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Abstract: Computer vision and image processing techniques have been extensively used in various
fields and a wide range of applications, as well as recently in surface treatment to determine the
quality of metal processing. Accordingly, digital image evaluation and processing are carried out
to perform image segmentation, identification, and classification to ensure the quality of metal
surfaces. In this work, a novel method is developed to effectively determine the quality of metal
surface processing using computer vision techniques in real time, according to the average size
of irregularities and caverns of captured metal surface images. The presented literature review
focuses on classifying images into treated and untreated areas. The high computation burden to
process a given image frame makes it unsuitable for real-time system applications. In addition, the
considered current methods do not provide a quantitative assessment of the properties of the treated
surfaces. The markup, processed, and untreated surfaces are explored based on the entropy criterion
of information showing the randomness disorder of an already treated surface. However, the absence
of an explicit indication of the magnitude of the irregularities carries a dependence on the lighting
conditions, not allowing to explicitly specify such characteristics in the system. Moreover, due to
the requirement of the mandatory use of specific area data, regarding the size of the cavities, the
work is challenging in evaluating the average frequency of these cavities. Therefore, an algorithm is
developed for finding the period of determining the quality of metal surface treatment, taking into
account the porous matrix, and the complexities of calculating the surface tensor. Experimentally,
the results of this work make it possible to effectively evaluate the quality of the treated surface,
according to the criterion of the size of the resulting irregularities, with a frame processing time of
20 ms, closely meeting the real-time requirements.

Keywords: computer vision; processing methods; image segmentation; texture analysis; quantitative
characterization; real-time analysis

1. Introduction

Images provide information on the biochemical composition, plant biology, and cy-
toskeleton of the target material sample, and surface fabrications of micro-machining
industry. Images are segmented and evaluated to estimate useful statistical indices to
extract them as recognizable features of interest through using computer vision technology.
In computer vision techniques, a digital image is evaluated and processed through image
segmentation for identification of recognizable features, or classification with respect to
the surface texture to estimate quantitatively the unevenness or irregularities accordingly.
The surface texture manipulation coupled with mathematical models for images produces
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a meaningful characterization of the target surfaces, indicating that the texture or sur-
face analysis is valuable for distinguishing common surfaces from those with infection or
treated surfaces from untreated surfaces. The texture features (TF) analysis in terms of the
density distribution in the neighboring pixels was used to characterize crop diseases such
as identification of yellow rust on wheat leaves [1,2] in terms of the comparison results
using support vector machine (SVM) based on different features. Texture analysis was
used to characterize cardiac tissues by quantification of gadolinium enhancement (LGE)
with cardiac magnetic resonance imaging (MRI) to establish an association between some
medical conditions of patients with hypertrophic cardiomyopathy (HCM) by studying
intra-myocardial patterns in cardiac muscles [3]. The emphasis was on the use of machine
learning (ML), showing such close similarities in terms of its applications in the case of
either surface or cellular structure analysis.

The deep convolutional neural network (DCNN) has been fused with a segmentation-
based fractal texture analysis to classify images obtained by converting malware binary
code into grayscale images. The DCNN is optimized by comparing features extracted from
a reference image with features of target images for the degree of similarity drawn using
the proposed malicious malware classification model [4]. The CNN model has been used
to classify skin for potential diseases using damaged versus healthy tissue features. The
resulting computer vision technique performance is evaluated on images of skin affected
by the varying level of diseases such as acne, a skin condition characterized by red pimples,
keratosis, showing horny overgrowth on the skin, eczema herpeticum, a medical condi-
tion in which patches of skin become rough and inflamed with blisters that cause itching
and bleeding, and urticarial causing red welts on the skin that cause intense itching; all
such applications use datasets obtained from the DermNet [5]. Computer vision has been
developing intelligent systems to analyze images obtained by UAV cameras in early fire
protection by exploiting the dynamic textures of fires [6]. The deep convolutional neural
networks (DCNN) approach has been equally used to parse the texture of cracks in the
infrastructure by analyzing the images in terms of statistical indices [7]. The quantitative
assessment of surface irregularities is of importance from Industry 4.0-related viewpoint
applications. The proposed method is evaluated by comparisons made with previously
reported DCNN-based models for crack detection accuracy and precision. In another
approach, the current neural pattern transfer validation distillation methods are used for
ultra-resolution of collaborative distillation for liquid mixture separation [8,9] to demon-
strate the utility of the CNN approaches in terms of simplicity and feasibility of pattern
transfer applications. The same practices may prove helpful to recognize micro-defects on
irregular metal surfaces using photographs with specified properties.

The rest of the article is organized as consisting of related work that provides a critical
review to formulate the core component of research dedicated to identical approaches to
digital image processing using computer vision techniques. The next section describes
the method used to determine the surface treatment quality of metals using computer
vision techniques. The image-processing stages are illustrated and supported by related
algorithm illustrations coupled with pseudocode. The problem is to find a set of suitable
algorithmic steps to compute the differentiating features for distinguishing the image area
distinctively. Moreover, the statistical properties of the image fragments, from the point of
view of their suitability, are considered for distinguishing the treated surface areas from
untreated metal surface. The necessity of developing a method related to the measured
characteristics of the metal surface is worthy of intense attention. The development of a
so-called algorithm to find the period of dominant oscillation contains the formulation of a
mathematical derivation to obtain the mean period of difference in brightness, representing
the average size of the cavities. The mathematical proof was constructed for the method
for obtaining the average volume of cavities. It shows the applicability of the obtained
characteristics, the average size of the cavities to characterize the image. The results appear
in the conclusion of the article.
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The main objective of this article is to propose a method for digital analysis of metal
surface images that are processed in order to a mark an already processed metal surface
for results having utility from an Industry 4.0-related applications viewpoint instead of
pure metallurgical objectives. The main aim of the article is to extract the measure of
irregularities in metal surfaces. The method was tested in terms of comparisons for each
fragment using the Perlin gradient noise pattern, as expressed in Equation (9), to estimate
the cyclic frequency in images for visual appearances.

2. Related Works

The task of characterizing images requires a critical review of relevant contemporary
literature works. Since the technical images obtained during the processing of the metal
surfaces have information-embedded structure, similar to any other bitmap images, the
utility of these images is significant in terms of applicability to the problem in focus.

The CNN architecture has been used to process both high-resolution and low-resolution
images to estimate severity of crowds exceeding scramble production threshold levels [10].
Image processing from MRI images has been used to study patients with hypertrophic car-
diomyopathy (HCM) for different distribution patterns of cardiac pathology [11]. However,
the vision-based techniques are usually used as a post-operative monitoring method, and
thus lack the information embedded in the dynamic characteristics that are required in
real-time monitoring. Thus, the surface texture analysis of high-resolution images may be
useful in establishing a near-to-real-time monitoring system. The recognized text images of
surface characteristics are detected using a CNN-based detection model that has already
been trained on a similar dataset to detect fitting curved surfaces. The curve fitting process
for the curved metal surface represents the appropriate curve in the case of the single-line
text as well as multi-line text scenarios [12]. Image processing coupled with computer
vision has been used to assess the machine surface, and thus indirectly the abnormal condi-
tions of machine tools’ chatter vibrations and tool wear [13]. Texture analysis is based on
the features of the evenness and roughness of the metallic surfaces in the area of surfaces in
the field of detection and localization. Extensive quantitative experiments on real-world
data show that the CNN-based classifier is superior to the latest approaches using feature
extraction methods. The authors in [14] demonstrate a promising new application of deep
neural networks to automate electrical discharge machining processes by sinking the mold
into the image samples that show EDM steel surfaces with varying roughness. The surface
roughness can be used to monitor the conditions of machine tools. The manufacturing tools
are linked to sensors that collect signals about temperature, surface roughness, acoustic
emissions, and vibrations through the Internet of Things (IoT) and cloud computing in
the emerging Industry 4.0. The newly developed concepts of deep learning methods have
achieved revolutionary success in light of the appropriate volume of data, compared to
the classic artificial intelligence methods, toward realizing emerging developments that
support the IoT [15]. The network-based VGG model for surface defects classification
and detection of steel surface cavities or cracks has been addressed through traditional
image processing techniques. Through experiments, compared to the original network,
the improved algorithmic work is more effective in extracting features by showing higher-
accuracy detection phenomena [16]. The literature review clarifies that original concept
contribution has been so connected for maintaining the overall flow, keeping in mind
that the equivalent extraction of cavity sizes related features are delivered. Deep learning,
in conjunction with ultrasonic testing, is used for the porosity evaluation of additively
manufactured parts designed through 3D computer-aided design procedures and was
investigated for rough surfaces in [17]. The authors in [18] investigated the effectiveness
by estimating roughness of surfaces produced as a result of the three methods of shot
blasting, water jet texturing, and laser texturing. An automated visual inspection (AVI) tool
targeting surface quality appears as a standard configuration for flat steel mills to improve
product quality and enhance production efficiency, and was explored in [19,20]. The effect
of the augmentation method was studied by adding fused spatial and channel attention
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modules to the network structure in the form of twin attention mechanism and relative
mean (TARGAN) in [21,22], with an accuracy higher than the model, and to detect mild and
severe imprint defects in stamped metal parts, a critical task for the automotive industry.
The bottleneck of deep learning models is their training time, which is the main hindrance
in the case that experiments in new images needing new training cycles are repeated. This
issue is tackled by the authors in [23] where some weights are collected from training cycles
along with some experimental parameters to develop a comprehensive assessment score
correlated to the F2-score of detection models.

Thus, the task of developing a method for determining the quality of treated surfaces
from untreated metal surfaces using computer vision technologies for real-time applications
is justified. Table 1 summarizes the above-related research works related to texture or
surface analyses to determine the characterizing features of surface conditions.

Table 1. Approaches comparison.

Source Approach Used Target Data Type Restrictions

[1]

Clustering, based on the
vector of statistical features

and features, based on
information properties and
filtering (1042 features in

total), and followed by the
elimination of

uninformative features.

By the properties of the
selected segments, determine
potentially severe cases, the

course of the disease.

Images obtained from
computed tomography.

Initially, the selected signs are
not associated with the

studied phenomenon, but
they are used according to the

presence of correlation
dependences. As a result,

there is no explanation of the
mechanism of the

dependence of the result on
the selected features.

[2]

Segmentation of the image,
based on color gradation,
improved by taking into

account the statistical
properties of the texture in

the area of the image.

Identify the infected areas on
the shoots. Hyperspectral digital bitmap.

The method is based on the
use of the spectral properties
of chemical components of

plant samples.

[3]

Statistical properties of a
texture (a collection of pixels)

on a portion of a
digital image.

Highlight
myocardial disorders. Bitmap digital image.

For other applications, it is
necessary to first investigate

the dependence of the
statistical properties of the
texture and the significant
indicators in a new task.

[4]

Clustering image features
that are obtained from an

already trained neural
network (reducing the

dimension of the
feature vector).

Determine the presence of
malicious code in the

executable file.

Software byte code that is
represented as a digital

bitmap image in grayscale.

The method gives the
probability of the presence of
certain features in the image;

however, there is no
reasoning for the decision

made. Requires a lot of
training data.

[5]
Image markup using

convolutional
neural network.

Classify skin lesions.
Color, digital, raster,

photographic image of a site
of human skin.

The system can be used only
for recommendations, due to
the lack of argumentation, for
the decisions made. Requires

a lot of training data.

[6] Image markup using a
neural network.

Mark sources of ignition
in images.

Color panoramic digital raster
photographic image of the

Earth’s surface areas obtained
from low-flying vehicles.

Lack of argumentation for the
decisions made, requires a lot

of training data.

[7] Marking images using a
neural network.

The markings on the image,
the roadbed damage.

Color, digital, raster,
photographic image, roadbed.

Requires a lot of training data.
Can pass mild damage, which

is acceptable for this task.

[8]
Convolutional neural

network, as part of the
encoder–decoder.

Generation of a texture, with
specified properties, based on

a high-resolution sample.

Donor texture, a random
vector of parameters, for a

variety of results.

The system can be used to
transfer a style or generate a
family of textures with the

same properties. One neural
network is capable of

generating only one texture.
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Table 1. Cont.

Source Approach Used Target Data Type Restrictions

[9]

A neural network for the
extraction of texture features,
with a gradient descent of the

image to enhance the given
texture features.

Image style transfer. Donor digital image and
resizable image.

Textural features are abstract,
the significance of individual
components, textural features
are unknown. It is possible to
use automatic segmentation

based on the clustering of the
received features. The

belonging of the obtained
texture classes requires a

separate study in each case.

[10,11]

Crowd analysis to estimate
crowds’ density and chest
MRI images analysis for

HCM diagnosis.

Crowd videos, images, and
chest MRI.

Articles relate to producing
digital images as color

intensity variation.

Static conditions instead
of dynamic.

[12–19]

Related to detection of curved
surfaces features for tools

conditions monitoring
through data collection via

varying sensing means.

Surfaces images.
Articles relate to obtaining

images through
various means.

The density estimation for
estimating the target
parameter of surface

roughness or wear or chatter
of the tools.

Our approach

Computation of relevant
parameters reflecting the
target surface image areas
identifiably, and in linear

relation to the metal
surfaces irregularities.

Select areas of image
irregularities have a specified
range of illumination values.

A digital raster image, in
grayscale, with a

known scale.

Metal surface irregularities fit
into the crop fragment of the

image under study, as an
example of a texture unit (the

work uses
image segmentation).

Based on the results of the literature review and related work, it follows that in modern
systems of labeling images, the methods used are as summarized in Table 2.

Table 2. Comparison table of segmentation methods.

# Methodology Principle of Operation Advantages Flaws

1 Highlighting by levels.

It is determined by
highlighting zones of the

same type, by color, and/or
brightness (other criteria are

possible). Analogs of geodetic
lines are formed, which limit

areas of the image.

Very fast.
Sensitive to noise, as in the
corollary, not applicable to

images with high detail.

2 Clustering.

Clustering techniques are
used, such as K-means or any
others. Clustering algorithms
are applied not to the pixels
of an image fragment, but

their statistical (or
other) properties.

Applicable to a wide class
of images.

Requires significant
computing resources.

3 Neural networks.

Trained neural networks are
used (fully connected,
convolutional, ResNet,

transformers, or mixers).

Best markup
quality indicators.

Requires a significant number
of already segmented images

to train.

4 Cutoff (threshold values).

For each fragment of the
image, a computed parameter

is determined. If this
parameter is outside the

specified range, the area of
the image is discarded.

Performance depends on the
complexity of computation,

the cutoff parameter.

Requires scientific research
for formalization

(formulation, construction?),
a parameter that will allow

you to obtain the
required markup.

Therefore, the fourth method is adopted in this work, which can avoid the large
amount of equipment-specific workplace noise in the original image. Further, the main
problem is the development with less computation power requirement of the calculated
parameter that reflects the physical property in the metal surface digital image.

3. Determining the Quality of Metal Surface Treatment Using Computer
Vision Technologies

The specific task in the work is related to the hardening of the surface of the parts
through selective processing. Most materials have insufficient adhesion strength to the
substance on which they are sprayed. To increase the adhesion, shot blasting is used [18]. As
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a result of installation, irregularities are formed. These irregularities significantly increase
the bonding area of the material substrate, and the spray. An example of a digital image of
a partially treated surface is as shown in Figure 1, where the left side of the surface is not
yet formed. The frame was captured with a video camera and video recorder that supports
the Wide Quad Extended Graphics Array (WQXGA) format.
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Figure 1. Partially treated sample of the metal surface by treating to increase the contact area of the
base materials for spraying before “shot blasting”.

The ultimate task is to determine the average size of cavities on the provided image
samples by focusing on the mathematical formulation of the problem, abstracting from the
source of the image and the material used. As described above, we had to take up the use
of neural networks to highlight the untreated portion of the surface. In this regard, it was
necessary to take into account the basic properties of texture of the image fragment as:

1. Average brightness of the fragment.
2. Moment of distribution of brightness over a part of the image (dispersion).
3. Asymmetry.
4. Entropy of the information representing the image area, and similar indicators by

image filtering the image.

The main image is broken into fragments of the same size. For each fragment, an
arithmetic computation of the properties of the texture is made. Then, for each of the
properties, a density map is obtained as an indicator of one or another texture property.
The combination of the parameter values of the texture properties determines the nature of
the texture in the selected part of the main image. The article explains the application of
computer vision technique to assess the quality of metal surface in term of the frequency
parameter, as in Equation (7). The relevance in terms of brightness diffusion on the input
images was somehow addressed by authors in [24,25] to distinguish and highlight surface
defects. The algorithm used in this work is as shown in Figure 2.



Sensors 2022, 22, 6223 7 of 19
Sensors 2022, 22, x FOR PEER REVIEW  8  of  21 
 

 

 

Figure 2. Flowchart for marking the image by texture properties. 

1. The whole image is read into the computer RAM as consisting of an array of pixels, 

made of h rows and w columns. Each pixel is represented in the range 0 to 255 ac‐

cording to brightness intensity. 

2. The image is divided into square fragments with side “d” pixels. These fragments are 

stored in an array table f [h/d, w/d], as explained in Figure 2. The size of the table is 

“d” times smaller, both vertically and horizontally (matrix of fragments with a width, 

w//d, and a height, h//d, where “//” denotes division with integer answer). 

3. The next block is to test the fragments that are taken in sequence from the table f, and 

a downward transition occurs after each of the fragments are identified by coordi‐

nates (x, y). When all fragments are processed, the loop exits to the right. 

4. In the body of the loop, each fragment falls into a preselected function, which, based 

on the provided single fragment, calculates the property of this fragment. A few of 

the possible functions are discussed in the article. The result is added to the features 

table of  fragment properties. The  location of  the calculated properties  in  the  table 

coincides with the placement of the fragments themselves in the table f. 

(a). We send the image fragment into the function that gives the number indicating 

one of the properties of the texture represented by this fragment. The function 

is one of the implemented means applied to compute the value of the texture 

property. In this article, we develop mathematical equations to calculate average 

frequency, given in Equation (9), to segment the image. 

Figure 2. Flowchart for marking the image by texture properties.

1. The whole image is read into the computer RAM as consisting of an array of pixels,
made of h rows and w columns. Each pixel is represented in the range 0 to 255
according to brightness intensity.

2. The image is divided into square fragments with side “d” pixels. These fragments are
stored in an array table f [h/d, w/d], as explained in Figure 2. The size of the table is
“d” times smaller, both vertically and horizontally (matrix of fragments with a width,
w//d, and a height, h//d, where “//” denotes division with integer answer).

3. The next block is to test the fragments that are taken in sequence from the table f, and
a downward transition occurs after each of the fragments are identified by coordinates
(x, y). When all fragments are processed, the loop exits to the right.

4. In the body of the loop, each fragment falls into a preselected function, which, based
on the provided single fragment, calculates the property of this fragment. A few of
the possible functions are discussed in the article. The result is added to the features
table of fragment properties. The location of the calculated properties in the table
coincides with the placement of the fragments themselves in the table f.

(a) We send the image fragment into the function that gives the number indicating
one of the properties of the texture represented by this fragment. The function
is one of the implemented means applied to compute the value of the texture
property. In this article, we develop mathematical equations to calculate
average frequency, given in Equation (9), to segment the image.

(b) The resulting value is entered into the [x, y] feature matrix. An example of the
resulting matrix can be seen in Figures 3–6 (for different features), where the
target values of interest are shown by the change in brightness.
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5. When exiting the loop, the resulting table of features is interpolated to the size of the
input image (increased by d times). After normalizing the feature values with bright-
ness ranging from 0 to 255, we obtain an image of the initial image fragmentation,
according to the selected feature (as in Figure 3).

6. To improve the visibility of the result, the resulting fragmentation is mixed with the
original image for showing features’ results clearly.

4. Texture Properties of a Fragment of an Image

For the segmentation of the image texture, the image is divided into parts, in which
conditionally it is assumed that the properties of the image contained in this part appear
uniformly. The existing statistical methods are used for highlighting the statistical parame-
ters of the brightness distribution in these fragments. These properties are based on the
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characteristics of statistics and information. It is necessary to consider the applicability
of the statistical features to the image encoding. Although these methods may not com-
ply with the technical requirements, the effectiveness of their application will show the
fundamental potential for solving the problem. The use of statistical properties, which
satisfactorily allows marking of the treated part of the metal surface, allows us to design
our method that will be sensitive to these statistical properties.

If the arithmetic mean of the average brightness of a fragment is to be computed in the
algorithm of Figure 2, we obtain the diagram as shown in Figure 4. It shows the average
brightness while removing all other undesirable interference. The integrated brightness
will be useful in the case of identical shooting conditions, such as a high-quality camera, as
its brightness will be an essential feature of the texture.

A similar analysis, instead of the arithmetic mean of brightness, is the standard
deviation that uses brightness of pixels in statistics analytical dispersion. It shows a lower
sensitivity of texture as an indicator that accurately reflects the relative number of pixels,
which differ from the average brightness. Therefore, it is more accurate to use the dispersion
index to distinguish the textures consisting of approximately the same number of bright
and dark pixels, referred to as banding. As shown in Figure 5, it is indeed a more uneven
surface, more saturated with bright and dark pixels, giving dark spots in areas of the
already treated surface. However, the accuracy of these markings is low and the absolute
numbers will depend on the total illumination. Compulsory histogram expansion, that is,
normalization of the original image, will also not remove the dependence on lighting. It
should be noted that the value of the selected feature value appears as white if it exceeds
the set threshold, otherwise it remains black.

The third statistical property is the moment of the distribution of brightness that gives
the map as shown in Figure 6. This indicator interacts with an unequal number of bright and
dark pixels, relative to the average value: a violation of the symmetry of the distribution in
terms of brightness. It is normal to expect this number to rise on uneven surfaces. However,
the question remains about the extent of these irregularities. In addition, this drawback
is inherent in the above indicators. The skewness of the indicator will be effective when
looking for striped or treated areas where the lines have significantly different widths. The
value of the selected feature appears in white provided that it exceeds the set threshold
limit, otherwise it remains black.

The following indicator is based on the concept of information entropy [19] when each
fragment of the image of the processed surface is represented as a set of bytes, for which the
entropy is calculated. Figure 7 shows the encoding obtained according to the information
entropy value for each fragment. The higher value of entropy very well defines the areas
of the image with an already treated surface. However, of all the methods described here,
entropy is calculated using algorithms. It is more computationally intensive. The more
significant drawback remains the unknown dependence of the irregularities and the value
of information entropy of the image region. The entropy makes it possible to identify
areas of interest with a reference to the measurable quality according to selected technical
requirement, irrespective of the thresholding dictation.

The examples are considered to give an affirmative answer for the image distinguisha-
bility in the processed and unprocessed areas. However, the specific requirements for
solving an engineering problem, according to an assessment of average magnitude of
irregularities, remain unanswered. Accordingly, the lack of rapid methods for estimating
the magnitude of irregularities justifies the task of developing our method.
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5. Development of Algorithm for Finding Period Dominating Fluctuations

In the process of estimating the average magnitude of the irregularities, the devel-
opment of the model is assumed wherein the irregularities are represented as complex
harmonic oscillations with amplitude “A” and phase “ϕ” undergoing constant random
changes. Therefore, to ignore the amplitude and phase of the oscillations, the authors
decided to use local information near a single pixel wherein brightness is denoted as p,
using the differential calculus, which is more applicable to lattice discrete space versus the
differential calculus. In this way the average cyclic oscillation frequency, ω, is found that
will give information about the magnitude of the surface roughness examined according to
its digital image.

Assume the subscript “i” number is used to indicate the brightness of the pixels located
sequentially. To search for the period of the dominant oscillation on three consecutive
pixels, the difference, Equation (1), is used to seek the coefficient a:

pi + a · pi+1 + pi+2 = 0 (1)

The solutions of which are oscillations around the zero center of equilibrium at the
moment of time t, as given in Equation (2):

pi = A cos(ω(t + i) + φ) (2)

Substituting Equation (2) into Equation (1) gives:

A cos(ωt + φ) + a · A cos(ω(t + 1) + φ) + pi+2 A cos(ω(t + 2) + φ) = 0

cos(ωt + φ) + a · cos(ωt + ω + φ) + cos(ωt + 2ω + φ) = 0

To simplify further transformations, we use the complex exponent to switch from
trigonometric to exponential functions, using the function of extracting the real part of
the complex number and taking advantage of the properties of exponential functions to
ultimately derive the simplified expression:

Re(ejωtejφ(1 + a · ejω + (ejω)
2
)) = 0

where “j” is the root of −1.
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Then, we return to the trigonometric representation and take some further derivations
in order to finally arrive at:

Re((cos(ωt + φ) + j sin(ωt + φ))(cos(ω) + j sin(ω)))(a + 2 cos(ω)) = 0 (3)

To fulfill the condition of Equation (3), one of the factors must always be equal to zero.
The Re part on the left is highlighting the real part, and depends on time and cannot always
be equal to zero. Therefore, the right factor of Equation (3) is definitely zero, as

a + 2 cos(ω) = 0 (4)

Equation (4) for the image can be easily converted into deriving the cyclic frequency
of ω, as in Equation (5):

ω = arccos(−a/2) (5)

However, the problem is that the photographic image has a plane dimension. However,
when deriving Equation (5), only one dimension is used. Therefore, it is proposed to
combine the vertical and horizontal axes according to the following:0 0 0

1 a 1
0 0 0

+

0 1 0
0 a 0
0 1 0

 =

0 1 0
1 2a 1
0 1 0


Here, the matrices denote the filters that are applied to the bitmap. For the matrix that

represents the filter, the element product is carried out with the corresponding pixels of the
image ux,y after the central pixel is replaced by the sum of the formed ∆x,y products. The
result of actions can be shown by the following Equation (6):

∆x,y = ux−1,y + ux+1,y + ux,y−1 + ux,y+1 + 2aux,y (6)

If we apply Equation (6) to the entire image, we obtain the full result of applying the
filter, which in the ideal case should give zero, as in Equation (7):

N−2

∑
x,y=1

(
∆x,y

)2
=

N−2

∑
x,y=1

(
ux−1,y + ux+1,y + ux,y−1 + ux,y+1 + 2aux,y

)2 (7)

This makes it possible to use the least-squares method to find coefficient “a”, which
will express the desired filter. For the found “a”, the filter will give the minimum deviation:

S = min

 N−2

∑
x,y=1


u2

x−1,y + u2
x+1,y + u2

x,y−1 + u2
x,y+1 + 4a2u2

x,y+

+2ux−1,yux+1,y + 2ux−1,yux,y−1 + 2ux−1,yux,y+1 + 4aux−1,yux,y+
+2ux+1,yux,y−1 + 2ux+1,yux,y−1 + 2ux+1,yux,y+1+
+4aux+1,yux,y + 2ux,y−1ux,y+1 + 4aux,y−1ux,y + 4aux,y+1ux,y




The minimum is sought through using the extremum point condition at which the
derivative of the change in the sum of the squares of the deviation is equal to zero:

S′a =
N−2

∑
x,y=1

(
8au2

x,y + 4ux−1,yux,y + 4ux+1,yux,y + 4ux,y−1ux,y + 4ux,y+1ux,y

)
= 0

It remains to solve the formulated equation:

2a
N−2

∑
x,y=1

u2
x,y +

N−2

∑
x,y=1

ux,y
(
ux−1,y + ux+1,y + ux,y−1 + ux,y+1

)
= 0
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a = −

N−2
∑

x,y=1
ux,y

(
ux−1,y + ux+1,y + ux,y−1 + ux,y+1

)
2

N−2
∑

x,y=1
u2

x,y

(8)

The Equation (9) is obtained by substituting Equation (8) into Equation (5):

ω = arccos


N−2
∑

x,y=1
ux,y

(
ux−1,y + ux+1,y + ux,y−1 + ux,y+1

)
4

N−2
∑

x,y=1
u2

x,y

 (9)

Equation (9) is easily implemented in the matrix and tensor computation libraries
functions of TensorFlow or NumPy. Below is an example of a possible implementation of
the predominant frequency finding function of Python code using the NumPy library with
pseudocode reproduced, as given in Appendix A.

Figure 8 shows similar to the above examples in Figures 4–7; the quality of highlighting
the black-treated surface is visually comparable to the entropy index. However, each
fragment does not contain an abstract numerical indicator; instead, it contains a value
associated with the amount of roughness that is to be marked.
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Figure 8. Result highlighting the frequency feature by brightness of a 64 × 64 fragment with 32 pixels
step (Equation (9)).

The result of image segmentation is obtained, which is comparable in quality to that of
the information entropy index of the image fragment. However, the result obtained does not
involve computation of algorithms. Hence, the computation time is reduced significantly
as it relies on the geometric dimensions of the cavities. Therefore, the segmentation
results can be objectively compared with the measurement of the linear dimensions of
the irregularities on the surface of the metal. As a result, the computations are faster in
completing the technical task, which indicates a correlation with an independent physically
measured parameter.

The marking quality is visually shown in Figure 9. It is clear that the frequency index,
while ignoring the general changes in illumination and contrast, clearly interacts with the
presence of many small elements that arise with the riveted metal surface.
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Figure 9. Marking of insufficiently processed surfaces, using the index, ω, in Equation (9).

The cyclic frequency, expressed by Equation (9), allows us to estimate the oscillation
period T = 2π/ω, which corresponds to the magnitude of the irregularities in pixels.

6. Experimental Details

For determination of the accuracy of the method, the average size of irregularities
requires a large number of field experiments. This is difficult to implement as it requires
a lot of manual work. In the case of creating synthetic models for photographic images
with irregularities, the number of experiments can be significantly increased. Periodic
functions can be taken as a texture of the experiment to determine the average size of image
elements, but the real picture is random. Therefore, to increase the acceptance realism, it
was decided to use the random Perlin noise. It bears a strong resemblance to real noise, as
shown in Figure 10. It contains a scaling factor, m, which shows the average number of
cycles of brightness changes in a fragment of the figure. All fragments have axes on which
the ordinal numbers of pixels are marked, vertically and horizontally.
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In addition, for each fragment of the Perlin noise pattern, using Equation (9), an
estimate of the cyclic frequency, ω, is obtained. Since the scaling is unknown, it suffices
to show that there is a linear relationship between the quantities of scaling factor, m, and
the cyclic frequency, ω. The random nature of Perlin noise introduces random errors into
measurements according to Equation (9). Therefore, to increase the reliability of the results,
the experiment for obtaining the pairs of values (m, ω) is repeated several times. For the
number of experiments, n > 50, the error, µ, of the correlation coefficient, r, is determined
by the formula µ = (1− r2)/

√
n, and then the real correlation coefficient will be within the

range of r ± 3µ.
The results of 1000 experiments gave the following result:

r =

n
∑

i=1
(mi −m) · (ωi −ω)√

n
∑

i=1
(mi −m)2 ·

n
∑

i=1
(ωi −ω)2

≈ 0.9576

3µ = 3(1− 0.95762)/
√

1000 ≈ 0.0079

where the line above means the arithmetic mean (measured mathematical expectation)
of the values obtained. As a result, r = 0.96 ± 0.008; the presence of a linear relationship
between the scale factor and estimate of ω is confirmed.

For clarity, the values of “ω” are measured by Perlin noise, where the size of the
elements changes with distance from the center of Figure 11.
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Figure 11. Demonstration of zoom factor reconstruction based on Perlin noise. (a) Frequency diagram
etalon. (b) Perlin noise. (c) Restored frequency diagram.

For clarity, the change in the scale of the oscillations is shown in a single image. The
processing is the same for the image in Figure 11. In our approach, we used a synthesized
image as a test, in which the image of the treated metal surface was simulated by Perlin
noise and is shown in Figure 11b in order to better represent the complexity in visual
effects for the range in frequency shown in Figure 11a. It may be noted that Figure 11a
shows the etalon in the wavelength of light interference. However, visual comparison is
complicated by the nonlinear nature of human perception. Therefore, the given parameter
in Figure 11a is represented by its equivalent frequency diagram, as shown in Figure 11c,
using statistical methods.

The restored frequency plot of Figure 11c is obtained from image Figure 11b by
substituting 64 × 64 pixel image fragments into Equation (9). The fragment size is selected
according to the expected size of the elements in the image being analyzed.

In addition, since the absolute error changes a little bit in the measured range, the
relative error reaches 100% for irregularities, the size of which significantly exceeds the size
of the fragment that is being analyzed and decreases with the size of the irregularities. This
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makes it possible to develop in our further work an automatic selection of the size of the
fragments in order to measure the dimensions of irregularities, based on the knowledge
of the expected parameters of the metal surface before and after processing. The article
presented the use of computer vision for applications of metal surface quality assessment.
The utility of this work lies in the appropriate tuning of the frequency as a requirement for
a particular application [26]. The technique can be usefully applied for localization of rusts
using RGB images on metal structures [27] or corrosion detection [28], and possibly a close
resemblance to the work in [29,30].

7. Conclusions

In this article, a method was developed to determine the quality of metal surface
treatment using computer vision techniques. The results may prove useful for real-time
applications. The quality was determined according to the average size of the irregularities
of cavities. A review of the literature has demonstrated the availability of methods for
distinguishing images in treated and untreated surface areas with qualitative details;
however, the current methods do not provide quantitative assessment. In this work,
experiments were conducted using common texture properties for converting intensity of
pixels into an equivalent frequency variable. The technique used ensures that each fragment
of the image is transformed into frequency variable as equivalent of brightness intensity.
Further, the algorithm was implemented such that each fragment is recognized relative
to the brightness of the central fragment, making the image a whole single commodity.
This demonstrated the conditional applicability of labeling for treated and untreated
surfaces, based on an information entropy criterion that grows for an already treated surface.
However, the lack of an explicit indication in terms of the irregularities as illumination
(contrast)-specific-dependent magnitude do not allow the use of these characteristics to
be displayed explicitly. The execution of computed algorithms significantly increases the
computation time. The frame was processed for almost 5 s in the best computation (Figure 6
results), which is not suitable for real-time systems. In connection with the requirements
for linking the decision-making to the measured parameter, the work solved the problem of
a local estimate of the volume obtained during the processing of irregularities. As a result,
an algorithm was developed for finding the period of the dominant oscillations using the
advantages of the matrix and tensor computation libraries functions. This allowed an
objective assessment of the quality of the surface treatment according to the size of the
irregularities (cavities). While using the proposed method, the results of Figure 7 show
that using the Intel i7 processor family 9000 series, WQXGA frame computation takes
20 millisecond, encouraging features to promise for real-time application requirement. As
a result of numerical modeling of synthesized Perlin noise in terms of variable frequency, it
was shown that the obtained method reflects the properties of brightness contrast in the
image area of the average size. The proposed method developed is applicable for practical
usage both for local systems and the Internet service modules. The results differ from
similar ones in that the marking of the treated surface moves from a subjective assessment
to an objective assessment with the possibility of checking the result using linear measuring
devices in real-time systems. In this article, we developed mathematical formulae that give
an output value proportional to the size of the “wave” in the input image by computing
the average frequency to image segment according to the compositional features in need,
proving r = 0.96± 0.008 as a linear relationship between the scale factor, m, and the estimate
of ω is confirmed. The utility of this work finds application in the IoT-enabled environment
in Industry 4.0 in the field of micromachining related to flexible electronics. However, for
real-time application there is a need to find the balance of algorithm complexity, detection
accuracy, and detection time [23].
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Appendix A

Definition of Parameters and Legend:
W—Width of image
H—Height of image
img—matrix of pixels of grayscale image from camera with resolution w (width) by

h (height)
d—Step of frequency analyzes, experimental define and depend by material and used

camera; recommendation for select this value from 16 to 64 pixels
W—Array of frequency value ω with resolution w (width) by h (height)

[x,y]–Coordinates of pixel positional, x–horizontal, y–vertical
ω—Frequency value
//—integer division
F—Submatrix of image

Input: —Grayscale image img
Result: Array W of frequency value ω
1: Find maximum value in image M = max (img)
2: Normalize image by all pixels img [x, y] = 2*img [x,y]/M-1. Now every pixel has lighting

value from −1 to 1.
3: Initialize array of zero values W with size w//d by h//d
4: Traversal of all fragments in image with square window size d by d, with coordinates [i, j].

Let i range in 0, 1, . . . , w//d, let j range in 0, 1, . . . , h//d
4.1: F is a submatrix of image img[i * d . . . i * d + d, j * d . . . j * d + d] width size d by

d values
4.2: a = sum from x = 1 to d-2 {sum from y = 1 to d-2 {F [x, y] * F [x, y]} }
4.3: b = sum from x = 1 to d-2 {sum from y = 1 to d-2 {F [x, y]*(F [x−1, y]+ F [x + 1,

y] + F[x, y + 1] + F[x, y − 1])} }
4.4: ω = arccos (b/(4 * a))
4.5: W [i, j] = ω

5: Resize matrix W to size (w, h) (with or without interpolation)
It is very convenient to implement the algorithm using tabular calculations. Below

is a fragment of the program code in Python using the capabilities of the NumPy library
for release function for calculate frequency of submatrix (implement of 4.1–4.4 strings
from pseudocode:

Import numpy as np
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def get_frequency(img_gray: np.ndarray):
img_gray = img_gray-img_gray.min()
img_gray = img_gray/img_gray.max()
img_gray = img_gray-np.float32 (0.5)

s4 = img_gray [0:−3, 1:−2] + img_gray [2:−1,1:−2] + \
img_gray [1:−2, 0:−3] + img_gray [1:−2, 2:−1]
p4 = np.multiply(s4, img_gray [1:−2, 1:−2])
s = p4.sum()
d4 = np.multiply(img_gray [1:−2,1:−2], img_gray [1:−2,1:−2])
d = d4.sum()
a = 0.25 * s/d

ω = np.arccos (a)
return ω
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