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Abstract: Radar signal anomaly detection is an effective method to detect potential threat targets.
Given the low Accuracy of the traditional AE model and the complex network of GAN, an anomaly
detection method based on ResNet-AE is proposed. In this method, CNN is used to extract features
and learn the potential distribution law of data. LSTM is used to discover the time dependence
of data. ResNet is used to alleviate the problem of gradient loss and improve the efficiency of the
deep network. Firstly, the signal subsequence is extracted according to the pulse’s rising edge and
falling edge. Then, the normal radar signal data are used for model training, and the mean square
error distance is used to calculate the error between the reconstructed data and the original data.
Finally, the adaptive threshold is used to determine the anomaly. Experimental results show that
the recognition Accuracy of this method can reach more than 85%. Compared with AE, CNN-AE,
LSTM-AE, LSTM-GAN, LSTM-based VAE-GAN, and other models, Accuracy is increased by more
than 4%, and it is improved in Precision, Recall, F1-score, and AUC. Moreover, the model has a simple
structure, strong stability, and certain universality. It has good performance under different SNRs.

Keywords: deep learning; anomaly detection; autoencoder; residual networks; LSTM

1. Introduction

With the rapid development of information technology, the importance of the in-
formation battlefield has become increasingly prominent. The traditional land, sea, and
air three-dimensional space situation has been unable to meet the needs of the modern
battlefield environment, and the battlefield space has been expanded to electromagnetic
space. As a symbol element of the information battlefield, the electromagnetic situation
has attracted much attention since it was put forward. Under the condition of modern
information technology, various information warfare platforms and electronic equipment
have been put into the information war, enabling electronic equipment to obtain a large
number of time sequence signal data in a short time. Through the abnormal detection
of these time sequence signals, the time nodes with anomalies can be found as soon as
possible, which is of great significance for analyzing the enemy situation, eliminating
hidden dangers, and assisting decision making.

Anomaly detection is screening situations contrary to the distribution law of normal
data from the data to be detected [1–4]. The traditional anomaly detection model [5–7]
uses complex algorithms and equipment. It has poor real-time performance and cannot be
popularized. Scholars at home and abroad have proposed many unsupervised learning
methods to solve the problems. Standard methods include the AE-based method and the
GAN-based method [8,9]. The former extracts the potential features of time-series signals
by establishing neural networks, reconstructs the signals by features, and distinguishes
whether the reconstructed signals are abnormal by evaluating the differences between the
reconstructed signals and the original signals. The latter reconstructs the timing signal
through the generator, and the discriminator judges whether it is an anomaly. The two
continue to iterate and optimize to achieve the desired effect. In 2015, An et al. proposed an
anomaly detection method using VAE to reconstruct probability [10], which is better than
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the methods based on an autoencoder and a principal component. Using the generation
characteristics of the VAE, the data can be reconstructed, and the root cause of the anomaly
can be analyzed. In 2016, O’Shea et al. proposed a periodic anomaly detector [11] that
models and predicts IQ channel data. It uses an LSTM network model to predict IQ channel
sampling data of the following four times by learning the past signal sampling values of
32 IQ channels. Then, it judges whether there is an anomaly based on the error value.
However, this method depends on the periodic change law of electromagnetic signals, and
the periodicity of electromagnetic signals often changes with time. Therefore, this method
can only predict short-term anomalies, which has great limitations. In 2018, Xu et al. con-
structed the donut algorithm [12] based on the VAE, which trains the normal and abnormal
data simultaneously, making the feature extraction more complete and providing a new
idea for the VAE-based anomaly detection algorithm. In 2019, Chen et al. used the con-
frontational training method, Buzz [13], to detect anomalies in complex time series. This
method not only reached a very high level in the public dataset but also gave a theoretical
inference to transform the model into a Bayesian network, which enhanced the interpretabil-
ity of the model. In 2020, Niu et al. proposed a VAE-GAN detection model [14]. The model
jointly trains the encoder, generator, and discriminator, which can improve the fidelity of
signal reconstruction, make the distinction between normal and anomalies more significant,
and improve anomaly detection Accuracy. Lin et al. proposed a mixed anomaly detection
method [15], which combines the representation learning ability of the VAE with the time
modeling ability of the LSTM. The VAE structure aims to capture the structural rules of
the time subsequence on the local window, while the LSTM structure models the changing
trend of the long-term time series. Audibert et al. proposed a fast and stable unsupervised
anomaly detection method, USAD, for multivariate time series [16]. This method uses the
automatic encoder architecture to meet the conditions of unsupervised learning. The use of
adversarial training enables rapid training and the isolation of anomalies. Experiments on
five public and proprietary datasets verify its high robustness, training speed, and anomaly
detection performance. Huang et al. proposed an unsupervised time-series anomaly de-
tection method based on multimodal countermeasure learning [17], which converts the
original time series into frequency-domain space, constructs a multimodal time series
representation, uses a multimodal generation countermeasure network model, and realizes
unsupervised joint learning of normal time-series information about time-domain and
frequency-domain feature distribution for multimodal time series, The anomaly detection
problem is transformed into the measurement problem of time-series reconstruction in
time-frequency space. The anomaly of time series is measured from the time domain and
frequency domain. Compared with the traditional single-mode method, this method has
improved the AUC and AP by 12.50% and 21.59%, respectively, which provides a new
direction for electromagnetic signal anomaly detection based on deep learning.

However, GAN networks tend to have complex structures and a high overhead of
training and detection, while traditional AE networks have low Accuracy in anomaly
detection of electromagnetic signals. Therefore, this paper proposes a ResNet-AE network
model based on the AE network. This model uses the encoder and decoder with ResNet
for feature mapping and data reconstruction. It can effectively alleviate the problem of
gradient disappearance, improve the depth of the network that can be effectively trained,
and improve the ability of network feature extraction and reconstruction. LSTM is used to
acquire time-dependent features. Cluster analysis is used to process the anomaly detection
results to obtain an adaptive decision threshold.

To summarize, the main contributions of our work are:

• An anomaly detection method based on ResNet-AE is proposed to detect radar signal
time-series data.

• Our method is jointly ResNet and autoencoder, which takes good feature extraction
and reconstruction capabilities.

• Anomaly score is an adaptive threshold obtained by clustering the reconstructed
difference, which makes it more able to distinguish anomalies from normal data.



Sensors 2022, 22, 6249 3 of 20

2. ResNet-AE Anomaly Detection Model
2.1. Dataset

The dataset selected for the experiment is the actual FMCW radar signal. The carrier
frequency is about 100 MHz, and the sampling rate is 400 msps. The visual image of the
signal is shown in Figure 1. Five groups of data are selected. Each group is the emitter
signals of different radars, composed of 1000 pulse signals of time sequence. Each pulse
signal is extracted into time sequence subsequence samples and divided into the training,
verification, and test sets by setting the threshold of pulse rising and falling edge. Through
down conversion and resampling, each subsequence sample contains 100 sampling points.
The abnormal pulse signal is randomly added to the test set so that the abnormal ratio of
the test set is 15%.
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Figure 1. Radar signal dataset.

Before the experiment, it is necessary to carry out data preprocessing, normalize all
values in the dataset to the [0, 1] interval with the maximum and minimum normaliza-
tion, and arrange the intercepted signal subsequences in time order so that the temporal
correlation can be preserved after being input into the network.

2.2. Model Construction and Training

In this paper, the ResNet-AE model is proposed for anomaly detection. The model
takes the autoencoder as the main network framework, and the encoder and decoder are
stacked by residual structure. Each residual module comprises CNN, pooling layer, LSTM,
and ReLU activation function. The network structure is shown in Figure 2.
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2.2.1. Network Structure

The method has two stages: the model training stage and the model testing stage, as
shown in Figure 2a. In the training stage, the training data were input into ResNet-AE, and
the encoder was used to extract features to obtain the potential distribution rules of the
data. Then, the original data were reconstructed by the decoder, and the network model
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was optimized by continuously reducing the error between the reconstructed data and the
original data. After the training, the parameters in the network will not change, and then
the testing data will be input into the network. The reconstructed data will be obtained
through network calculation. The anomaly decision will be made based on the adaptive
threshold and the error between the reconstructed and original data. In ResNet-AE, CNN
can efficiently extract the characteristics of data and learn the potential distribution law of
time-series signals, LSTM can learn the time dependence of data, and residual structure
can effectively solve the vanishing gradient problem, which makes the deep network better
learning and reconstruction ability.

2.2.2. ResNet-AE

Based on the traditional AE network, the ResNet-AE network replaces the linear
structure in the AE network with the ResNet structure. The encoder and decoder are
stacked by ResNet modules. The ResNet-AE network consists of four encoders and three
decoders. Each encoder contains two modules: one-dimensional convolution layer, LSTM
layer, ReLU activation function, lower sampling layer, etc. The module structure of the
encoder is shown in Figure 2b. The shape of each subsequence of the input network is
100 × 1, and four encoders extract the feature. The feature space extracted by each encoder
is 64 × 1, 32 × 1, 16 × 1, and 8 × 1, respectively. The structure of the decoder is contrary
to that of the encoder, as shown in Figure 2c, which is composed of an upper sampling
layer, an LSTM layer, and two one-dimensional convolution layers and uses ReLU as the
activation function. The 8 × 1 feature space is reconstructed into 16 × 1, 32 × 1, and
64 × 1 shapes by the decoder, and the reconstructed signal of 100 × 1 is finally output
by the output layer. In the decoding process, each decoder will jointly learn the output
characteristics of the corresponding encoder while receiving the upper layer input. The
network can better reconstruct the original signal, accelerate the convergence speed, and
alleviate the gradient loss problem [18].

2.3. Training Process

In the training process, the training samples X = {x1, x2, . . . , xn} only contain normal
signals, which are input into the ResNet-AE neural network model. The residual structure
extracts the sample features through the convolution and LSTM layers. The main features
of the training samples are mapped by rules ϕ to the feature space Y = {y1, y2, . . . , yn}. As
shown in Formula (1), W(1) and b(1) represent the weight and offset from the input layer to
the coding layer [19].

y(i) = ϕ
(

W(1)x(i) + b(1)
)

(1)

At the same time, we can learn that the residual error of the sample is,

F(x) = Y(x)− x (2)

The original learning feature is F(x) + x. When the residual is 0, the residual structure
only performs identity mapping, and the network performance will not decline. However,
in the actual process, the residual will not be 0, making the residual structure learn new
features based on the input features, so it performs better. The residual element is shown
in Formulas (3) and (4), where nl and nl+1, respectively, represent the input and output of
the l residual unit, and each residual unit contains a multilayer structure. F is the residual
function, representing the learned residual; and h(nl) = nl represents the identity mapping;
and f is the ReLU activation function [20].

ml = h(nl) + F(nl , Wl) (3)

nl+1 = f (ml) (4)
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Based on the above formula, the learning characteristics from shallow l to deep L are

nL = nl +
L−1

∑
i=l

F(ni, Wi) (5)

The reconstructed features are realized by multiple total connection layers and decon-
volution layers through the inverse mapping rules ψ. Restore and reconstruct the feature
space data and reconstruct the space X̂ = {x̂1, x̂2, . . . , x̂n} consistent with the sample space
dimension. As shown in Formula (6), W(2) and b(2) are the weights and offsets from the
coding layer to the output layer.

x̂(i) = ϕ
(

W(2)y(i) + b(2)
)

(6)

ResNet-AE updates the model parameters according to the loss function. Learning
here aims to minimize the distance between the reconstructed output data and the incoming
and outgoing data. The loss function can be defined as

F(θ) = argθ ∑
j
‖ xj − x̂j ‖2

2 (7)

2.4. Anomaly Decision

At the end of the training phase, the weights and offsets of the network model are
determined. At this time, each layer node of the neural network can be regarded as the
expression of the input signal in different feature spaces. Since the training process uses
normal signal data, the model can only extract the features of normal signals. The mapping
of anomalies in the feature space is distorted, resulting in redundancy and loss [21]. The
characteristic component of the anomaly is distorted after the convolution network, which
cannot be mapped to the feature space, let alone reconstructed by the autoencoder. The
reconstruction effect of the network on anomaly is inferior. Therefore, whether there is
an anomaly in the input signal subsequence can be judged by the reconstruction effect of
the network model on the data to be measured, and the reconstruction effect here can be
evaluated by the distance between the reconstructed and the original data. Suppose that
the input sample data are X = {x1, x2, . . . , xn}, and the reconstruction output of the neural
network is Y = {y1, y2, . . . , yn}. The reconstruction error can be expressed as the mean
square error

error =
1
n

n

∑
i=1

(yi − xi)
2 (8)

The reconstruction error of the neural network model for abnormal and normal signals
is quite different. The error for the anomaly is generally large, and the error for the normal
signal should be close to 0 [22]. Based on this property, the threshold T can be reasonably
set as the decision threshold. The decision process is as follows

result
{

error < T, 0
error > T, 1

(9)

In the above formula, “0” indicates that the sample is normal, and “1” indicates
an anomaly.

3. Experiment

This experiment is divided into four stages: data preprocessing, model training, model
testing, and model evaluation. The hardware and software environment of the experiment
are shown in Table 1.
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Table 1. Configuration of hardware and software.

Hardware or Software Technical Parameter Hardware or Software

Operation System Windows 10 Home Chinese Operation System
CPU Intel Core i5-10300H CPU
GPU NVIDIA Geforce RTX 2060 GPU

Memory 32 G Memory
Python Python 3.8.5 Python
Pytorch Pytorch 1.6.0 Pytorch

3.1. Data Preprocessing

The main task of the data preprocessing stage is to convert the original signal data
sequence into a dataset that the neural network can receive. By setting the threshold
values of the rising and falling edges of the pulses, each pulse signal is extracted into time
sequence subsequence samples. Then, these are divided into the training set, verification
set, and test set according to 6:2:2. The training set and verification set only contain normal
signals. The test set is a mixture of normal and anomalies. Anomalies include partial loss,
mutation, or strong noise interference of signals. At the same time, two other groups of
experiments are set. In the first group, 90 dB, 60 dB, and 30 dB noise are added to all the
data, respectively, to carry out the same independent repeated experiment. The second
group of experiments is the radar signal data generated by five different radars, and the
experiments are repeated independently.

3.2. Model Training

Because there are few hyperparameters, we use grid search to select hyperparameters.
First, define the traversal interval Batchsize = {16, 32, 64, 128}, Learning rate = {0.0001, 0.001,
0.01, 0.1}, and Loss function = {MSE}, Optimizer = {Adma}, and then calculate the cost
function of all hyperparametric combinations on the validation set to obtain the optimal
hyperparametric set in the interval. Epoch is determined by observing the convergence of
the loss function. The final hyperparameters are shown in Table 2:

Table 2. Hyperparameter of ResNet-AE.

Hyperparameter

Batch size 64
Epochs 150

Learning rate 0.001
Loss function MSE

Optimizer Adam

The encoder learns the training data to obtain the feature space. Then, the decoder
reconstructs the feature into the source data. The loss function is calculated and optimized
iteratively until the model error reaches the expectation and the final weight model is saved.
The algorithm flow of model training is shown in Figure 3:

After data preprocessing operations such as subsequence division and normalization,
the training samples are input into the ResNet-AE network for feature extraction, and a
feature space of 8 × 1 is obtained. After the reconstruction of the decoder, the feature
vector is restored to the dimension of the original data to obtain the reconstructed sequence
signal. The comparison between the reconstructed signal and the input signal is shown in
Figure 4. In the figure, blue is the original signal, and red is the reconstructed signal. The
figure shows the reconstructed signal when the epoch is 0, 50, 100, and 150, respectively.
When the epoch is 0, because the model’s weight at the initial training stage is a random
value, the reconstructed signal greatly differs from the original signal. With the continuous
iteration and optimization of parameters, when the epoch is 50, the reconstruction error of
the network reaches a low level, and the original signal can be reconstructed well. Until
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the end of the training, the reconstruction error is unchanged, and the reconstruction effect
tends to be stable. It can be seen from the figure that for normal signals, the ResNet-AE
model can be well reconstructed, and the reconstructed signals are consistent with the
original signals.
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Figure 5 shows the changes in loss functions during the training of several common
models. Among them, the loss functions of the four models converge rapidly. When the
epoch reaches 150, the ResNet-AE model tends to be flat and stable, and the loss functions
of the AE and CNN-AE models still have a downward trend. Although the loss functions of
VAE converge rapidly, there are small fluctuations and fluctuations. At the same time, the
loss functions of stable models are large, indicating that the network reconstruction effect is
poor. It can be seen that the ResNet-AE model has certain advantages in the reconstruction
of normal signals.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 4. Reconstructed signal during training. 

Figure 5 shows the changes in loss functions during the training of several common 
models. Among them, the loss functions of the four models converge rapidly. When the 
epoch reaches 150, the ResNet-AE model tends to be flat and stable, and the loss functions 
of the AE and CNN-AE models still have a downward trend. Although the loss functions 
of VAE converge rapidly, there are small fluctuations and fluctuations. At the same time, 
the loss functions of stable models are large, indicating that the network reconstruction 
effect is poor. It can be seen that the ResNet-AE model has certain advantages in the re-
construction of normal signals. 

 
Figure 5. Variation of training loss of several models. Figure 5. Variation of training loss of several models.

3.3. Model Testing

In the test phase, first, read the weight model saved in the training phase, input the
test set data after data preprocessing into the model to obtain the error value, and perform
K-Means clustering on the error value [23]. All error values are divided into two categories
according to the size of the value. The small category is determined as a normal signal,
the large category is determined as an anomaly, and the adaptive threshold of abnormal
judgment is obtained. The algorithm flow of the model test is shown in Figure 6:
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The relevant data are visually analyzed to show the results of model anomaly detection.
Figure 7 shows the anomaly and its reconstructed signal. It can be seen from the figure that
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the anomaly will be distorted after the reconstruction of ResNet-AE [24], and the original
signal cannot be restored. The reconstructed signal has a large error from the original signal,
so the normal and anomalies can be effectively distinguished.
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Figure 7. Anomaly and reconstructed signal: (a) Original signal of an anomaly; (b) Reconstruction
signal of anomaly.

By calculating the mean square error between the signal subsequence in the test set
and its reconstructed signal, the abnormal score of the signal is obtained, and a K-Means
classifier with two categories is constructed. The random initial clustering center is used to
cluster the abnormal score. After iteration, the clustering center of the normal signal score
and the anomaly score is finally obtained. The mean value of the two clustering centers is
the threshold value of abnormal judgment. Figure 8 shows the anomaly detection scores
of each subsequence. The red horizontal line is the adaptive threshold, the signal above
the threshold is the anomaly, and the signal below the threshold is the normal signal. The
adaptive threshold obtained through cluster analysis can significantly distinguish normal
and anomalies.
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TP: the number of signals which are predicted as anomalies but actually normal sig-
nals, that is, the algorithm predicts correctly; 

FN: the number of signals which are predicted as normal signals but actually anom-
alies, that is, the algorithm predicts incorrectly; 

FP: the number of signals which are predicted as anomalies and actually anomalies, 
that is, the algorithm predicts incorrectly. 

Figure 8. Abnormal judgment.
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3.4. Model Evaluation

In this experiment, the ResNet-AE anomaly detection model will be evaluated by
five indicators: Accuracy, Precision, Recall, F1 score, and AUC [25].

Accuracy =
TP + TN

TN + TP + FN + FP
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2× Precision ∗ × Recall

Precision + Recall
(13)

TN: the number of signals which are predicted as normal signals and actually normal
signals, that is, the prediction of the algorithm is correct;

TP: the number of signals which are predicted as anomalies but actually normal
signals, that is, the algorithm predicts correctly;

FN: the number of signals which are predicted as normal signals but actually anoma-
lies, that is, the algorithm predicts incorrectly;

FP: the number of signals which are predicted as anomalies and actually anomalies,
that is, the algorithm predicts incorrectly.

4. Results and Analysis

We compared the ResNet-AE model with the common AE and GAN models to verify
its performance. At the same time, to verify its generalization ability, experiments were
carried out on different signal-to-noise ratios and equipment signal data. Random noise
is added to the original signal, and the signal-to-noise ratio is 90 dB, 60 dB, and 30 dB,
respectively. The influence of the signal-to-noise ratio of the radar signal on the abnormal
detection results is explored; Five groups of signals generated by different radar emitters
are selected for experiments, and the anomaly detection results of different radar signals
are recorded. It is verified that the ResNet-AE model still has good anomaly detection
ability on unfamiliar time-series signals.

4.1. Comparison of Common Models

The reconstructed signal output of common anomaly detection models is shown
in Figure 9. For normal signals, the network can reconstruct the original signal. The
reconstructed signal is similar to the original signal in shape, and the reconstruction ability
of each network is different. It can be seen from the figure that the linear AE network
has a poor reconstruction effect. Many positions and shapes between the reconstructed
and original signals cannot coincide. The network can not be reconstructed for anomalies,
which are very different from the original signal. Compare the detection performance of
the ResNet-AE model and several common models, as shown in Figure 10. Compared
with other traditional AE models [26–28], ResNet-AE has greater advantages in various
indicators. Compared with several GAN models [29,30], ResNet-AE also has a certain
improvement in detection Accuracy and F1 value, reaching a higher level. From the anomaly
detection results of each network, it can be seen that the network with CNN, LSTM, and
ResNet structures have higher Accuracy than the linear network. Therefore, the features
of time-series radar signals can be better extracted by using these structures. In addition,
considering the practical application, it is expected to find all anomalies as much as possible.
Because the cost of judging anomalies as normal is higher, we should focus on considering
Recall, reducing missed detection first, and allowing a certain amount of false alarms.
The Recalls of each network in the experiment are maintained high. It indicates a high
recognition rate for anomalies. The possibility of missed detection is low, and the Precision
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is quite different. The network will judge some normal signals as abnormal, and there are
false alarms.
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The complexity of the model is evaluated by calculating the FLOPs and Params of the
commonly used anomaly detection models. Figure 11 shows the logarithm of the FLOPs
and Params of each model. The FLOPs and Params of the GAN-based model are 2–3 orders
of magnitude higher than those of the AE-based model. It indicates that the complexity
of the GAN-based model is much higher than that of the AE-based model; The relevant
numerical difference of the model based on AE is within one order of magnitude, and the
complexity is equivalent. Therefore, the ResNet-AE model not only ensures high detection
capability but also has a more concise model structure.
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4.2. Influence of SNR

This experiment explores the influence of abnormal detection results on the noise
of radar signals. Gaussian white noise is added to the original signal, and the SNRs are
90 dB, 60 dB, and 30 dB, respectively. Repeat the above experimental process to obtain the
experimental results, and compare them with the experimental results of the original signal.
Figure 12 shows the signal reconstruction effect. As the signal-to-noise ratio decreases,
the difference between the reconstructed and original signals becomes larger. When the
signal-to-noise ratio is 90 dB and 60 dB, the original signal can still be reconstructed,
and the error change is not obvious; When the signal-to-noise ratio reaches 30 dB, the
reconstructed signal is completely distorted. Figure 13 shows various evaluation indicators
under different signal-to-noise ratios. The Accuracy, Precision, and F1 values generally
show a downward trend with the reduction of SNR but remain at a high level. When the
signal-to-noise ratio is reduced to 30 dB, the Accuracy and Precision decline significantly,
indicating that at the 30 dB signal-to-noise ratio level, noise greatly interferes with the
abnormal detection of signals. Due to the increase in noise, it is difficult to extract the
characteristics of signals, thus affecting the error of reconstructed signals. As a result,
some normal signals are difficult to reconstruct and are judged as abnormal, which has
little impact on detecting anomalies, so the change in Recall is relatively stable. The model
performs well under different signal-to-noise ratios and can adapt to data sequences with
low signal-to-noise ratios.
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4.3. Generality Analysis

In this experiment, five groups of signals generated by different radar radiation sources
are selected for experiments, and the anomaly detection results of different radar signals
are recorded. As shown in Figure 14, the training set is generated by Equipment 1, and
its reconstruction effect is significantly better than that of other equipment. The signals
generated by other equipment are unfamiliar signals, of which the reconstruction effect
of Signal 2 is ideal. The reconstruction effect of other signals is general. The difference
between the reconstructed and original signals mainly lies in the rising or falling edge.
The reconstruction effect is better in the middle of the signal. Figure 15 shows the various
evaluation indicators of different radar signals. Since Equipment 1 is the equipment for
generating training set signals, all indicators in the five groups of signals are the highest.
Although the Accuracy, Precision, and F1 values of other signals are slightly lower than
Signal 1, they are all above 0.84, reaching a high level. At the same time, the Recalls of
the five groups of signals are all above 0.94, retaining the network’s ability to distinguish
anomalies. It also maintains the characteristics of a low missed detection rate for unfamiliar
signals, and the values of various indicators are stable, which shows that the model has
good anomaly detection ability and strong universality.
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Figure 14. Reconstructed signals of different radar: (a) Signal 1 and its abnormal detection results;
(b) Signal 2 and its abnormal detection results; (c) Signal 3 and its abnormal detection results;
(d) Signal 4 and its abnormal detection results; (e) Signal 5 and its abnormal detection results.
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5. Conclusions

This paper proposes a radar signal anomaly detection model based on ResNet-AE.
Based on the traditional autoencoder, the convolution neural network is used to extract
features and learn the potential distribution law of data. We use LSTM to learn the
time dependence of data and use residual structure to alleviate the missing gradient
problem, improve the use efficiency of the depth network, and use mean square deviation
to make anomaly judgments. The adaptive threshold obtained by clustering is used as the
benchmark of anomaly decision, which can distinguish the normal signal from the anomaly
and improve the Accuracy of anomaly decision. Compared with several commonly used
AE and GAN models for anomaly detection, the model has certain advantages in Accuracy,
Precision, Recall, F1 value, AUC value, and other evaluation indicators. At the same time,
the model has good performance in different signal-to-noise ratios and different radar
equipment, and has certain universality.

However, the model still has some limitations. It can only detect whether it is an
anomaly and cannot classify the types of anomalies in a more detailed way. Therefore,
identifying the types of anomalies, that is, whether the anomalies are caused by equipment
failures, natural environmental factors, or human interference, is the future research direc-
tion [31,32]. It can provide more effective support and help analyze potential battlefield
threats. Moreover, our method is mainly applicable to the FMCW radar system. When the
center frequency, bandwidth, pulse width, and other parameters change, the feasibility
of the method will be verified one by one in the subsequent work so as to improve the
generalization ability of the network to apply to more types of radar signals.
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