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Abstract: Floods are among the costliest natural hazards, in Australia and globally. In this study,
we used an indicator-based method to assess flood hazard risk in Australia’s Hawkesbury-Nepean
catchment (HNC). Australian flood risk assessments are typically spatially constrained through the
common use of resource-intensive flood modelling. The large spatial scale of this study area is the
primary element of novelty in this research. The indicators of maximum 3-day precipitation (M3DP),
distance to river—elevation weighted (DREW), and soil moisture (SM) were used to create the final
Flood Hazard Index (FHI). The 17–26 March 2021 flood event in the HNC was used as a case study.
It was found that almost 85% of the HNC was classified by the FHI at ‘severe’ or ‘extreme’ level,
illustrating the extremity of the studied event. The urbanised floodplain area in the central-east of the
HNC had the highest FHI values. Conversely, regions along the western border of the catchment
had the lowest flood hazard risk. The DREW indicator strongly correlated with the FHI. The M3DP
indicator displayed strong trends of extreme rainfall totals increasing towards the eastern catchment
border. The SM indicator was highly variable, but featured extreme values in conservation areas of
the HNC. This study introduces a method of large-scale proxy flood hazard assessment that is novel
in an Australian context. A proof-of-concept methodology of flood hazard assessment developed for
the HNC is replicable and could be applied to other flood-prone areas elsewhere.

Keywords: flood; flood hazard assessment and mapping; flood hazard index; Hawkesbury-Nepean
catchment; Australia; flood risk assessments

1. Introduction
1.1. Floods

Defined as “an overflow of water beyond the normal limits of a watercourse” [1], flood
events have the potential to be highly destructive to communities, both socioeconomically
and environmentally [2]. Floods impact the largest number of people across all natural haz-
ards globally, accounting for one-third of all natural disaster casualties and damages [3,4].
The annual expected costs of global floods have been estimated at just over $160 billion
(2022 AUD inflation adjusted) [5]. These costs are widely predicted to rise due to the
combined impacts of anthropogenic climate change and increasing urban development,
especially on floodplains [6].

Australia has a highly variable climate, which results in the country being frequently
impacted by flood events [7]. The inter-annual variability in flood occurrence in Australia
is modulated by the status of influential climate drivers, but chiefly the El Niño–Southern
Oscillation (ENSO) [8]. The negative phase of the ENSO, La Niña, is strongly associated
with high occurrence of flood events, as it typically results in wetter conditions over large
parts of Australia [9]. Significant Australian floods of the last decade, including the 2011
Queensland flood, as well as the 2021 and 2022 eastern Australian flood events, have all
occurred during La Niña events.
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Consequently, flood risk and damages have been found to increase in Australia during
La Niña periods [10]. This has manifested in infrastructural losses of over $2.4 billion
(2022 AUD inflation adjusted) in the 2011 Queensland flood [9]. More recently, widespread
flooding in early 2022 took 22 lives and caused devastation to communities across New
South Wales and Queensland, the exact financial cost of which is yet to be determined.

Climate projections suggest Australian flood events will likely be more frequent as
impact of anthropogenic climate change increases. The Intergovernmental Panel on Climate
Change (IPCC) reported that the frequency of heavy rainfall and flood events is likely
to increase in the Australasian region (medium confidence) due to climate change [11].
This comes as a result of increased atmospheric moisture fluxes due to higher rates of
evaporation and evapotranspiration.

An additional contributing factor is increasing urban floodplain development, which
is known to be linked to worsening flood damage [12]. Wider research notes the correlation
between this combined anthropogenic influence and elevated flood risk globally [13,14].
Additionally, ref. [15] found that the slowing of Atlantic Overturning Circulation would
result in permanent La Niña-like conditions if collapse were to occur, meaning Australia
may have permanently heightened flood risk. This underscores the need for a strengthened
system of evidence-based flood risk assessments (FRAs) that consider all perspectives in
order to proactively mitigate the effects of rising flood risk.

There are three major types of flooding: riverine (fluvial), flash flooding (pluvial), and
coastal inundation flooding. This study focuses on inland flooding (fluvial and pluvial)
and does not consider coastal inundation, because coastal flooding is caused by storm
surge, which is a separate hazard to flooding resulting from rainfall. This research uses
indicator-based methods to investigate fluvial and pluvial hazard risk.

1.2. Risk Assessment

The risk of a natural hazard occurring is defined by the IPCC as: “the potential for
adverse consequences for human or ecological systems, recognising the diversity of values
and objectives associated with such systems” [16]. In modern literature, natural hazard
risk is typically determined as the product of risk components: hazard, exposure, and
vulnerability. This holistic characterisation of risk captures the complex interplay between
the hazard an area is subjected to and the innumerate characteristics of that area that affect
how that hazard is experienced. This concept is one that was first introduced by the United
Nations Disaster Relief Organisation in 1979 [17] and further developed by Crichton [18].
Nowadays, it is common practice to apply such an approach, with many well-known risk
indices, such as the Disaster Risk Index, founded upon this approach (e.g., [19]).

Proactive risk assessments are an important component of risk management, the
ultimate goal of which is to reduce disaster risk and losses. They are a crucial step in
the development of adequate mitigation strategies (e.g., [20]) because such assessments
highlight the most exposed and vulnerable areas to the given hazard. This allows relevant
decision-makers and stakeholders to make informed decisions on resource allocation on
both short- and long-term time scales.

FRAs are objective and quantitative evaluations of the risk a region faces to the impacts
of flooding [21]. These assessments focus on the level of potential loss and the probability
of these losses occurring based on the interplay between flood hazard, exposure, and
vulnerability [22]. The specific output this creates varies across the literature, but will often
involve some combination of hydrological modelling, indicator-based methods, geographic
information systems (GIS) software, and remote sensing (RS) to create models, indices, and
maps, respectively [23,24]. These outputs ultimately provide flood risk data to users to
enable them to identify and address areas of high risk.

1.3. Defining Flood Hazard

As with risk calculation, there is considerable variability and inconsistency amongst
definitions for risk and its components. This variability is noted by authors of other
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relevant literature, such as [25], which underscores the need for formal and clear definitions
of the important terms. Thus, this research adopts relevant IPCC definitions for risk and
its components. The IPCC’s comprehensive definitions have been selected due to their
reputable prominence in this subject space. Adopting these definitions for flood risk, hazard,
exposure, and vulnerability ensures consistency. In this study, the definition for hazard
has been adopted and subsequently adapted for a flooding context. Therefore, this study
defines flood hazard as: “the potential occurrence of a natural or human-induced physical
flood event or trend that may cause loss of life, injury, or other health impacts, as well as
damage and loss to property, infrastructure, livelihoods, service provision, ecosystems and
environmental resources” [17].

1.4. Risk-Assessment Methods

FRAs can be broadly divided into two major categories: those based on numerical
flood modelling or simulations, and those based on some form of indices and risk quantifi-
cation [26]. However, this distinction is nuanced due to the overlap that can occur between
these categories, as some researchers utilise modelling methods to supply data for indices
(e.g., [27]). GIS software and RS are separate tools frequently used in tandem to support
FRAs [28]. These tools are widely considered to combine together to “facilitate an excellent
understanding of a region’s hydro-morphologic characteristics” [29], and thus are essential
aspects of FRAs.

Hydrological models can accurately simulate hydrological processes and flood inun-
dation with a range of models usually working on small spatial scales [30]. This method of
FRA often produces data and maps that describe flood behaviour characteristics, such as
flood depth or extent, flood velocity, flood duration, and finally flood hazard. In this type of
FRA, flood hazard is typically calculated as the product of flood depth and velocity. Because
the hydrological models compute on such a small spatial scale (as flood behaviour will vary
strongly over small distances), they are typically resource-intensive and therefore difficult
to use at larger scales [31]. A key drawback of this approach is that these assessments are
typically flood ‘hazard-centric’ assessments, which pay less attention to the exposure and
vulnerability aspects of risk. In this sense, modelling-based methods can be considered a
less holistic approach to FRA than indicator-based methods.

Indicator-based approaches use multi-criteria decision-making (MCDM) techniques
to geospatially quantify the risk in a region [32]. This can involve standardising geospatial
data into several indicators based on the risk components (becoming a number ranging
from 0 to 1), and then combining them into a final risk index [33]. In instances where flood
modelling data are not used, these assessments are considered a proxy form of FRA. In order
to decide the weighting of the numerous indices and subsequently equate them, a form
of MCDM is used, the most common forms being fuzzy logic and the analytic hierarchy
process, as well as other machine-learning models [32,34,35]. Fuzzy logic, a highly popular
MCDM method, computes the degree of relative truth and falsehood as a number between
0 and 1, commonly equating to a probability [36]. In a risk-assessment context, this degree
of truth corresponds to the level of risk. By numerically quantifying the risk components,
indicator-based proxy approaches using MCDM techniques can holistically assess flood
risk [34,35]. This is the method used to quantify flood hazard in this study.

1.5. Australian Risk Assessment

Indices and MCDM methods are not widely used to assess Australian inland (non-
coastal) flood risk and, to the best of our knowledge, include only two relevant studies:
those being [35,37]. These earlier studies are both founded upon the traditional natural
hazard risk components this research is utilising (hazard, exposure, vulnerability), and they
both use fuzzy MCDM methods for data standardisation and overlay, albeit in different
ways. However, the research by [37] differed from this research due to its focus on urban
areas, which subsequently featured a comparatively very small study area approximately
1/1000th the size of the study area in this research. The research done by [35] was conducted
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over a similarly small study area and used a rare set of 24 indicators and a relatively novel
‘fuzzy inference system’ of standardisation. Despite indicators being a common tool for
natural hazard risk assessment, there is limited application in an Australian flooding
context [33].

However, the Australian FRA space is dominated by modelling-based methods. One
such example of this type of study is by [38], assessing the Scenic Rim Local Government
Area (LGA) in Queensland, Australia. These FRAs are predominant because they are
conducted at an LGA or river-catchment level in accordance with [39], an Australian
Government handbook. As already mentioned, this type of risk assessment tends to be
highly resource-intensive and has the potential to overlook critically important exposure
and vulnerability elements of risk. This resource-intensive nature means that these studies
are limited to small spatial scales. As larger study areas are widely unseen in Australian
FRAs, this is considered a research gap. Thus, an FRA predominance of modelling-based
assessments leaves little room for alternative perspectives, which can result in the loss of
important information that other less popular assessment types may produce.

Australian FRAs have little representation in the literature. The prevailing approach
to Australian FRA created by the AIDR guidelines has meant that indicator-based MCDM
methods are seldom used to assess flood risk in this country. This broader research is
founded upon the notion that local decision-makers can benefit from the additional infor-
mation leveraged by indicator-based FRAs because they are more balanced assessments of
an area’s flood hazard, exposure, and vulnerability, potentially from this aforementioned
alternative perspective.

In this case study, we used an indicator-based method to assess and map inland flood
hazard risk in Australia’s Hawkesbury-Nepean catchment (HNC). Considering this context
of Australian FRAs, this research has two major aspects of novelty. Firstly, this FRA was
conducted over a large, catchment-wide scale that is greater than the LGA or smaller scales
that are typical of Australian FRAs. Secondly, this assessment was conducted using proxy
indicator methods, the usage of which are highly limited in Australia. Using this method
means that the developed index could be easily replicable and scalable and not be spatially
constrained by typical resource-intensiveness issues.

The paper is organised as follows. Section 2 presents descriptions of the study area,
indicators, and their respective datasets, as well as the method of creating this index.
Section 3 contains a detailed description of the results, including maps of each indicator
and the flood hazard index. These results are then discussed in Section 4, and finally the
key achievements are detailed in the conclusion.

2. Materials and Methods
2.1. Study Area

The study area was the HNC located west of Sydney, New South Wales, Australia.
This catchment is a large area covering over 21,700 km2, spanning from Greater Western
Sydney to the Blue Mountains and stretching vastly in the north–south direction, from
beyond Goulburn to Newcastle (Figure 1; Appendix A presents a map with LGA divisions).
The selected study area is regarded as one of the highest flood risk areas in New South
Wales, if not Australia [40]. Flood events in this area are highly impactful, the average
annual cost of which has been estimated at $70 million [41]. Flood events are frequent
in the HNC, as its river systems are regularly inundated with more water than can exit
the system in a timely manner, with dramatic backwater effects over a large floodplain
area. This has been attributed to a combination of large upstream catchments (such as the
Warragamba Dam) and narrow sandstone gorges downstream [40]. Figure 1 highlights the
physical elements of this area that make for general high flood risk: areas of high elevation
draining into a low and flat floodplain, as well as a high number of tributary rivers that
drain into these major rivers in the floodplain area. Recent flood events in both 2021 and
2022 highlight the propensity for regular flooding in the HNC.
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Figure 1. Maps of the Hawkesbury-Nepean catchment study area: (a) elevation data (m) of the
catchment, and (b) the location of conservation areas as well as major waterways.

Specifically, the scope of this research entails using data from the March 2021 flood
event as a temporal case study: time-dependent data (rainfall and soil moisture) comes
from within this period. This flood event occurred from 17 to 26 March 2021. Large parts of
eastern Australia experienced devastating floods that killed five people and forced 18,000
to evacuate. Heavy rainfall and wet antecedent conditions influenced by the 2020–2021
La Niña event were largely attributed to causing this flooding to occur [42]. Persistent
heavy rainfall resulted in the Warragamba Dam, the major dam in the HNC, to release over
450 gigalitres of water per day for several days. This resulted in an estimated $65–97 million
in insurance claims alone in this catchment [41]. It is logical to anticipate an increase in
flood hazard risk across the catchment during this 9-day period, given that this was when
extreme rainfall and high soil moisture was experienced. These are two of the three inputs
that are explored in this research.

2.2. Methodology Overview

The methodological steps proposed for this research are outlined in Figure 2. These
are the steps that should be followed in order to replicate this research.

Figure 2. Flowchart of the methodology of this research.
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The novelty of this method lies within the indicators selected and the respective
datasets utilised, as the proxy nature of the indicators that should be selected are the key to
ensuring that this FRA methodology can be completed over large spatial scales.

2.3. Indicator Selection and Creation

The selection process for the indicators to be used to create the flood hazard index
(FHI) was a combination of two major factors. Firstly, information from prior literature
with similar methodologies (indicator-based MCDM method studies) was used to gain
an understanding of the typical indicators used. Secondly, localised input based on the
characteristics of the HNC study area was incorporated. For example, soil moisture has been
selected as an indicator as it is a representative of the antecedent conditions of this region,
something that was identified as critical to the occurrence of flooding in Australia [43]. The
following section will explain the justification for each indicator’s selection.

Earlier studies, such as [35,44], used a large number of indicators for their indices.
Inspiration was drawn from this when selecting indicators for this research. Whilst drawing
inspiration from such studies as these, this research used only three indicators to quantify
flood hazard risk. This was for two main reasons: firstly, when a greater number of
indicators are used to create an index, there tends to be increasing overlap among these
indicators, which ultimately results in unnecessary data processing. For example, [44]
utilise both ’river distance’ and ‘waterway and river distance’ indicators, which have
only minor difference and thus can be considered to have unnecessary overlap. Other
hazard-related indicators seen in similar flood risk index studies included ‘topographic
wetness index’, ‘normalised difference water index’, ‘stream power index’, ‘flooded area
ratio’, and ‘annual rainfall’ [29,32,35,44]. These indicators and others were considered,
but ultimately not utilised in this research because—in comparison to those described in
Sections 2.3.1–2.3.3—they are either less widely used, less directly relevant to the study, or
they would overlap with other similar indicators that could be chosen.

2.3.1. Maximum 3-Day Precipitation

The maximum 3-day precipitation (M3DP) indicator describes the total accumulation
of rainfall in a given 3-day period. This indicator can either be created using rain-gauge
data or satellite-estimated precipitation data. This research used the latter, due to the
desirable gridded and globally popular nature of this dataset. Earlier studies usually
included rainfall as an indicator (particularly annual rainfall) [29,32,35]. It is also common
to see 1 day used as the time interval (e.g., [44]). However, given the conscious dual focus
on pluvial flooding and longer-onset riverine flooding in this research, a 3-day period was
chosen as the interval to cover both anomalous single-day and multi-day rainfall events.
This was also to capture a greater proportion of the event’s extreme rainfall, as 1 or 2 days
may have been insufficient in this regard. Given that a 3-day period was not observed in
the relevant literature for precipitation-related indicators in Australian FRAs, this aspect of
the index is considered an element of novelty. This indicator was quantified using rainfall
data in the HNC for consecutive 3-day periods during the March 2021 flood event.

Satellite precipitation data were provided by the World Meteorological Organization’s
Space-Based Weather and Climate Extremes Monitoring (SWCEM) [45]. The GSMaP
(Global Satellite Mapping of Precipitation) space-based precipitation product was used in
this study, as it demonstrated high performance over Australia [46,47]. The M3DP dataset
was created using a Python programming script. Satellite precipitation daily data were
combined into groups of 3 consecutive days in the form of a downloadable NetCDF file.
These groups of 3 days covered the entire flood event to capture all rainfall, 3-day totals
ending on each individual day from 19 March 2021 to 26 March 2021. This produced a
series of 3-day precipitation accumulation maps that sequentially covered the duration of
the flood event and illustrated the progression of rainfall. From this, a combined map was
made of the greatest 3-day accumulated rainfall at each grid point during the flood event,
regardless of the specific 3-day period it came from. This was done so that the indicator
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quantified the highest 3-day precipitation accumulation at each specific grid point during
the flood event, as this ultimately relates more strongly to flood hazard than using any
consistent 3-day period for every point in the study area. This combined gridded data set
of the highest 3-day precipitation accumulation during the flood event was the final input
used for the M3DP indicator.

2.3.2. Distance to River—Elevation Weighted

The distance to river—elevation weighted (DREW) indicator quantifies the distance of
each point over the study area to the nearest major waterway. Given the HNC has several
major rivers and tributaries that are prone to bursting their banks, the flood hazard of each
point in this region will vary considerably based on its proximity to a nearby waterway.
When these waterways are overcome with rainfall, the points closest to the river will be
the earliest to experience the flood hazard. The more generic DTR indicator is frequently
used in this type of FRA: it is referred to as “one of the most significant parameters that
can be applied in flood risk mapping” [44]. In this study, the DREW indicator incorporates
its own element of novelty, because the DTR layer was combined with an elevation layer
prior to standardising to add robustness to the risk values given to each part of the river.
This is because the lower-elevation areas will tend to have more water flow and thus
be more hazardous, and hence weighted as more hazardous when the same distance to
the watercourse.

The DREW indicator was created using ArcMAP10.7 software. This involved down-
loading a shapefile of the HNC area and the NSW rivers from ArcGIS online via the BoM
Geofabric (Table 1). The ‘Euclidean Distance’ function in ArcMAP10.7 was used to deter-
mine the distance of each pixel to the nearest river within the HNC area. However, it was
noted that using the simple ‘Rivers’ layer alone was equally weighting all parts of a river.
This was considered to be misrepresentative of this river system because the downstream
and lower-elevation sections of the rivers are much more hazardous and flood prone than
the upstream sections, which are typically smaller and flowing less. To address this issue,
the first ‘Distance to River’ layer was then standardised and multiplied with an elevation
map in ArcMAP10.7. This then created a map of the distance of each point to the nearest
river weighted by elevation.

Table 1. Data collection and indicator metadata.

Indicator Data Used Source Original
Resolution Year

Maximum 3-Day
Precipitation

GSMaP rainfall
precipitation data

Space-based Weather
and Climate Extremes
Monitoring (SWCEM)

0.1 deg 2021

Distance to
River—Elevation

Weighted

Custom NSW Rivers layer
via BoM BoM Geofabric 50 m 2020

Soil Moisture https://awo.bom.gov.au
(accessed on 1 May 2022) BoM 0.05 deg 2021

2.3.3. Soil Moisture

The soil moisture (SM) indicator is a gridded data layer that quantifies the moisture
level of the soil across the HNC. As mentioned in Section 2.2, SM has been selected as
an indicator as it represents the antecedent conditions of the region prior to the flood
event. These antecedent conditions are crucial for the HNC, as they largely modulate the
impacts of heavy-rainfall events and can hence make them more hazardous. For example,
in February 2020, parts of the catchment received over 450 mm in the week ending 13
February. This is very similar (albeit slightly less intense) to the rainfall received in March
2021 that caused widespread flooding in the catchment. However, the dry antecedent

https://awo.bom.gov.au
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conditions of 2020 resulted in heavy rains being received on drier soils and lower dam
levels, and flooding did not occur. The effects of a lasting La Niña event 1 year later meant
the landscape was much wetter (and in some cases near saturated). The dam and SM levels
were higher, enough to flood when a similar rainfall event was received.

Although not a common indicator in this form of assessment, SM is evidently one
key antecedent factor, the quantification of which will serve as a representative for wider
conditions. Research by [43] highlights the importance of antecedent catchment conditions
in an Australian context, further justifying the use of such an indicator. This is yet again an
element of innovation to this form of proxy FRA in an Australian context, meaning that all
three indicators are founded with their respective element of novelty. In this study, SM was
quantified as the 30-day average prior to the event.

The SM dataset was created using the BoM’s AWRA-L (Australian Water Resources
Assessment Landscape) daily gridded absolute root zone soil moisture data model [48].
These data measure the amount of volumetric water per unit soil in the top 0–100 cm
of the soil profile and are available to download from the Australia Water Outlook, the
BoM operational soil moisture modelling dataset. In order to calculate the 30-day average
prior to the beginning of the event, a Python script was used to combine 30 individual
days of data into an average gridded value across the study area. This gridded average
value, calculated from 18 February 2021 to 17 March 2021, was the final input used for the
SM indicator.

2.4. Data Collection

Data collection and indicator metadata are presented in Table 1. All data use is licensed
under the Creative Commons CC BY-NC 4.0 licence.

2.5. Data Standardising

The data for each of the indicators exist in different formats, sizes, and units, and are
measured with different scales (e.g., rainfall data up to 255 mm (M3DP), river distances
up to 31,000 m (DREW), and absolute SM% between 0 and 100). As the various data
were in various spatial resolutions (see Table 1), all data were resampled to 50 m grid-size
resolution prior to standardisation. A standardisation process was required in order to
accurately compare the data and ultimately combine the three indices into a final FHI. The
data were standardised using fuzzy methods via ArcMAP10.7 software, a commonly used
standardisation method in natural hazard (including flood) risk assessments using MCDM
methods (e.g., [32,35,49]). To do this, indicators were assigned a fuzzy membership class.
This describes the relationship between the indicator and flood hazard risk. In this case,
SM and M3DP have a positive relationship with flood hazard risk, as greater values of SM
and M3DP were more likely to contribute to greater flood hazard risk. Therefore, both were
assigned to the fuzzy large class. The inverse is true for the DREW layer, whereby there
exists a negative relationship between this indicator and flood hazard risk. This means the
lower the value of the DREW indicator (the smaller the distance to river), the higher the
flood hazard risk. Therefore, the fuzzy small class was applied in this case.

To accurately represent the hazard risk in context of temporal precipitation and SM
conditions, historical averages of the M3DP and SM parameters were used as the midpoints
for the fuzzification process. The average M3DP for a given March day was calculated
using the same GSMaP satellite data to ensure consistency, using daily averages for the
month of March since records began in 2000. This produced a 90th percentile value of
27.5 mm in a given 3-day period. The 90th percentile value was used for the fuzzy midpoint
as a representative of a statistically high value to compare to as a baseline for comparison.
Similarly, the average March SM value was calculated using historically modelled AWRA-L
SM grids dating back to 1900 for its respective fuzzy midpoint, which was 36.65%. This
average was also calculated using the same dataset as the rest of the indicator (see Table 1).
The result of this fuzzification process was that each of these indicators was standardised to
a dataset with values ranging from 0 to 1, whereby factors that are more likely to contribute



Sensors 2022, 22, 6251 9 of 27

to flood hazard risk (larger values in fuzzy large sets and smaller values in fuzzy small sets)
were weighted more strongly.

2.6. Index Calculation

In order to calculate the final FHI, the Fuzzy Gamma Overlay function within Ar-
cMAP10.7 was used to combine the three indicators. Fuzzy Gamma Overlay multiplies
indicators together whilst ensuring the result is standardised between 0 and 1. Fuzzy sum
and fuzzy product methods are multiplied and taken to the power of a gamma value.
Equation (1) describes this process, whereby γ is the gamma value and µ is the indicator.
For this research, the generic gamma value of 0.9 was used—this being the industry stan-
dard. The use of this method means that all indicators were equally weighted, which is an
objective index-creation approach without further modelling.

µ(gamma) = (FuzzySum)γ × (FuzzyProduct)1 − γ, (1)

2.7. Correlation Analysis

Correlation analysis between each of the three indicators and the final FHI was under-
taken using a Pearson correlation function in Python. This function generated correlation
values between each raster layer and the final index.

3. Results

Both the M3DP and SM indicators are presented with a series of three maps
(Sections 3.1.1 and 3.1.3). The first maps are a visualisation of the raw data (in mm for
M3DP and a percentage for SM). The second maps are calculated using only data from the
event to illustrate the spatial variability within the March 2021 case study, and the third
maps use historical context in standardising to demonstrate the magnitude of this flood
event compared to the past events. This historical context is a comparison to a 20-year aver-
age for M3DP and a 120-year average for SM. Similarly, the DREW indicator is presented
with two maps: a pre- and post-fuzzification illustration.

Standardised indicators and the final FHI were mapped using a standard set of quintile
values. These quintile values were then assigned a class of risk (very low, low, moderate,
severe, extreme) (Table 2). The classification breaks on the maps were then manually
adjusted to these classes.

Table 2. Risk class assignments and their corresponding index values.

Risk Class Very Low Low Moderate Severe Extreme

Risk Value 0 ≤ 0.2 0.2 ≤ 0.4 0.4 ≤ 0.6 0.6 ≤ 0.8 0.8 ≤ 1

3.1. Indicator Maps
3.1.1. Maximum 3-Day Precipitation

Maps of the maximum 3-day precipitation indicator are presented in Figure 3.
Figure 3a,b illustrate the spatial variability of the maximum rainfall received in any

given 3-day period during the flood event. One can note the clear trends of increased rainfall
towards the coastline in the Sydney direction and particularly around the central south-
eastern part of the catchment area. This pattern is supported by the synoptic conditions
during the time of this event: a blocking high pressure system in the southern Tasman Sea
resulted in prolonged easterly onshore flow over this area [42]. Onshore flow during the
event meant the majority of the rainfall fell closest to the shoreline, before decreasing in
the inland direction. This synoptic pattern is reflected in the data. Although Figure 3a
depicts the north-west corner of the catchment as the lowest ‘red’ colour, and Figure 3b
describes this risk as comparatively low for the event, this area received at least 173.7 mm
in a consecutive 3-day period. This clarification is important because 173.7 mm is still
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a very large amount of rainfall in a 3-day period, and Figure 3c helps provide a similar
perspective to this.

Figure 3. Maps of the maximum 3-day precipitation indicator: (a) the raw maximum 3-day precipita-
tion accumulation values; (b) the indicator with spatial standardising solely across the flood event;
(c) the indicator after being standardised spatially and temporally with respect to historical March
3-day rainfall events. Darker areas in (b,c) indicate greater maximum 3-day precipitation risk.
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The purpose of including Figure 3c is to highlight the extremity of the rainfall of this
event compared to past events. This figure depicts that the entire study area received an
extreme amount of rainfall in a 3-day period when compared to historical March rainfall
(2000–2020). Whilst the lower boundary of the extreme category is 0.8, it is important to note
that all historically standardised indicator data were above 0.94. This further demonstrates
the extremity of this rainfall event, and that regardless of the variability in this rainfall
displayed by Figure 3a,b, it was extreme throughout the entirety of the study area.

3.1.2. Distance to River—Elevation Weighted (DREW)

Maps of the distance to river—elevation weighted indicator are presented in Figure 4.

Figure 4. Maps of the distance to river—elevation weighted indicator: (a) the raw distance to
river—elevation weighted data; (b) the fuzzified distance to river—elevation weighted indicator.
Lower raw values (darker areas) in (a) indicate closer proximity to a river with respect to elevation.
Higher standardised values (darker areas) in (b) indicate greater risk from this indicator (closer
proximity). The major Hawkesbury and Nepean rivers are outlined to illustrate their location.

Creating the DREW layer using a combination of the distance to river layer and an
elevation layer had implications for the final product visualised in Figure 4. The elevation
layer contains clear outlines of the lowest valleys. This corresponds to the rivers and
creeks of this area. Therefore, these smaller water bodies of the area were represented in
addition to the rivers, thus making the overall indicator more comprehensive and robust in
comparison to regular distance-to-river inputs that do not include this elevation addition.
This was practically applicable because the main rivers were classified as the highest level
of risk, and the secondary creeks and waterways illustrated by the elevation layer were
classified as lower to moderate levels of risk, depending on their elevation. Note that
the level of elevation of these secondary waterways have strongly modulated the index
values of similarly sized waterways. These waterways in the north-west of the catchment
(among the lowest elevation areas) have much stronger values than similarly sized ones in
more elevated areas, which seem to disappear almost between the DREW pre-standardised
(Figure 4a) and the DREW post-standardised (Figure 4b). This mechanism has also resulted
in slightly larger ‘buffers’ of risk (higher risk lines surrounding the river paths) existing
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around the lower-elevation sections of rivers contained in the river layer and smaller index
values at the same distance around higher-elevation river sections.

3.1.3. Soil Moisture

Maps of the soil moisture indicator are presented in Figure 5. A daily time series of
the Catchment Soil Moisture 30 days prior to the flood event is depicted in Figure 6.

Figure 5. Maps of the soil moisture indicator: (a) the raw root zone soil moisture percentage for
the 30 days prior to the flood event; (b) the indicator with spatial standardising solely across the
flood event; (c) the indicator when standardised in comparison to the historical March soil moisture.
Darker areas indicate greater SM% in (a), and greater SM index values in (b,c).
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Figure 6. Daily soil moisture time series (16 February 2021–16 March 2021).

3.2. Flood Hazard Index

A map of the soil moisture indicator is presented in Figure 7.
Figure 7 illustrates the clear imprint on the map that the DREW indicator had on this

flood hazard index. The observable lines of extreme risk align with the river lines as per
the DREW maps in Figure 4. Since there are no areas categorised as very low risk, and only
a very small area of low risk, this further underscores the extremity of the conditions of this
flood event, particularly with respect to rainfall. Visual inspection does not reveal a great
deal of influence from either of the M3DP or SM indicators; however, one can note that
these indicators do influence the final index most notably in areas where these indicators
are at a minimum. For example, the area of reduced SM in the south of the catchment
has visibly reduced the overall risk in that area, which can be seen in the reduced risk of
the river layers in that area compared to those surrounding it. Similarly, the area in the
north-west of the catchment area with the lowest M3DP values also has reduced risk and a
larger proportion of moderate values than the surrounding areas.

Furthermore, given the highly extreme nature of the rainfall during this event, it comes
as no surprise that 83.6% of the catchment was classified as either a severe or extreme
level of flood hazard risk, i.e., a standardised value greater than 0.60. The extreme areas
are primarily located in the eastern floodplain areas of the catchment, which is where
the inflow of a large number of tributary rivers to the larger Hawkesbury and Nepean
rivers meet. Moderate risk areas are predominantly located to the west of the study area,
leaving everything in between to be largely classed as severe risk. Table 3 indicates that
low-risk areas occupy only 0.005% of the study area and there are no areas of very low risk.
Ultimately, this demonstrates that this risk index over this catchment area during the March
2021 flood event is almost entirely composed of moderate flood hazard risk and above.
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Figure 7. Map of the final flood hazard index. The legend describes the relative flood hazard risk
during the March 2021 flood event. Note that SM and M3DP indicator data with historical context
were used to create this index. Darker areas indicate greater flood hazard risk. The major Hawkesbury
and Nepean Rivers are outlined to illustrate their location.

3.3. Correlation Analysis

Correlation analysis reveals that the DREW indicator was correlated the strongest with
the final FHI (0.76, p < 0.0001). This correlation value of 0.76 is considerably larger than the
other two indicators and shows a strong positive correlation between the DREW layer and
the FHI. This supports the visual observations of the FHI map made in Section 3.2. M3DP
had the next strongest correlation value of 0.58 (p < 0.0001), indicating a moderately strong
positive correlation between the M3DP layer and the FHI. Similarly, SM is correlated with
a value of 0.16 (p < 0.0001), indicating a positive, albeit weaker correlation between the
SM layer and the FHI. Potential reasons for these results and implications are discussed in
Section 4.5.
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Table 3. Relative areas and percentages of each risk category across the Hawkesbury-Nepean
catchment.

Flood Risk Category Percentage of Total Area (Square Kilometres)

Very Low (0 ≤ 0.2) 0 0

Low (0.2 ≤ 0.4) 0.005 1

Moderate (0.4 ≤ 0.6) 16.4 3561

Severe (0.6 ≤ 0.8) 60.9 13,232

Extreme (0.8 ≤ 1) 22.7 4941

Total 100 21,735

4. Discussion
4.1. Maximum 3-Day Precipitation

The M3DP indicator was calculated as the maximum rainfall accumulation in any
3-day period during the flood event (17–26 March 2021) at each 0.1 degree grid point in the
catchment area. This means the final map layer consisted of 3-day totals that could have
come from any consecutive 3 days in that 8-day period if it was the maximum value for that
given grid point. Ultimately, the data comprising the final maps were a combination of two
3-day periods: 18–20 March 2021 and 19–21 March 2021. It was these two 3-day periods
that presented maximum rainfall accumulation within the bounds of the catchment. The
spatial distribution of which date was used for each grid point is illustrated in Figure A2
(Appendix B). These sets of 3 days received the highest rainfall over the catchment area,
recording a maximum of 417.6 mm and 339.6 mm, respectively. Whilst the maximum
rainfall fell in those two aforementioned periods towards the start of the flood event, it is
worth noting that considerable rainfall totals were observed throughout this flood period:
some locations in the catchment recorded over 500 mm for the week ending 23 March
2021. This consistent rainfall caused a second peak in the floodwater heights to occur at
multiple locations.

Despite the fact that the entirety of the catchment received extreme rainfall in com-
parison to historical standards, Figure 3 demonstrates that the eastern and coastal areas
of the HNC were most at risk of pluvial flooding (and ensuing fluvial flooding) from
solely a precipitation perspective. This area includes the built-up areas of Greater Western
Sydney at the central-eastern boundary of the study area, which is particularly problematic
for its population-dense communities and corresponding infrastructure in these areas.
Furthermore, because the rivers in this catchment largely flow from south to north, the
stronger rainfall in the southern part of the catchment shown in Figure 3a tends to have
filled tributaries and smaller rivers. This creates the potential for longer-onset river flooding
when that water reaches the highest-flowing parts of the major rivers. The observed double
peak in flood waters and overall long duration of the 2021 flood event is demonstrative of
this mechanism.

Figure 3b was created using the midpoint recorded from the flood event data alone
during the fuzzification process, which was 281.31 mm. It is clear that using an event-
specific midpoint alone is not reflective of historical rainfall conditions, in that it creates
a skew towards smaller values that ultimately makes it difficult for decision-makers to
understand this event with respect to others. In comparison, Figure 3c used the historical
3-day 90th percentile midpoint of 27.5 mm, as per Section 2.5. This meant that every
fuzzified value in the catchment was contained in the largest standardised class (extreme)
and above the value of 0.94. It was found that on average, any 3-day March period would
expect to see around 9.4 mm, a 90th percentile period 27.5 mm, and a 99th percentile value
of 143.6 mm. Therefore, this means the whole catchment was above the 99th percentile
for M3DP (as the minimum was 173.7 mm), and the areas that received up to a maximum
value of 417.6 mm were much rarer. From a records perspective, New South Wales had its
second-wettest day, third-wettest week and second-wettest March since records began in
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1900 [42]. This ultimately highlights that the historical standardising is clearly congruent
with the contextual setting and is able to capture the event’s extremity. Thus, the rainfall
experienced during this flood event should be considered extreme, if not unprecedented.

4.2. Distance to River—Elevation Weighted

Given that flowing waterways are the starting point for any fluvial flood (by definition),
the characteristics of a waterway are highly important to understanding its flood hazard.
Elevation has long been considered a key characteristic and modulator of stream flow rates,
with research dating decades back noting this importance [50]. Therefore, this was the
environmental element used in combination with the distance-to-river layer. Large parts
of the study area are classified as the lowest category of DREW risk (<0.2). This was to
be expected, especially in the more elevated regions to the west of the study area. This is
because well-elevated areas that are not particularly close to rivers should not expect to be
impacted by fluvial flooding, as the floodwaters would likely be limited by topography,
if nothing else. If these areas were to experience any form of flooding, it would be due
to flash flooding after an extremely intense rainfall in a short period of time—something
that is instead captured by the M3DP within this FRA. The complexity of flash flooding is
a common challenge for FRAs, with complicated machine-learning algorithms typically
required to model this phenomenon on small scales [51,52]. Conversely, this research uses
the M3DP indicator to quantify both flash- and river-flooding risk by proxy.

Figure 4 illustrates that the broadest areas of highest DREW risk are located in the
downhill and downstream areas on the eastern side of the catchment, which are areas where
water is naturally more likely to accumulate and flood. This is because water will typically
flow in greater quantities and at higher speeds in lower-elevation portions of rivers, when
other waterways and tributaries have inevitably congregated during the descent. In the
case of the HNC, this is particularly relevant due to the large system of tributary waterways
illustrated by Figure 2.

The added complexity of the use of the elevation layer also meant that locations which
are equidistant from the river but at different elevations were found to have different levels
of risk. This is why this addition was used. The weighting effects of the elevation layer
are also visualised in the differing size of the buffers around each river, whereby the lower
the elevation, the larger the buffer of higher risk values around the river. In terms of flood
hazard risk, this is theoretically accurate because the low-elevation sections of the largest
rivers will tend to flow the strongest and will thus be the highest risk in terms of river
flooding. These river areas will also tend to be the widest parts of the river due to this high
flow rate, an additional reason for having larger buffers. This trend may not always be
visible due to the broad categories used to classify this map, as any value between 0.8 and 1
will be the same colour, for example. In this sense, some of the complexity in this map may
not be displayed due to the use of standard choropleth (colour gradient) mapping.

Figure 4 also highlights that all river areas as well as the most significantly low-lying
areas were identified as having the highest DREW index values, largely manifesting in
the suburban areas in Greater Western Sydney. Upon inspection, one can observe that the
largest consolidated area of highest risk from this indicator coincides with the location of the
major rivers in these suburban areas. This observation correlates with the broader emphasis
placed on the flood-risk management of the Hawkesbury and Nepean rivers by local
authorities, as these are the rivers that run through this eastern floodplain part of the HNC.
However, the area also contains South Creek, a significant tributary of the Hawkesbury and
Nepean rivers, which strongly contributes to these large values in addition to the lower
elevation. This congregation of rivers combined with the overall low elevation of the wider
floodplain has created a region with observably high DREW index values.

Additionally, one can note the differences in the size of the buffers of values between
the pre- and post-standardising DREW (Figure 4a,b respectively), whereby the river lines
in Figure 4a appear to have higher values reaching further in the perpendicular direction
from the lines of the rivers than in Figure 4b. The reason for this difference is due to the
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settings used in the fuzzification process. Table A1 (Appendix C) shows that a lowered
midpoint value was used in the fuzzy membership calculation to create Figure 4b. This was
done with the intention of reducing the size of these buffers, as the default spread value
produced buffers of index values that reached too far from the rivers, further than would
ever be actually at risk in even an extremely severe flood event in any study area. However,
it is worth noting that this was in part a subjective estimate. Therefore, this reduced
midpoint lowered the amount of distance that was converted to higher risk values. This
had the additional effect of reducing the buffers of the smaller waterways introduced by
the elevation layer to only very small regions of higher risk, which is understandable given
their generally lower flow rates. Therefore, not only did the elevation aspect of this indicator
modulate river risk values (as aforementioned), but the fuzzy midpoint value was also
manipulated in order to represent river risk as accurately as possible, another modulating
factor to this indicator. This added robustness meant the final DREW layer was more
comprehensive for a river-flooding context than typical river-distance indicators observed
in relevant literature. Overall, the DREW indicator was innovative and is considered to be
a valuable input into the FHI.

4.3. Soil Moisture

Whilst SM data is measured as a percentage, percentages ranging all the way from
0–100% are not expected. This is because SM percentage refers to the volumetric amount of
a unit of soil that is pure water. For example, the catchment-wide event average SM value
of 50.5% indicates that on average, when considering the soil profile of the catchment’s root
zone (0–100 cm), 50.5% of the soil volume was pure water. Whilst 50.5% does not seem very
large in a broader sense (as half is not typically considered an above-average value), in the
context of SM percentages this is actually very high and considered to be close to saturation
for many soils depending on their soil type. In this sense, it would be impossible to record
an SM% of 100, as there would only be water. This context is important for understanding
SM data correctly.

A historical analysis of the whole AWRA-L (Australian Water Resources Assess-
ment Landscape) model period (1900–2020) indicates the minimum and maximum values
recorded in the catchment area to be 14.4% and 73.7%, respectively, with a long-term me-
dian of 36.7% and standard deviation of 10.8%. This average was created using the March
average values for each of these years. However, the maximum value in the catchment
for the 17 February 2021 to 16 March 2021 monthly period was 79.2%, which was greater
than the historical maximum. This illustrates the extremity of the high-SM areas observed
during this event. Having such a high maximum value has slightly skewed the colour
scheme of Figure 5a. For example, yellow areas tend to have connotations to below-average
values in the broader scheme of a multi-coloured plot. However, in this case, general yellow
areas are referring to values of 35–45%, which is at or above the historical March average
for the catchment area. This overall perspective means that comparing the 50.5% event
average to the 36.7% March catchment median is now a more meaningful comparison than
the differences between regular percentages. The visual manifestation of this difference in
SM averages can be seen in the difference in index values between Figure 5b,c.

Figure 5c illustrates the result of the same fuzzification process, however in this
instance using historical context in the standardisation process. This meant in this instance
the average SM value for the month of March was calculated and used as the midpoint for
fuzzy standardisation (36.7%). This midpoint was lower than that used to create Figure 5b,
which has thus resulted in elevated index values for the entirety of the catchment area.
Therefore, Figure 5c shows that when considering a historical average, a majority of the
study area had SM values classed as extreme. Since soils already containing more moisture
are not able to absorb as much water as drier soils: this increased SM value compared to
the historical average indicates that this majority of the catchment area had antecedent SM
conditions that heightened the risk of flooding.
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One of the more striking elements of Figure 5 is the stark contrast between SM values
recorded between the central and south-east catchment and the rest of the wider majority
of the study area. Figure 5a in particular highlights this contrast between the smaller
patches of blue high SM values and the surrounding yellow and similarly coloured areas.
Analysis of these areas revealed that these they align with regions of conservation areas in
the catchment, in particular the Wollemi and Blue Mountains National Parks in the central
catchment area, and the Upper Nepean State Conservation Area in the south-east (Figure 2).
Given these conservation areas are typically pristine areas with largely undisturbed soils
and low/no population, it is understandable that they would have the greatest SM values.
This is because in comparison to other urbanised areas, these highly vegetated conservation
areas have the highest soil porosity, which allows for a greater infiltration of moisture to
the soil [53].

Additionally, there is a visually apparent link between the SM of the catchment and
the soil infiltration of the respective soil. Figure A3 (Appendix D) presents a map of the
soil infiltration levels of the catchment area. These data describes the rate at which water
is able to infiltrate the soil, obtained via the NSW Government’s Sharing and Enabling
Environmental Data (SEED) initiative. Visual inspection of this layer and Figure 5a,b
reveals a link between these areas with high SM values and their soil infiltration rating:
large parts of these areas are classified as the highest level of soil infiltration. Similarly,
visual inspection of the lowest SM value areas tends to align well with the areas of very
slow infiltration. Given how important the rate at which water infiltrates into a given
type of soil is to the SM values of that soil, this link is understandable from a physical
processes perspective. Analysis revealed a positive correlation of 0.27, indicating that
these two elements are indeed linked to a limited extent. Furthermore, the built-up areas
of the central eastern floodplain largely show low SM values, and this may be partially
influenced by the urbanisation that has taken place in this area. This urban development
on the floodplain has undoubtedly impacted the soil’s ability to absorb water through the
introduction of large areas of impermeable surfaces and compacted soils [54].

4.4. Flood Hazard Index

The creation of the FHI used the fuzzified data with historical context (in the cases of
M3DP and SM). Using these inputs means that the overall flood hazard risk of this specific
case study event with respect to regular (March) conditions is represented by this data.
Furthermore, the use of these fuzzy processes to standardise data and create the final index
meant that these index data are sensitive to changes in each contributing indicator. The
list of fuzzy inputs to create each indicator can be found in Table A1 (Appendix C), which
describes the midpoint and spread values chosen for each indicator to produce the output
deemed most accurate. Equally weighting of the three indicators via fuzzy gamma overlay
was chosen as it was the most objective method of creating this indicator without further
analysis of the inputs. Future research could undertake this analysis further to determine if
other weighting techniques should be applied.

Overall, the primary reason for the widespread range of high-risk values observed
across the catchment area relates to the extreme nature of this event. As aforementioned, all
M3DP historically standardised data were above 0.94 throughout the study area, indicating
that the rainfall in all parts of the catchment was above the 99th percentile for 3-day
accumulated March rainfall in the catchment. Subsequently, this results in the input from
the M3DP data into the FHI ultimately being not extremely impactful on the variability of
the final index, as the maximum and minimum values of this indicator are only 6% apart.
Similarly, imposing a reduced historical midpoint to the SM dataset meant that a majority
of these data was also classed as extreme. These two inputs combined with the DREW
layer resulted in much of the variability in the FHI coming from the DREW layer, as this is
the only indicator that has a distribution of values with similar amounts of very low and
extreme values. This should explain a lot of the trends in this final FHI map It is largely
imprinted with the river paths and the visual effects of the elevation input, whilst featuring
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secondary influences from the M3DP and SM indicators. Considering that this research
is focused on river flooding (as well as flash flooding), it is understandable and expected
that the DREW layer features so heavily on the FHI. Section 4.5 discusses these respective
influences from a statistical standpoint.

In some respects, the broader identification of the floodplain area as having the highest
flood hazard risk should be considered a success of this index. This corroborates the
aforementioned view of the NSW Government that the Hawkesbury-Nepean Valley has
the highest flood risk in NSW, if not Australia [40]. Specifically, this research found that
the Campbelltown City Council and Camden Council LGAs had the highest FHI values.
Following this were the Liverpool, Penrith, and Blacktown Council LGAs. Crucially, all
five of these LGAs were located within this notably high-risk floodplain area. Thus, this
research has specifically highlighted these five LGAs as points of concern from a flood
hazard perspective, which has the potential to be important for a relevant decision-maker
or stakeholder.

Furthermore, widespread parts of this area are indeed those that experienced the
most devastating flooding during the 2021 event. This urbanised area to the central-east
of the catchment area contains the majority of the human population, but is also where
the majority of the flood risk-management resources are allocated. These Hawkesbury
and Nepean rivers are the dominant hazardous rivers when it comes to flooding in this
catchment and this index has identified them as such. This is not to say that damaging
flooding does not occur elsewhere in the catchment, but that the Hawkesbury-Nepean
Valley is the key area of interest for authorities and is routinely impacted by flood events
with the power to devastate population-dense local communities.

Additionally, since this valley area had comparatively lower SM values, the findings of
this research reveal a potentially useful piece of evidence for local decision-makers. That is,
any flood-inducing rainfall event originating from onshore flows inwards from the Tasman
Sea (as was the case in this event) should be alarming for local authorities, even if antecedent
SM conditions are near normal. As aforementioned, the inland-travelling rain bands will
cause more rain to fall over the eastern valley part of the catchment and closer towards
the coast in the Sydney direction. Therefore, since this valley area recorded some of the
highest risk values of this index despite comparatively lower SM values, this research has
produced evidence highlighting the risk of this synoptic environment, particularly during
phases of La Niña, which typically produce more rainfall in this region. Since these synoptic
situations are forecastable, this evidence could be incorporated by relevant authorities into
early-warning systems in addition to broader flood risk-management strategies.

4.5. Correlation Analysis

Analysis revealed that correlation of all three indicators with the final flood risk index
was statistically significant (p-value of <0.0001). An M3DP correlation value of 0.58 with
the FHI is a moderate value inferring a moderate level of influence over the final index.
As one might expect from an input that is all extreme values above 0.94, this will align
well in extreme places and not in others. Given that 22.7% of the catchment area has the
final hazard risk classification of extreme, all of these regions will be well correlated with
the extreme M3DP input. On a macro scale, both the M3DP and hazard layer exhibit the
broader trends of higher risk and more Extreme values located to the eastern side of the
catchment area, and the lower (more moderate) values lying to the western side of the
catchment, besides the smaller region in the south-west. The DREW input also exhibits a
similar trend to a certain extent, but this is the trend hypothesized to be correlating to the
M3DP layer to its moderate degree in addition to linking well to all extreme areas.

An unsurprising element of this correlation analysis was the strong correlation be-
tween DREW and the FHI. A value of 0.76 highlights that this indicator had a relatively
strong influence on the hazard risk output. As aforementioned, a potential reason why this
indicator has such a strong influence is because it is the only input with a wide distribution
of values, meaning it is able to spatially modulate the ensuing data better than the other
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inputs. It is also the only static layer across all events, whereas the M3DP and SM indicators
will vary from event to event. Overall, a major reason why this broader result is expected
is due to the typically highly influential nature of this indicator as demonstrated in the
literature. Studies such as [44,55] found their distance-to-river indicator to be both within
their three strongest contributing inputs (of studies with >10 indicators), alluding to the
wider view that distance-to-river layers are typically influential in MCDM studies. These
layers will always have strong spatial variability and a complete distribution (as they range
from 0 to as far away as possible in the study area) where other inputs may not, which is
potentially why this result is a common one.

An additional aspect of interest to this correlation was the logarithmic-appearing
distribution illustrated in Appendix E. This indicates that as DREW begins to increase,
the hazard index rises quickly initially but then tapers off and has diminishing returns as
DREW values reach their maximum. One potential reason for this occurring could have
been that a reduced fuzzy membership midpoint was used, meaning that the point at
which values are standardised towards zero was lower than average. This midpoint of
0.15 approximately aligns with the point at which the correlation values begin to quickly
drop towards zero, which could have potentially created this logarithmic-like effect.

An SM correlation value of 0.16 indicates a weak positive correlation with the hazard
risk index. Potential explanation for a wider lack of relationship is due to contrast observed
between key areas of SM and the corresponding broader trends illustrated by M3DP and
final index. Figure 5a in particular visualises this contrast clearly. Crucially, SM does not
correspond well with the broader areas of higher risk, namely these aforementioned areas
in the HN Valley. These regions for the most part display relatively lowered SM values,
and it is potentially because of this general contrast against the broader trends that this SM
input is correlated weakly with the FHI. Beyond the aforementioned elevated values of
some conservation areas, the indicator displays complex variability against broader trends
potentially due to the dynamic and variable secondary factors related to the soil (beyond
precipitation alone) that influence SM. Therefore, this could further contribute to a weaker
correlation with the FHI.

It is important to note these correlation values (particularly SM and M3DP) would
be subject to potentially significant changes depending on the event. For example, in the
case of this event, lower SM values occurred in the highest overall risk area, likely due
to a variety of different factors that have the potential to modulate SM content, such as
temperature, evapotranspiration, preceding rainfall, and soil porosity in that region. In
a separate event, if SM conditions were different, and perhaps even higher for regions
with high DREW values, correlation values may have been significantly different. Future
research could explore a sensitivity analysis in order to make concrete statements regarding
the influence and quality of every input in this research, as well as to how they would
change under different circumstances; however, this is beyond the scope of this study.

4.6. Comparison with the Literature

An earlier study [44] presents an FRA with 11 indicators spanning flood hazard,
exposure, and vulnerability elements. This evaluation of index importance found that
waterway and river distance (WRD) and river distance were the two most important inputs
to the flood risk index. Given that it was noted earlier in Section 2.3 that these inputs are
considered overlapping, this means that their river distance indicator is effectively the
most important. This parallels the finding of this study that the DREW input correlated the
strongest with the flood hazard index, a somewhat similar metric to importance. After these
two inputs, [44] found the next most important to be their maximum 1-day precipitation
input, which also mirrors the correlation finding in this study, as M3DP was the second
best correlated. This similarity also had a visual manifestation whereby both studies were
largely visually influenced by the location of the waterways. This is common in FRAs that
use a DTR indicator, e.g., [32,56].
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Ref. [32] is another similar FRA in methodology that used a DTR indicator that
imprinted on the final output heavily. Their hazard analysis revealed that 37% of their study
area was classed as the highest risk level, which is not dissimilar to the 22.7% of extreme
classification in this particular study. However, due to the differences in study area size, this
translates to 843 km2 of very high flood hazard risk in [32] compared to 4941 km2 of extreme
flood hazard risk in this research. From this, one can note the utility of assessing such a
large study area, as this research was able to identify a much greater area at higher risk
during the study event compared to [32]. This novelty is particularly important is a country
as large as Australia, whereby the ability to assess larger study areas will make identifying
hazard and broader flood risk across the country a less resource-intensive process.

4.7. Limitations and Future Research

This form of FRA often incorporates an indicator that directly represents typical
flooding in the study area (e.g., [32,34,57]). Having a flood-related indicator adds to the ro-
bustness of a flood hazard assessment. However, some studies choose to use other relevant
factors to achieve this standard with a more proxy-related approach (e.g., [42,56,58]). Addi-
tionally, given that the HNC is subject to such regular flood events, this study considered
to include a flood-related indicator (flood height). Because the HNC is such a large area
(Section 2.1), there are no pre-existing flood datasets that cover the entire catchment area.
This meant there was ultimately no applicable flood data able to cover this area. However,
this absence also meant that a larger area was able to be assessed, which is both a strength
and an aspect of novelty of this study, as areas of this size are typically not assessed in
Australian FRAs. Furthermore, flood modelling data for this study area may be utilised in
future research as a smaller scale case study using this same method, as well as for potential
validation of this index. Thus, using the three indicators of distance to river—elevation
weighted, maximum 3-day precipitation, and soil moisture suggests satisfactory robustness
for a proof-of-concept proxy hazard study of this large spatial scale.

There is also a limitation regarding the distance to river—elevation weighted layer.
Overall, the rivers map layer used to create the DREW indicator in this study covers all
23 major waterways covering the entire study area. Using this layer to create the DREW
indicator assumes that each waterway will be equally hazardous in the event of a flood
in this region. Whilst indeed being modulated by the elevation layer, this is problematic
because not all 23 of these waterways at the same elevation will flood to the same extent
or in the same manner during a flood event; nor will they be equally hazardous. As
aforementioned, the Hawkesbury and Nepean rivers are the primary rivers downstream
of the major Warragamba Dam in the HNC. This means they are subject to additional
floodwaters in a flood event that spill from the dam upstream and are consequently two of
the most flood-prone and hazardous rivers in the catchment. Therefore, the equal weighting
of all equally elevated rivers in the DREW indicator is a limitation of this study. A potential
solution to this issue that future research could explore would be to create a flow multiplier
for each river in the catchment to modulate the level of hazard of each river.

Finally, future research will combine this FHI with flood-exposure and vulnerability
indices, creating a total flood-risk index. This combination process is crucial, because the
utility of this FHI could be strengthened by combining it with two other risk components
(exposure and vulnerability) and creating a holistic assessment of flood risk.

5. Conclusions

This research aimed to create a flood hazard index (FHI) using a case study for the
Hawkesbury-Nepean catchment in New South Wales, Australia. This FHI was created as a
proxy assessment using three indicators: maximum 3-day precipitation (M3DP), distance
to river—elevation weighted (DREW), and soil moisture (SM), each incorporating their
own respective element of novelty.

Overall, the developed FHI identified higher flood hazard risk areas located within
the HN Valley area in the eastern region of the catchment area. This study is validated in
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part by the high focus that is already placed on this area by stakeholders and authorities
due to the easily flooded choke points and ‘bathtub’ effect that this specific region is widely
known for. Thus, the identification of this area as the highest flood hazard risk is a positive
and validating result.

Specifically, this high flood hazard risk occurred as a result of the high river density in
combination with the extreme rainfall totals recorded, as the M3DP indicator illustrated a
general trend of increasing precipitation towards the eastern boundary and decreasing to
the west of the catchment. This trend was reflected in the final FHI. The DREW layer was
highly influential on and strongly correlated with the FHI, as expected. As this flood-risk
assessment was focused on river flooding (as well as pluvial flooding), the river paths
were broadly identified as the highest flood hazard risk in a proxy assessment where flood
modelling data were unavailable at such large spatial scale. The SM was highly variable
across the catchment and had a weak correlation with the FHI. The HN Valley floodplain
area recorded relatively lower SM values that contrasted with the broader trend of higher
risk values here, leading to a lower correlation overall.

In summary, this research offers a viable proof-of-concept for proxy flood risk as-
sessments (FRAs) over a large-scale area using multi-criteria decision-making (MCDM)
techniques. The developed index-based methodology is replicable, scalable, and not
resource-intensive, making it a viable alternative to the modelling-based FRAs that are pre-
dominantly applied on small spatial scales. Ultimately, floods are worsening in magnitude,
frequency, and socioeconomic impact due to the impacts of anthropogenic climate change,
rapid urban development on floodplains, and intensifying climate drivers. Thus, this study
has the potential to assist relevant decision-makers with developing a proactive approach
to flood risk management, contributing to increased resilience of at-risk communities.

Author Contributions: Conceptualization, M.K. and Y.K.; methodology, M.K.; software, M.K.; formal
analysis, M.K.; investigation, M.K.; resources, Y.K.; data curation, M.K.; writing—original draft
preparation, M.K.; writing—review and editing, M.K. and Y.K.; visualization, M.K.; supervision,
Y.K.; project administration, Y.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable. This study did not involve research on
humans or animals.

Informed Consent Statement: Not applicable. This study did not involve research on humans
or animals.

Data Availability Statement: Not applicable. This study did not report any data supporting
reported results.

Acknowledgments: The authors express sincere gratitude to colleagues from the Climate Risk and
Early Warning Systems (CREWS) team at the Australian Bureau of Meteorology and Monash Univer-
sity for their helpful advice and guidance. Satellite precipitation estimates were provided by the World
Meteorological Organization’s Space-Based Weather and Climate Extremes Monitoring (SWCEM).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 6251 23 of 27

Appendix A

Figure A1. Map of the Hawkesbury-Nepean catchment study area, showing Local Government Area
boundaries within the Hawkesbury-Nepean catchment (as of 2022).

Appendix B

Figure A2. Three-day periods with greatest precipitation accumulation map. This is the direct output
of the M3DP indicator, illustrating which grid points used which 3-day period as their maximum.
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Appendix C

Table A1. Fuzzy Membership midpoints and spread values.

Fuzzy Midpoint and Spread Values Midpoint Spread Fuzzy Membership Class

Maximum 3-Day Precipitation
(Event Standardising) 281.31 (mm) 5 Fuzzy Large

Maximum 3-Day Precipitation
(Historical Standardising) 27.5 (mm) 1.5 Fuzzy Large

Distance to River—Elevation Weighted 0.15 (normalised value) 2 Fuzzy Small

Soil Moisture (Event Standardising) 0.501 (50.1%) 5 Fuzzy Large

Soil Moisture (Historical Standardising) 0.3665 (36.65%) 5 Fuzzy Large

Appendix D

Figure A3. Soil infiltration groups map of the Hawkesbury-Nepean catchment.
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