurately predict the future speed information, even though some
methods, such as the convolutional neural network (CNN) [31], the backpropagation neural
network (BP-NN) [32] and the Markov chain (MC) [33], have excellent speed prediction
effects under some specific driving conditions. However, the accuracy of speed prediction
decreases under complex and changeable driving conditions and the speed prediction
increases the calculation load, resulting in a poor control effect and poor real-time control
of the A-ECMS. Therefore, reducing the unreasonable adjustment in the equivalent factor
caused by the inaccuracy of obtaining future prior information is a thorny problem to be
solved in the application of the A-ECMS.

In this context, this paper presents a novel energy management strategy for 4WD
PHEV, DA-ECMS. The DA-ECMS adopts a multi-layer control architecture to optimize and
manage the collaborative output of the multi-energy system. The high level adopts the
method of multiple algorithm fusion to complete the classification of driving conditions
and the optimization of multi-dimensional equivalent factors offline and completing the
identification of driving conditions and the matching of multi-dimensional equivalent
factors online. The lower level realizes the optimal management of the multi-energy system
in the 4WD PHEV and completing the collaborative control in the power sources’ fuel-
electric system (the system composed of engine, generator and battery) and the front/rear
axles’ electric driving system. The DA-ECMS comprehensively accounts for the powertrain,
driving conditions and the operating states of the vehicle, and balances the economy and
real time of control. It gives full play to the energy-saving potential of the 4WD PHEV.

The contributions of this paper are shown as follows:

1. A novel 4WD PHEV energy management strategy, DA-ECMS, is proposed, realizing
multi-layer control architecture, combining condition category awareness and the
multi-energy system.

2. The collaborative optimization management of the power source fuel-electric system
and the front/rear axle electric drive system is completed, giving full play to the
energy-saving potential of the 4WD PHEV.

3. The classification of driving conditions and the optimization of multi-dimensional
equivalent factors by SOM and GWO are completed offline, and the identification of
driving conditions and the matching of multi-dimensional equivalent factors are realized
online. The adaptability of the DA-ECMS is improved under different driving conditions.

This study is organized as follows: Section 2 presents an introduction to 4WD PHEV
models. Section 3 elaborates the novel methodology of energy management strategy for
the 4WD PHEV. Section 4 analyzes and compares simulation results. The conclusions are
given in Section 5.

2. 4WD PHEV and Model Construction
2.1. 4WD PHEV

The 4WD PHEV studied in this paper has a complex energy system with collaborative
output in the multi-energy system. The front axle is driven by a mixed structure of different
power sources and a single motor is adopted to drive the rear axle. Giving full play to the
advantages of the multi-energy collaborative control is the key to realizing energy-saving
potential in the 4WD PHEV, and the structure is shown in Figure 1. Under different driving
conditions, the collaborative output of multiple energy sources can realize three different
operating modes: pure electric mode, series mode and parallel mode, as shown in Table 1.
In series mode, the engine drives the generator output energy to drive the vehicle indirectly,
but the engine drives directly in parallel mode. Clutch can realize series/parallel mode
conversion, changing the form of engine energy output. The detailed parameters of the
4WD PHEV are shown in Table 2.
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Figure 1. The schematic of the 4DW PHEV configuration.

Table 1. Operating states of vehicle components under different modes.

Operating Modes Illustration

Pure electric mode The battery provides all the power for the front/rear motors to drive the
vehicle, and the engine and generator are in shutdown state.

Series mode The engine drives the generator to provide electric energy for the
front/rear motors, and the battery also provides electric energy output.

Parallel mode The clutch is closed, and the engine directly drives the vehicle. The
front/rear motors assist the engine to drive the vehicle.

Table 2. Vehicle and dynamic components parameters in the 4DW PHEV.

Parameter Unit Value

Vehicle Mass kg 1860
Vehicle Maximum velocity km/h 170

Wheel rolling radius m 0.35
Frontal area m2 2

Engine maximum power kW @ rpm 110 @ 5200
Engine maximum torque Nm @ rpm 200 @ 5200

Front motor maximum power kW 60
Front motor maximum torque Nm 137
Rear motor maximum power kW 61
Rear motor maximum torque Nm 195

Battery capacity kWh 15
Battery rated voltage V 300

2.2. Mathematic Model of 4WD PHEV
2.2.1. Vehicle Dynamic Model

In the process of establishing the vehicle model, acceleration resistance power, air
resistance power, rolling resistance power and slope resistance power become the main
factors affecting the dynamic power balance of the vehicle, and the balance equation is
shown in Equation (1) [34].

Preq =
v
ηt
(

mg f cos αslap

3600
+

CD Av2

76, 140
+

mg sin αslap

3600
+

σma
3600

) (1)

where Preq is required power of the vehicle; m is the curb weight of the vehicle; g is
gravitational acceleration; f is the coefficient of rolling resistance; αslap is the road slope;
CD is the air resistance coefficient; A is frontal area of the vehicle; σ is the rotational mass
conversion factor; and ηt is the efficiency of mechanical transmission.
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In the vehicle model, multi-power components are input to the half-shaft wheel
in the form of torque output. At the wheel, the torque balance equation is shown in
Equation (2) [34].

Treq = (mg f cos αslap +
CD Av2

21.15
+ mg sin αslap + σm

dv
dt

)RWheel (2)

where Treq is the required torque at the wheel and RWheel is the wheel rolling radius.
In the driving process of the 4WD PHEV, different modes have different collaborative

control strategies of multiple energy sources. Under different modes, the torque relationship
of the 4WD PHEV is shown in Equation (3).

Treq =


TM_riM_rηM_riRηR + TM_ f iM_ f ηM_ f iFηF EV_Model

TM_riM_rηM_riRηR + TM_ f iM_ f ηM_ f iRηF Serial_Model
(TEngieηe + TM_ f iM_ f ηM_ f )iFηF + TM_riM_rηM_riRηR Parallel_Model

(3)

where TM_ f is the torque in the front motor; iM_ f is the ratio in the front motor; ηM_ f is the
transmission efficiency in the front motor; iF is final drive ratio for the front axle; ηF is the
efficiency in the front axle final drive; TM_r is the torque in the rear motor; iM_r is the ratio
for the rear motor; ηM_r is the transmission efficiency in the rear motor; iR is final drive
ratio for the rear axle; ηR is the efficiency of the rear axle final drive; TEng is the torque in
the engine; ie is final drive ratio for the engine; and ηe is the efficiency of the engine.

2.2.2. Engine Model

This paper mainly studies the influence of fuel consumption at a certain speed and
torque on the driving economy, but the internal physical characteristics of the engine are
not deeply studied. The engine map is established through the relationship among fuel
consumption rate, engine speed and torque. The engine map is shown in Figure 2. By
looking up the map, the fuel consumption rate of the engine can be quickly and accurately
obtained. The instantaneous fuel consumption calculation formula is shown in Equation (4).

f f uel(TEngnEng) =
PEng(TEngnEng)βEng(TEngnEng)t

3600
(4)

where PEng is the power of the engine and βEng is the fuel consumption rate of the engine.
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Under different modes, the operating characteristics in the engine are different. In
series mode, the engine speed and torque are completely decoupled from the driving
conditions and the operating characteristics are determined by the brake-specific fuel
consumption (BSFC). In parallel mode, the engine directly drives the vehicle and the engine
speed is in a coupled state with the vehicle speed. The engine speed calculation formula is
shown in Equation (5).

nEng =
nWheel

iFie
(5)

where nEng is the speed of engine and nWheel is the speed of wheel.

2.2.3. Motor/Generator Model

In this paper, permanent magnet synchronous motors (PMSMs) are used in the
front/rear motors and generator. The method of experimental calibration is adopted
to establish maps of the front/rear motors and generator, and the maps are shown in
Figure 3. By looking up the maps, the efficiency of the front/rear motors and generator can
be quickly and accurately obtained and the relationship between the consumed power and
efficiency is shown in Equations (6)–(8).

PM_F =

{ TM_FωM_F
ηM_FDis

TM_F > 0

TM_FωM_FηM_FCha TM_F ≤ 0
(6)

PM_R =

{ TM_RωM_R
ηM_RDis

TM_R > 0

TM_RωM_RηM_RCha TM_R ≤ 0
(7)

PG = TGωGηGCha (8)

where ωM_F and ωM_R are the speed of the front motor and rear motor, respectively; ηM_FDis
and ηM_RDis are the discharge efficiency in the front motor and rear motor, respectively;
ηM_FCha and ηM_RCha are the charge efficiency of the front motor and rear motor, respectively;
TG is the torque in the generator; ωG is the speed of the generator; and ηGCha is the charge
efficiency of the generator.
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Because of the mechanical coupling, front/rear motor speed is a fixed proportional
relationship with the vehicle speed in the 4WD PHEV, as shown in Equation (9).{

nM_F = nWheel iFiM_ f
nM_R = nWheel iRiM_r

(9)
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2.2.4. Battery Model

As the battery has complex chemical and physical properties, a simple first-order RC
battery model is established in this paper, and the battery power relationship is shown
in Equation (10) [35]. The method of experimental calibration is adopted to establish the
relation diagram for internal resistance, temperature and SOC during charge/discharge.
The internal resistance relationship of the battery is shown in Figure 4.

Pb = VOC Ib − Ib
2R0 (10)

where Pb is the power of the battery; VOC is the open-circuit voltage of the battery;Ib is the
current of the battery; and R0 is the internal resistance in the battery.
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The terminal current in the battery is obtained from Equation (10), as shown in
Equation (11).

Ib =
VOC −

√
VOC

2 − 4PbR0

2R0
(11)

The change rate in the SOC represents the power consumption degree of the battery as an
important parameter, and the relationship of the SOC change rate is shown in Equation (12).

S
.

OC = − Ib
Qb

= −
VOC −

√
V2

OC − 4PbR0

2R0Qb
(12)

where Qb is the battery capacity.

3. Methodology

In this paper, for the complex nonlinear energy system composed of multi-power
sources and multi-power components in the 4WD PHEV, a multi-layer energy management
control architecture is proposed to combine the prior information of driving conditions
and multi-energy optimization management, and gives full play to the energy-saving
potential of the 4WD PHEV. The architecture is shown in Figure 5. The high level of control
architecture mainly improves the adaptability in the energy management strategy. Self-
organizing neural network (SOM) and grey wolf optimizer (GWO) algorithms are adopted
to complete the classification of driving conditions and optimization of multi-dimensional
equivalent factors offline, realizing the identification of driving conditions and adjustment
of equivalent factors online.
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The low level of control architecture adopts the DA-ECMS to optimize and manage
the collaborative energy output of multiple energy systems in real time. The DA-ECMS
realizes the energy distribution of multi-power sources on the front axle of the 4WD PHEV,
such as engine, generator and battery. The optimal management between the front/rear
motors is completed at the same time. The DA-ECMS balances the economy and real time
of control and releases the energy-saving potential of multi-degrees-of-freedom energy
system in the 4WD PHEV.

3.1. Classification and Online Identification of Driving Conditions Based on SOM

The driving condition characteristics represent the operating state of the vehicle and
the future characteristics are accurately and quickly estimated to provide powerful data
basis for energy management strategies. There is a strong correlation between road condi-
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tions and driving conditions, so this paper mainly adopts the driving speed characteristics
of the vehicle to represent the driving conditions and road conditions. At the same time,
the driving intention of the driver is also directly reflected by the driving speed.

As an unsupervised learning method, SOM is composed of the input layer and the
competition layer. By independently searching for the inherent laws and essential attributes
in the samples, SOM adaptively changes the network parameters and structure. A single
neuron in the SOM does not play a decisive role and it relies on the synergy of multiple
neurons to complete pattern classification. The structure is shown in Figure 6.
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Figure 6. The architecture of the SOM.

In this paper, the characteristics of driving conditions are represented by the average
speed, average acceleration, average deceleration and other parameters. The parameters are
shown in Table 3. The training set in SOM is constructed from massive dataset of driving
condition characteristics to divide into three different categories. In order to provide real-
time and accurate driving condition categories for the vehicle energy management strategy,
the trained SOM is adopted to identify the category in real time. SOM adopts Euclidean
distance to match the best nodes and updates the weight of nodes within the neighborhood,
as shown in Equations (13) and (14).

dj(x) =
D

∑
i=1

(xi −ωji)
2 (13)

ωj(t + 1) = ωj(t) + flearn(t)× fneighbor(t)× (x−ωj) (14)

where fneighbor(t) is the neighborhood function and flearn(t) is the learning rate.
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Table 3. The driving condition characteristics table.

Driving Condition Category
Characteristics Unit Symbol

Idle time/Total time % iIdle
Maximum speed m/s vMax

Maximum acceleration m/s2 aMax_acc
Maximum deceleration m/s2 aMax_dec

Average acceleration m/s2 aAve_acc
Average deceleration m/s2 aAve_dec

Acceleration time/Total time % iAcc
Deceleration time/Total time % iDec

Average speed (Excluding parking time) m/s vAve
Standard deviation of speed m/s vSta_dev

Standard deviation of acceleration m/s2 aSta_dev_acc

Standard deviation of deceleration m/s2 aSta_dev_dec

3.2. Optimization of Equivalent Factors Parameters Based on GWO

Based on the principle of grey wolves preying, the grey wolf optimizer (GWO) as a
swarm intelligence optimization algorithm was proposed by Mirjalili et al. in 2014 [36].
GWO has the advantages of strong convergence, few parameters, simple structure and easy
implementation. The equivalent factors are optimized for different driving conditions in
this paper. According to the different operating states and modes in the 4WD PHEV, the
values of four equivalent factors in CD-CS series and parallel are optimized, respectively.
In the GWO algorithm, the position parameters of the grey wolf represent the equivalent
factors in the optimization process and the equivalent fuel consumption is the fitness value
of the grey wolf’s current position, so less equivalent fuel consumption means better fitness.

GWO has strict hierarchy of social dominance and it is divided into four classes α, β, δ
and ω according to different responsibilities, as shown in Figure 7.
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The GWO mainly includes four steps: social hierarchy, tracking, rounding up and
hunting, as shown in Figure 8. Firstly, the fitness of each wolf is calculated to construct
social hierarchy. Secondly, the three wolves with the best fitness are selected as α, β and δ,
respectively, and the remaining wolves are marked as ω. Finally, with the iteration of the
wolves, the alpha wolf (α) leads the wolves to gradually approach and hunt the prey. The
mathematical expressions of this process are shown in Equation (15).

D = CXp(t)− X(t);
X(t + 1) = Xp(t)− AD;

Ax = 2arx1 − a;
Cx = 2rx2

(15)
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where t is the number of iterations; Ax and Cx are the synergy coefficient matrix; Xp is the
location information of the prey; and Xt is the location information of the wolves. In the
iterative process, a gradually decreases from 2 to 0; rx1 and rx2 are random variables in [0, 1].
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In the process of hunting, the wolves can identify potential prey through the guidance
of α, β and δ. In order to provide wolves with a good ability to identify potential prey, the
fitness of grey wolves is updated during each iteration calculation, and the three wolves
with the best fitness are selected as α, β and δ respectively. According to the position
information of α, β and δ, the position information of the remaining wolves is updated at
the next moment. The process expressions are shown in Equations (16) and (17).

Dα = |C1Xα − X|
Dβ =

∣∣C2Xβ − X
∣∣

Dδ = |C3Xδ − X|
(16)


X1 = Xα − A1Dα

X2 = Xβ − A2Dβ

X3 = Xδ − A3Dδ

X(t + 1) = X1+X2+X3
3

(17)

where X1, X2 and X3 are the location information of α, β and δ, respectively; X(t + 1) is the
updated position of the grey wolf; X is the current position of the grey wolf; Dα, Dβ and
Dδ are the distances between the current grey wolf and α, β, δ, respectively; |A| > 1 means
that the grey wolves are in scattered mode to search for prey; and |A| < 1 means that the
grey wolves focus on hunting for prey.

GWO adopts scattered search for location information of the prey and the prey is
locked and captured as the number of iterations t increases. In the process of establishing
the GWO model, |A| > 1 means that the wolves are scattered to search for prey and
increases the search for the global optimal solution. C, as a random value of [0, 2], has the
effect of random weight in the optimization process to avoid falling into the local optimal
solution. Finally, the equivalent factors are optimized by GWO under different driving
condition categories.

3.3. Collaborative Multi-Energy Output Based on DA-ECMS

Multi-power components and multi-energy sources constitute a complex multi-energy
system in the 4WD PHEV, and the optimal management of the multi-energy system directly
affects the driving economy. In the 4WD PHEV, the front/rear motors directly drive
the wheels as the power components and the difference of maps between the front/rear
motors, so the rational distribution of energy is the key to improving the economy of the
vehicle. In this paper, the DA-ECMS is adopted to complete the optimal management of
the multi-energy system and the control architecture is shown in Figure 9.
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The DA-ECMS optimizes the distribution of energy output between power sources,
while the front/rear axles electric driving system is optimally managed. In order to give
full play to the energy-saving potential of the 4WD PHEV, the equivalent factors are
adaptively adjusted according to different driving condition categories to improve the
driving condition adaptability and robustness and improve the economy of the vehicle.
The energy distribution optimization between power sources is shown in Equation (18).

.
meqv(PAll(t), usource(t), t) =

.
m f (PAll(t), usource(t), t) + λsource

.
mm(PAll(t), usource(t), t) (18)

where
.

meqv(PAll(t), usource(t), t) is the instantaneous equivalent fuel consumption at time t;
PAll(t) is the required power of the vehicle at time t; λsource is the equivalent factors of the power
sources;

.
m f (PAll(t), usource(t), t) is the fuel consumption at time t;

.
mm(PAll(t), usource(t), t) is

the electric energy consumption at time t; and usource is the power source energy output
distribution ratio.

The value of λsource directly affects the energy distribution between power sources
and different driving conditions have different requirements for λsource. In complex and
changeable driving conditions, the single value of λsource cannot meet the requirements.
According to different driving conditions and modes of the vehicle, the value of λsource is
adaptively adjusted to improve economy.

Power sources are the energy source of power components and optimize the energy
distribution among power components, which can effectively improve the utilization rate.
The optimal distribution relation is shown in Equations (19) and (20).

.
mAll_Motor(P′All(t), upart(t), t) = λpart

mF_Motor(P′All(t), upart(t), t)
ηF_Motor

+ λpart
mR_Motor(P′All(t), upart(t), t)

ηR_Motor
(19)

P′All(t) = PAll(t)ηele (20)

where
.

mAll_Motor(P′All(t), upart(t), t) is the instantaneous equivalent fuel consumption of
the front/rear motors at time t; P′All(t) is the total power supplied by the power sources
to the front/rear motors at time t; λpart is the equivalent factors of the power components;
mF_Motor(P′All(t), upart(t), t) is the electric energy consumption of the front motor at time t;
mR_Motor(P′All(t), upart(t), t) is the electric energy consumption of the rear motor at time
t; ηF_Motor is the efficiency of the front motor; ηR_Motor is the efficiency of the rear motor;
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ηele is the transmission efficiency of the electric drive system; and upart(t) is the power
component energy output distribution ratio at time t.

In order to simplify the non-essential factors in the vehicle dynamics model and reduce
the calculated load, only the influence of acceleration resistance power, air resistance power
and rolling resistance power on the vehicle are considered in this paper. Equation (1) can
be rewritten to obtain PAll , as shown in Equation (21).

PAll = Pa + Pf + Pw =
σmvαslap

1000ηt
+

mg f v
1000ηt

+
CD A

1632ηt
v3 (21)

where Pa is the power of the accelerate resistance; Pf is the power of the rolling resistance;
Pw is the power of the air resistance; and v is the vehicle speed (m/s).

Under the requirement of the vehicle, the optimal economy of power sources is
realized and the power components in the electric driving system at the front/rear axles are
reasonably distributed to improve the electric energy consumption rate at the same time.
In this paper, the DA-ECMS adopts the method of multiple distribution to simultaneously
complete the collaborative optimal management of Equations (18) and (19), as shown in
Equation (22).

J(t) = min
∫ t

0 [
.

meqv(PAll(t), usource(t), λsource(t), t) +
.

mAll_Motor(P′All(t), upart(t), λpart(t), t)]dt

= min
∫ t

0
[λpart(t)

mF_Motor(P′All (t),upart(t),t)
ηF_Motor

+ λpart(t)
mR_Motor(P′All (t),upart(t),t)

ηR_Motor

+
.

m f (PAll(t), usource(t), t) + λsource(t)
.

mm(PAll(t), usource(t), t)]dt

= min
∫ t

0
[λpart(t)(

mF_Motor(P′All (t),upart(t),t)
ηF_Motor

+
mR_Motor(P′All (t),upart(t),t)

ηR_Motor
)

+
.

m f (PAll(t), usource(t), t) + λsource(t)
.

mm(PAll(t), usource(t), t)]dt

(22)

The Hamiltonian function is established to solve the minimum value of the objective
function, as shown in Equation (23). In order to solve the optimal control sequence, the
general mathematical expression is shown in Equation (24).

H(PAll(t), usource(t), upart(t), λsource(t), λpart(t), t) =
.

m f (PAll(t), usource(t), t) + λsource
.

mm(PAll(t), usource(t), t)+

λpart(
mF_Motor(P′All(t),upart(t),t)

ηF_Motor
+

mR_Motor(P′All(t),upart(t),t)
ηR_Motor

)
(23)

H(PAll(t), u∗source(t), u∗ part(t), λsource(t), λpart(t), t) ≤ H(PAll(t), usource(t), upart(t), λsource(t), λpart(t), t)

s.t. usource_min ≤ u∗source(t) ≤ usource_max

upart_min ≤ u∗ part(t) ≤ upart_max

λsource_min ≤ λsource(t) ≤ λsource_max

λpart_min ≤ λpart(t) ≤ λpart_max

t0 ≤ t ≤ t f

(24)

where u∗source(t) is the optimal control sequence of the power sources at time t; u∗part(t) is
the optimal control sequence of the power components at time t; usource_min and usource_max
are the minimum and maximum distribution ratio of the power source energy output
at time t, respectively; upart_min and upart_max are the minimum and maximum distribu-
tion ratio of the power components energy output at time t, respectively; λsource_min and
λsource_max are the minimum and maximum equivalent factors of the power sources, respec-
tively; and λpart_min and λpart_max are the minimum and maximum equivalent factors of
the power components, respectively.
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In a finite set of Hamilton function, solving the control sequence u∗(u∗source(t), u∗part(t))
makes the Hamilton function obtain the minimum value. The u∗(u∗source(t), u∗part(t)) is
the optimal control sequence and the expression is shown in Equation (25).

u∗(t) = argminH(PAll(t), usource(t), upart(t), λsource(t), λpart(t), t)
s.t. PF_Motor_min(t) ≤ PF_Motor(t) ≤ PF_Motor_max(t)

PR_Motor_min(t) ≤ PR_Motor(t) ≤ PR_Motor_max(t)
PEngine_min(t) ≤ PEngine(t) ≤ PEngine_max(t)

λsource_min ≤ λsource(t) ≤ λsource_max
λpart_min ≤ λpart(t) ≤ λpart_max
SOCmin ≤ SOC(t) ≤ SOCmax

t0 ≤ t ≤ t f

(25)

where PF_Motor_min(t) and PF_Motor_max(t) are the minimum and maximum power of the
front motor at time t, respectively; PR_Motor_min(t) and PR_Motor_max(t) are the minimum and
maximum power of the rear motor at time t, respectively; PEngine_min(t) and PEngine_max(t)
are the minimum and maximum power of the engine at time t, respectively; and SOCmin
and SOCmax are the minimum and maximum SOC of the battery, respectively.

The DA-ECMS realizes the optimization management of the multi-energy system and
completes the energy management of multi-power sources and multi-power components
by solving u∗(u∗source(t), u∗part(t)).The relationship between driving condition categories
and optimal equivalent factors are established offline and equivalent factors are adaptively
adjusted by identifying the driving condition category online to improve the adaptability
and robustness. In complex driving conditions, the DA-ECMS can effectively improve the
economy of the 4WD PHEV.

4. Simulation Results and Analysis

In this chapter, the equivalent fuel consumption is used as the evaluation standard for
the driving economy to compare the six different energy management strategies. Different
strategies are shown in Table 4. In this study, due to the 4WD PHEV having multi-power
sources and multi-power components, in-depth study of the operating characteristics of
different power sources and power components is an important basis for economic analysis.
The 4WD PHEV model is established by MATLAB/Simulink (2018a) and the effectiveness
of the DA-ECMS is verified under driving conditions of medium–high speed.

Table 4. Table of different control strategies.

Energy Management
Strategy Illustration

RB The RB strategy is adopted to optimize the energy management of the power
sources, and power components adopt fixed energy distribution ratio.

H-RB
The RB strategy is adopted to optimize the energy management of the power

sources, and power components adopt ECMS to optimize the energy
management.

ECMS The ECMS is adopted to optimize the energy management of the power
sources, and power components adopt fixed energy distribution ratio.

D-ECMS Both power sources and power components adopt the ECMS to optimize the
energy management.

TA-ECMS
Under the method of total optimizing the initial value of equivalent factors,

both power sources and power components adopt the ECMS to optimize the
energy management.

DA-ECMS
Under the method of instantaneous optimizing the initial value of equivalent

factors, both power sources and power components adopt the ECMS to
optimize the energy management.



Sensors 2022, 22, 6256 15 of 23

4.1. Acquisition and Analysis of Future Driving Condition Information

In this paper, SOM identifies the driving condition category in the next 10 s and
adaptively adjusts the equivalent factors under different driving modes in the DA-ECMS.
As the method of multi-feature judgment is adopted for the driving condition category, the
error adjustment for equivalent factors is reduced due to the inaccuracy of prior information.

In the process of driving, the speed information of the past 10 s is adopted to identify
the driving condition category of the next 10 s and the category information is updated
every 10 s. Due to the short time of updating the driving condition category, the category
of the past 10 s has a small error compared to the next 10 s. The simulation results validate
that the accuracy rate is about 98.6% and a comparison of the results is shown in Figure 10
and Table 5.
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Table 5. The predicted category and real category comparison table.

Total Sampling Time (s) Same Category Time (s) Different Category Time (s) Accuracy Rate

3410 3362 48 98.6%

4.2. Comparison and Analysis of SOC, Fuel Consumption and Equivalent Fuel Consumption

In this paper, six different energy management strategies are adopted to analyze and
compare. The DA-ECMS updates the driving condition category according to the actual
information and the equivalent factors are adaptively adjusted to improve the adaptability
and robustness by the driving condition category. Compared with the RB strategy, the
economy of the DA-ECMS is improved by 13.31% through simulation and comparison.
The simulation results are shown in Figures 11–13.

Compared with the RB strategy, different energy management strategies have different
degrees of economic improvement. The simulation results and comparison data are shown
in Table 6.
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Table 6. Comparison of the simulation results and the data under different energy management strategies.

Control Strategy Terminal SOC Equivalent Fuel Consumption (g) Economy (Relative to RB)

RB 0.320 2826
H-RB 0.315 2703 4.35%
ECMS 0.358 2733 3.29%

D-ECMS 0.293 2549 9.80%
TA-ECMS 0.368 2506 11.32%
DA-ECMS 0.203 2450 13.31%

As shown in Figure 11, the change curves for the SOC are different under different
energy management strategies. According to the value of SOC, the 4WD PHEV is divided
into CD and CS states. In the CD state, the battery is more inclined to output energy,
whereas the engine is more likely to output energy in the CS state. Before 600 s, the SOC
of the battery is higher than 0.28, the 4WD PHEV is in CD state and the battery is more
inclined to output energy, so the SOC shows a downward trend. In Figure 13, the 4WD
PHEV is in pure electric mode for the first 600 s and the battery provides all the energy
for the vehicle. The engine is in shutdown state without fuel consumption for the first
600 s. When the SOC is less than 0.28, the vehicle enters CS state and is more inclined to
output energy through the engine. Different energy management strategies have different
control strategies for the engine, resulting in different driving economies of the vehicle. In
Figure 11, the 4WD PHEV enters CS state after 600 s and the SOC shows different trends.
Under certain driving conditions, the engine provides extra energy for charging the battery
and the SOC shows different upward ranges under different energy management strategies.
When the SOC reaches 0.36, the vehicle enters CS state again and is more inclined to output
energy from the battery.

The 4WD PHEV has multi-power components in the front/rear motors to drive the
vehicle. As the front/rear motors have different maps, the energy optimization manage-
ment between the front/rear motors also affects the driving economy of the 4WD PHEV.
In the first 600 s, the SOC based on the RB and the ECMS strategies decreased more than
that based on the H-RB, the D-ECMS, the A-ECMS and the DA-ECMS strategies. As shown
in Figure 12, the equivalent fuel consumption based on the RB and the ECMS strategies is
higher than other energy management strategies in the first 600 s. For the whole driving
cycle shown in Figures 11 and 12, the D-ECMS has different amplitudes in SOC varia-
tion and the final value of the equivalent fuel consumption compared with the ECMS. In
Figure 12, the final value for the equivalent fuel consumption based on the H-RB and the
D-ECMS strategies is significantly lower than that based on the ECMS energy management
strategy. Therefore, the reasonable distribution in the front/rear motor energy optimization
management can improve the economy of the 4WD PHEV.

In Figure 11, the RB and the H-RB strategies adopt fixed thresholds between the power
sources and the range of charging the battery with extra power from the engine is less
affected by driving conditions, resulting in a change in the SOC, so it fluctuates greatly.
From 600 s to 900 s, the vehicle is in CS state and SOC is always in the rising state. After
900 s, the SOC is greater than 0.36 and the vehicle enters CD state, so the battery provides
the main energy and is in a decreasing state. During the whole driving process, the SOC
fluctuates between 0.28 and 0.36. In Figure 13, the fuel consumption based on the RB
and the H-RB strategies is in step up. Based on the ECMS and the D-ECMS strategies,
the energy output is reasonably distributed according to the current operating state and
the change in the SOC is affected by driving conditions. In Figure 11, the vehicle is at
high speed after 600 s, and the engine provides less power to the charge of the battery for
operating in the higher-efficiency region. Therefore, the increase in the SOC is relatively
gentle and improves the economy of the vehicle. Due to the different distribution strategies
between power components of the ECMS and the DA-ECMS, the change trend for the SOC
is different.
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The value of equivalent factor has a great impact on the economy of the vehicle control
as an important parameter in the equivalent consumption minimization strategy. The ECMS
and the D-ECMS strategies have poor adaptability and robustness for adopting fixed initial
equivalent factors. Based on the TA-ECMS, the SOM and GWO algorithms are adopted to
optimize the initial value of equivalent factors, according to the global characteristics of driving
conditions, and the adaptability and robustness of driving conditions are effectively improved.
As shown in Figure 11, the vehicle is in the medium-speed stage from 600 s to 1500 s and the
SOC increases greatly to provide the power reserve for the high-speed stage in the second half
of the driving cycle. In Figure 12, the final value of the equivalent fuel consumption based on
the DA-ECMS is obviously lower than the ECMS and the D-ECMS strategies.

Based on the DA-ECMS, the driving condition category is updated every 10 s and
the value of the equivalent factors are adaptively adjusted according to different driving
condition categories. In Figure 11, the SOC changes in the DA-ECMS show different trends
and are more affected by the actual driving conditions. From 600 s to 1300 s, the vehicle
is in the medium-speed stage and the engine provides part of the energy. However, the
SOC reaches a lower state after 1500 s and the engine gradually becomes the main power
output. As the vehicle is at high speed and requires more power, the engine provides less
energy for charging the battery, resulting in a slow rise in SOC.

The energy management strategy based on the DA-ECMS can update the value of the
equivalent factors in real time according to the actual driving conditions and has excellent
adaptability and robustness. As shown in Figure 12, the DA-ECMS has the lowest value of
the equivalent fuel consumption under different energy management strategies and the
economy of the vehicle is the best. Compared with the RB strategy, the economy of the
DA-ECMS is improved by 13.31%.

4.3. Qualitative Comparison and Analysis of Engine

In order to analyze and compare the economy of the vehicle under different energy
management strategies, analysis of the operating state is essential. This paper mainly fo-
cuses on optimizing the operating state of the engine to improve the vehicle economy, so the
physical and chemical characteristics of the battery are not studied in depth. Under different
control strategies, the engine operating state diagrams are shown in Figures 14 and 15.
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Figure 15. Variation curves for engine torque under different strategies.

As shown in Figure 14, the distribution of the engine operating points is different under
six different energy management strategies. The distribution between power sources based
on the RB and the H-RB adopts fixed thresholds, so the robustness of driving conditions is
relatively poor. As shown in Figure 15, the engine still provides more energy to charge the
battery when the power demand of the vehicle is large and the engine has a large torque
output. The engine speed at about 2500 r/min has a large torque output, resulting in the
engine operating in a lower-efficiency area and increasing the fuel consumption.

According to the current driving condition information, the energy distribution be-
tween power sources based on the ECMS and the D-ECMS strategies is optimized. The
operating state of the engine is affected by the driving conditions. As shown in Figure 15,
the torque output of the engine is lower than the RB and the H-RB, so the driving efficiency
area of the engine at 2500 r/min is improved.

According to the driving conditions, the initial value of equivalent factors is reasonably
optimized based on the TA-ECMS, improving the adaptability and robustness. As shown in
Figures 14 and 15, the engine operating points’ efficiency and stability of torque output are
improved based on the TA-ECMS. From 2500 r/min to 3000 r/min of the engine speed, the
operating points are obviously improved and most of the points are in the high-efficiency
area. According to the real-time driving condition data for the vehicle, the DA-ECMS
adaptively adjusts the value of the equivalent factors to further improve the adaptability
and robustness of the driving conditions. In Figure 14, compared with the TA-ECMS, the
engine speed at about 2000 r/min and 2300 r/min has more operating points distributed
in the higher-efficiency area. In Figure 15, the torque output of the engine is obviously
adjusted before 2000 s and the equivalent factors are adjusted according to the real-time
driving condition information to improve the economy of the whole vehicle. Through
the comparison and analysis of the simulation results, the DA-ECMS better adjusts the
operating efficiency of the engine and improves the fuel efficiency.

4.4. Qualitative Comparison and Analysis of Front/Rear Motors

As the important power components of the 4WD PHEV, the operating state of the
front/rear motors has a great impact on the economy of the vehicle. In order to deeply
analyze and compare the energy-saving performance of the 4WD PHEV under different
energy management strategies, it is necessary to deeply analyze the operating state of
power components. The front/rear operating state diagrams are shown in Figures 16–19.
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Figure 19. Rear motor torque of energy management strategies.

As shown in Figures 16 and 17, the H-RB adopts the energy distribution of the
front/rear motors. The operating point efficiency for the front motor is obviously im-
proved before the 4000 r/min and the torque output is more stable compared with the RB
strategy. Similarly, compared with the ECMS, the operating point efficiency is obviously
improved at low speed based on the D-ECMS, the TA-ECMS and the DA-ECMS strategies.
Figures 18 and 19 show the operating state of the rear motor and the state is obviously
adjusted under different control strategies. Compared with the RB and the ECMS strategies,
the operating point efficiency distribution of the rear motor is obviously improved from
1500 to 7000 r/min based on the H-RB, the D-ECMS, the TA-ECMS and the DA-ECMS.
In the 4WD PHEV studied in this paper, the maps of the front/rear motors are different
and the overall efficiency of the rear motor is higher than the front motor. Therefore, in
order to minimize the overall energy consumption in the front/rear motors, the operating
points of the rear motor are greatly adjusted to operate in the higher-efficiency area and
the economic improvement effect is more significant. According to the above simulation
results, the optimized management of the front/rear motors can effectively improve the
power efficiency of the 4WD PHEV electric driving system and improve the economy of
the vehicle.

5. Conclusions

In this paper, a multi-layer energy management control architecture is proposed to
optimize management of the 4WD PHEV multi-energy system, combining the driving
condition categories with the DA-ECMS to give full play to the energy-saving potential
of the 4WD PHEV and improve the adaptability of driving conditions. The high level
adopts SOM and GWO to classify the driving condition categories and optimize the multi-
dimensional equivalent factors offline, realizing the identification of the categories by
SOM and matching the equivalent factors online. The low level adopts the DA-ECMS to
distribute the multi-degrees-of-freedom energy output between the 4WD PHEV multi-
power sources and multi-power components and balancing the real time and economic
performance of the control. The simulation results are compared by MATLAB/Simulink in
this paper and the economy of the DA-ECMS is improved by 13.31% compared with the
RB strategy.

However, the errors in the predicted condition categories cannot accurately reflect
the future driving condition information and the final control effect cannot reach the best
state. In future scientific research, the predicted condition category errors shall be solved to
further improve the economy of the 4WD PHEV.
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