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Abstract: Head-mounted display (HMD) virtual reality devices can facilitate positive experiences
such as co-presence and deep immersion; however, motion sickness (MS) due to these experiences
hinders the development of the VR industry. This paper proposes a method for assessing MS caused
by watching VR content on an HMD using cardiac features. Twenty-eight undergraduate volunteers
participated in the experiment by watching VR content on a 2D screen and HMD for 12 min each,
and their electrocardiogram signals were measured. Cardiac features were statistically analyzed
using analysis of covariance (ANCOVA). The proposed model for classifying MS was implemented
in various classifiers using significant cardiac features. The results of ANCOVA reveal a significant
difference between 2D and VR viewing conditions, and the correlation coefficients between the
subjective ratings and cardiac features have significant results in the range of −0.377 to −0.711 (for
SDNN, pNN50, and ln HF) and 0.653 to 0.677 (for ln VLF and ln VLF/ln HF ratio). Among the MS
classification models, the linear support vector machine achieves the highest average accuracy of
91.1% (10-fold cross validation) and has a significant permutation test outcome. The proposed method
can contribute to quantifying MS and establishing viewer-friendly VR by determining its qualities.

Keywords: visually induced motion sickness; normalized heart rate variability; cardiac activity;
head-mounted display; cognitive load

1. Introduction

Virtual reality (VR) using head-mounted displays (HMDs) has become increasingly
popular for professional and entertainment purposes and contributed to technological
advancement and increased economic activity [1,2]. VR technology has been used in
many areas, such as military training simulations [3], training or education in medical
procedures [4], architecture [5], manufacturing [6], entertainment [7], and gaming [8].
VR technology can provide an experience that is impossible in the real world and deep
immersion [9]. However, the devices trigger motion sickness (MS), including visual fatigue,
nausea, anxiety, and disorientation, in some users [10]. Visually induced motion sickness
(VIMS), motion sickness disorder (MSD), and VIMS disorder are defined as vestibular
disorders; however, MS can be experienced by anyone [11]. Approximately 33% of the
population is highly susceptible [12], and at least 59% of the population has reported
experiencing MS [13]. Many developers have attempted to improve software and hardware;
however, the issue of MS remains [14]. Consequently, MS is a major obstacle in the
popularization and development of the VR industry [15]. Thus, studies on minimizing MS
are necessary, which can contribute to improving the VR user experience and friendliness.
To solve the problem of MS, reliable measurement methods for quantitatively assessing MS
should be established [2,16].
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Many previous studies have attempted to understand and interpret MS from the
perspectives of postural instability [17]; vestibular function [18]; eye movement [19]; the au-
tonomic nervous system, such as cardiac activity, electrodermal activity, and skin tempera-
ture [1,20]; the central nervous system, such as electroencephalogram (EEG) oscillations [21]
and functional magnetic resonance imaging [22]; and pupillary rhythms [23]. However,
when using machine learning, most studies do not distinguish MS patients from healthy
controls. Some studies have attempted to classify the level of MS severity, as shown in
Table 1, using the following criteria: EEG oscillations [24–31], heart–brain connectivity [2],
vision technology [16], and multimodal data fusion [32–37]. Most studies attempting to
classify MS are based on brain activity and multimodal data fusion. These approaches have
significant disadvantages, such as the measurement burden of sensor attachment and low
usability compared to cardiac activity. Despite these limitations, the method developed
in a previous study has the advantage of acquiring significant and important data. Thus,
fields that require precise measurement of phenomena related MS can be at an advantage.
However, a simple method should be developed to assess the sensitivity of MS, because
there are fields that require rapid and easy MS measurement or monitoring. Thus, we
propose developing a method that enables the simple and convenient assessment of MS
based on a single measurement of cardiac activity.

Physiologically, heart rate variability (HRV) indicates the interaction of autonomic,
intrinsic, and humoral influences on heart rate [38]. The HRV spectrum for assessing
autonomic balance is divided into very low frequency (VLF, 0.0033–0.04 Hz), low frequency
(LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.4 Hz), which correspond to sympathetic
activity, a mixture of sympathetic and parasympathetic activities, and parasympathetic
activity, respectively [39,40]. Previous studies have reported that the development of MS is
strongly correlated with sympathetic and parasympathetic activities [41,42]. In addition,
the time domain indices of cardiac activity, such as heart rate, the standard deviation
of normal to normal (SDNN), and the proportion of successive RR intervals (pNN50),
have been reported to be associated with MS [43,44]. In multimodal data fusion (see
Table 1), a few studies have considered the heart response intended to be used in this
study to measure the MS symptom. These studies used heart rate [32,34,35,37], R-peak
amplitude [32], SDNN [35], and HRV index (i.e., HRV amplitude, LF, HF and LF/HF
ratio) [34] as indicators of cardiac activity. This study intends to consider a new indicator,
normalized HRV, which includes cardiac features used in previous studies.

Table 1. Summary of MS measurement literature.

Measurement Platform Content Participants Classification
Performance Paper

EEG

alpha (8–13 Hz) and theta (4–7 Hz) bands
360-degree

VR-based dynamic
3D environment

driving
simulation 7 subjects 95%

(5-fold cross-validation) [24]

alpha (8–12 Hz) band 360-degree
projection

driving
simulation 6 subjects

86.92%
(leave-one-out

cross-validation)
[25]

delta (0.1–3 Hz), theta (4–7 Hz), alpha
(8–13 Hz), beta (13–20 Hz), and gamma

(21–50 Hz) bands

360-degree
projection

driving
simulation 6 subjects

80.7%
(cross-validation)

72.1%
(test data set)

[26]

alpha and beta bands HMD mirror edge game 9 subjects 83.8%
(cross-validation) [27]

theta (4–8 Hz), beta (12–30 Hz), and
alpha (8–12 Hz) bands HMD mirror edge game 9 subjects 88.9%

(3-fold cross-validation) [28]

theta (4–8 Hz), alpha (8–12 Hz), low-beta
(12–16 Hz), high-beta

(16–25 Hz), and gamma (25–45 Hz) bands
360-degree video VR video 11 subjects 99.12%

(5-fold cross-validation) [29]

delta, theta, alpha, and beta bands
(1–30 Hz) HMD VR scene of road 18 subjects 79.25%

(10-fold cross-validation) [30]

parallel-feature extraction and feature
attention modules

VR vehicle-driving
simulator

driving
simulation 8 subjects

96.7%
(leave-one-out

cross-validation)
[31]
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Table 1. Cont.

Measurement Platform Content Participants Classification
Performance Paper

HEP first and second components HMD
No Limits 2

Roller Coaster
Simulation

48 subjects
(train: 28 and

test: 20)

96.4%
(10-fold cross-validation)

87.5%
(test data set, 20 subjects)

[2]

Vision pupil size change HMD ultimate booster
experience

47 subjects
(train: 24 and

test: 23)

90%
(10-fold cross-validation)

80%
(test data set, 23 subjects)

[16]

Multi-modal

EEG, ECG, RSP, EGG, and postural sway HMD
virtual space

station
environment

20 subjects 95%
(10-fold cross-validation) [32]

EEG, center of pressure, head and waist
motion trajectories projection screen

visual streaming
and car driving

video
20 subjects 91.1%

(10-fold cross-validation) [33]

ECG and RSP HMD roller coaster
video 20 subjects 96.48%

(cross-validation) [34]

EEG, EMG, and ECG BioVRSea
(VR goggles)

rough sea
scenario 28 subjects 74.7%

(10-fold cross-validation) [35]

stomach activity, EOG, and RSP HMD
virtual

environment
game

20 subjects 77.8%
(cross-validation) [36]

ECG, EOG, RSP, and EDA HMD VR contents 66 subjects 82%
(cross-validation) [37]

To this end, this study proposes a novel method for classifying MS caused by VR
content from HMDs based on cardiac features. The cardiac features measured in both
before and after VR viewing conditions are compared with 2D conditions using a statistical
analysis method called analysis of covariance (ANCOVA); moreover, these features are
analyzed using a partial correlation with a simulator sickness questionnaire (SSQ). Herein,
MS (VR condition) is distinguished from the normal state (2D condition) using statistically
significant cardiac features based on various classifiers, such as linear discriminant analysis
(LDA), K-nearest neighbors (KNN), decision tree (DT), and linear support vector machine
(LSVM). In addition, a real-time system is developed to monitor MS.

2. Methods
2.1. Participants

Thirty participants volunteered to participate in this study. Two participants were
excluded from the experiment due to premature termination caused by severe levels of
VIMS, resulting in a final sample of 28 participants (14 females and 14 males). Participants’
ages ranged from 21 to 34 years (Mean = 26.9 years, Standard deviation = 3.5 years). All
participants had normal or corrected-to-normal vision and no family or medical history
of cardiovascular disease. Informed written consent was obtained from each subject prior
to the experiment, and they were instructed to get a full night’s rest and to abstain from
cigarettes, alcohol, and caffeine for 24 h prior to the experiment. This research complied
with the tenets of the Declaration of Helsinki and was approved by the Institutional Review
Board of Sangmyung University (No. BE2018-46).

2.2. Experimental Stimuli and Procedure

VR content “Ultimate Booster Experience” (GexagonVR, Saint Petersburg, Russia,
2016) was used in this experiment to cause VIMS through the Oculus Rift S VR HMD
device (Oculus VR Inc., Menlo Park, CA, USA). This study aimed to choose VR stimuli
that can sufficiently cause the MS state, and the VR content “Ultimate Booster Experience”
with the highest SSQ score among the five VR contents was chosen through a pre-test
of 20 subjects. None of the participants had previously experienced viewing VR content
(i.e., Ultimate Booster Experience) by using an HMD. The VR stimulus in the experiment
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contained content including a giant swing, bungee jump, air balloon, eagle flight, and
rocket mode.

This study employed a “within-subject” design to compare the viewer’s cardiac
activity in response to the VR contents under the 2D (non-VIMS) and VR conditions
(VIMS). The participants sat on a comfortable armchair in an electrically shielded room.
They were instructed to experience the VR content in 2D (viewing distance of 1 m) and
VR versions using a 27-inch LED monitor (LG Electronics Inc., Seoul, Korea) and the
HMD device. The scenes in the two versions were identical. Participants experienced the
VR content using either the 2D or the HMD version of the VR content for 12 min. The
experiment was conducted simultaneously for two days. The order of tasks (i.e., 2D and VR
versions) was count-balanced randomly to minimize sequence/order effects by repeated
measures design (that is, VR and 2D versions on the first and second days, respectively,
or vice versa). A resting-state was provided for 5 min before and after viewing tasks,
and electrocardiogram (ECG) signals were measured. The ECG signals were measured
using the lead-1 method using three electrodes placed on the left collarbone (ground, black
lead), left (VIN+, red lead), and right arms (VIN-, white lead), see Figure 1B. To obtain
optimal electrode response, the surface of the skin where the electrode was to be placed
was abraded with a clean, dry cloth. The ECG wireless sensor (ECG BioNomadix) to
measure and transmit signals was placed on the stomach using a band. The experiment
was conducted in an electrically shielded room to minimize the risk of external interference,
which can affect ECG measurements. Except for the necessary user interface, all equipment
was located outside the room using a connection cable. In addition, the participants were
asked to self-report (a four-point scale, 0 to 3) subjective MS using an SSQ [45] before and
after the viewing tasks. Subsequently, cardiac activity and subjective ratings before and
after the viewing tasks were compared. The experimental procedure and environment are
illustrated in Figure 1.
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The SSQ employed is widely used to describe and assess users’ levels of MS symptoms
and useful in VR studies. This SSQ comprises 16 items related to the symptoms of MS
and is categorized into three non-mutually exclusive factors: (1) nausea (N), which com-
prises general discomfort, increased salivation, sweating, nausea, difficulty concentrating,
stomach awareness, and burping; (2) oculomotor responses (O), which include general
discomfort, fatigue, headache, eyestrain, difficulty focusing, difficulty concentrating, and
blurred vision; and (3) disorientation (D), which comprises difficulty focusing, nausea,
fullness of the head, blurred vision, dizziness (eyes open), dizziness (eyes closed), and ver-
tigo. The total SSQ score is calculated using Equation (1) based on the three factors, where
the values of N, O, and D are defined by summing the subjective rating values (4-point
scale, 0–3) of each questionnaire for nausea, oculomotor responses, and disorientation,
respectively. In general, a five-point scale is used for the single stimulus subjective tests as
recommended in ITU-T REC. P.913 [46], but this work performed a subjective rating using
the 4-point scale (0, 1, 2, 3) according to guidelines in a previous study [45]. Examples of
SSQ are shown in Appendix A.

Total SSQ score = (N + O + D)× 3.74

N score = N × 9.54, O score = O × 7.58, D score = D × 13.92 (1)

2.3. Data Acquisition and Signal Processing

ECG signals were recorded at a sampling rate of 500 Hz using Bionomadix BN-ECG2
units and an MP160 amplifier system (Biopac Systems Inc., Goleta, CA, USA). The ECG
signals were recorded using circular disposable Ag/AgCl electrodes (11 mm diameter,
pregelled, 40 mm foam electrode-EL501, Biopac Systems, Goleta, CA, USA) laced using
the Lead-I method. ECG signals were then processed to extract features related to cardiac
activity in the following steps: (1) Acquired ECG signals are preprocessed using a band-pass
filter with a pass band of 5 Hz to 15 Hz [47] to minimize the effect of muscle artifact, 60 Hz
interference, baseline wander, and T-wave interference [48]. (2) R-peak was detected from
the preprocessed ECG signals using the “QRS detection algorithm” [48], and the R-peak to
R-peak intervals (RRIs) were calculated using the interval between R-peak to R-peak. The
detected R-peaks were filtered as normal to normal (NN) intervals, and the criterion for
NN intervals was defined as 600–1200 ms based on previous work [49]. Data from RRI that
did not meet this criterion were excluded from the analysis. (3) The standard deviation of
SDNN was obtained by calculating the standard deviation across normal RRIs [50]. (4) The
pNN50 (%) was calculated from the percentage of adjacent RR intervals that differ by more
than 50 ms [51]. (5) Successive RRIs were resampled at 4 Hz to convert to time series data
and are then analyzed in the HRV spectrum using the fast Fourier transform (FFT, Hanning
window technique). (6) The HRV spectrum was categorized into frequency bands for a
VLF band ranging from 0.0033–0.04 Hz (sympathetic activity) and an HF band ranging
from 0.15–0.4 Hz (parasympathetic activity); moreover, the power for each frequency band
was extracted [40,52]. (7) ln VLF and ln HF (that is, normalized HRV) were calculated
using the natural log (assuming ln) from the power spectrum values (VLF and HF powers).
(8) The normalized HRV plot was categorized into nine zones (that is, Zones 1 to 8 and a
reference zone) to assess the autonomic balance of the sympathetic and parasympathetic
nervous systems (SNS and PNS) [40,53], as shown in Figure 2. All signal processing and
data analyses were performed using MATLAB (2020b, Mathworks Inc., Natick, MA, USA).

2.4. Statistical Analysis

This study follows a “within-subject” design for 2D and VR viewing conditions.
Moreover, ANCOVA was applied in this study because a paired t-test between after-
viewing conditions is not able to consider the viewers before the state. ANCOVA can assess
dependent variables of post-viewing states between the two conditions by considering
the pre-viewing state baseline as a covariate [2,54]. Statistical significance at the 95%
significance level (p > 0.05) was controlled by the Bonferroni correction as a conservative
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test to protect against Type 1 errors caused by multiple comparisons based on the number
of each hypothesis (i.e., α = 0.05/n) [55,56]. For this study, the statistically significant levels
of SSQ and cardiac features were set to 0.0125 (N, O, D, and total SSQ scores resulting in
α = 0.05/4) and 0.0083 (heart rate, SDNN, pNN50, ln VLF, ln HF, and ln VLF/ln HF ratio
resulting in α = 0.05/6), respectively. The effect size to verify the practical significance
was analyzed using the partial eta-squared value (ηp2) corresponding to an F-test. The
standard values for the practical significance of 0.01, 0.06, and 0.14 are generally regarded
as a small, medium, and large, respectively [57]. A partial correlation was used to analyze
the correlation between the SSQ scores and cardiac features (post-viewing condition),
considering the pre-viewing condition as a covariate [29]. Correlation coefficients of
0.00–0.09, 0.10–0.39, 0.40–0.69, 0.70–0.89, and 0.90–1.00 represent negligible, weak, moderate
(good), strong, and very strong correlations, respectively [58]. All statistical data analyses
were conducted using IBM SPSS Statistics 21.0 for Windows (SPSS Inc., Chicago, IL, USA).
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Figure 2. Zone definitions of normalized HRV. (A) Zone 1: High parasympathetic/low sympathetic.
(B) Zone 2: High parasympathetic/normal sympathetic. (C) Zone 3: High dual autonomic tone. (D)
Zone 4: High sympathetic/normal parasympathetic. (E) Zone 5: High sympathetic/low parasym-
pathetic. (F) Zone 6: Normal sympathetic/low parasympathetic. (G) Zone 7: Low sympathetic and
parasympathetic. (H) Zone 8: Low sympathetic/normal parasympathetic.

2.5. Classification

This study used four basic machine-learning algorithms (LDA, KNN, DT, and LSVM)
to verify the features. Optimization results for each classification method were obtained
with 10-fold cross-validation by using parameter optimization for classifiers in the classifi-
cation learner, a MATLAB toolbox. The options for the optimizer are as follows: optimizer,
Bayesian optimization; acquisition function, expected improvement per second plus; itera-
tions, 100; training time limit, no; and validation, tenfold cross-validation. The accuracy,
recall, precision, F1 score, and receiver operating characteristic (ROC) curve, with the
area under the ROC curve (AUC) as the metric, were analyzed to determine the perfor-
mance of each classification. Additionally, a permutation test was conducted to determine
the confidence of the classifiers. The permutation data were repeatedly classified for
10,000 iterations for each classifier (2020b, MathWorks Inc., Natick, MA, USA).

3. Results
3.1. SSQ Scores

All SSQ scores (i.e., N, O, D, and total SSQ) in the VR viewing condition are higher
than those in the 2D viewing condition. As seen in Figure 3, the ANCOVA analysis reveals
a significant difference in post-viewing condition for N, O, D, and total SSQ scores with the
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pre-viewing condition as a covariate (N score: F1,53 = 75.948, p < 0.001, with a large effect
size (ηp2 = 0.589); O score: F1,53 = 94.215, p < 0.001, with a large effect size (ηp2 = 0.640);
D score: F1,53 = 91.157, p < 0.001, with a large effect size (ηp2 = 0.632); total SSQ score:
F1,53 = 192.424, p < 0.001, with a large effect size (ηp2 = 0.784)).
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3.2. Cardiac Activity

For the VR viewing condition, the heart rate, SDNN, pNN50, and ln HF are lower than
those in the 2D viewing condition. Moreover, the ln VLF and ln VLF/ln HF ratios are larger
than those under the 2D viewing conditions. As seen in Figure 4, the ANCOVA analysis
reveals a significant difference in post-viewing condition for SDNN, pNN50, ln VLF, ln HF,
and ln VLF/ln HF ratio with the pre-viewing condition as a covariate (SDNN: F1,53 = 15.244,
p < 0.001, with a large effect size (ηp2 = 0.223); pNN50: F1,53 = 11.212, p < 0.0083, with
a large effect size (ηp2 = 0.175); ln VLF: F1,53 = 37.031, p < 0.001, with a large effect size
(ηp2 = 0.411); ln HF: F1,53 = 56.352, p < 0.001, with a large effect size (ηp2 = 0.515); ln VLF/ln
HF ratio: F1,53 = 50.513, p < 0.001, with a large effect size (ηp2 = 0.488)]. Additionally,
the heart rate shows no significant result [F1,53 = 2.456, p < 0.001, with a small effect size
(ηp2 = 0.044)).

3.3. Normalized HRV (Autonomic Balance)

The autonomic balance was plotted in nine zones of two dimensions using ln VLF
(x-axis) and ln HF (y-axis) values for each 2D and VR viewing condition. Considering
the results, the 2D condition pattern is stabilized before and after viewing, and the 3D
condition pattern can be observed to be significantly changed. As seen in Figure 5, the
autonomic balance is mainly located within the reference zone prior to the 2D viewing
condition and almost remains within that reference zone without significant changes after
viewing. However, in the VR viewing condition, the autonomic balance moves consistently
from within the reference zone before viewing to almost into Zone 5 after viewing. From
these results, VR viewing destabilizes the autonomic balance and shifts it to a generally
activating sympathetic and deactivating parasympathetic nerve.

3.4. Correlation Analysis

Partial correlation is present between the total SSQ score and significant cardiac
features in the post-viewing condition, with residual covariates in the pre-viewing condition.
Figure 6 shows the plot of residuals for the total SSQ score and cardiac features with linear
regression lines. The correlation coefficients between the total SSQ scores and cardiac
features (i.e., heart rate, SDNN, pNN50, ln VLF, ln HF, and ln VLF/ln HF ratio) in the
post-viewing condition are significantly different (SDNN: r = −0.381, p < 0.01; pNN50:
r = −0.377, p < 0.01; ln VLF: r = 0.653, p < 0.001; ln HF: r = −0.711, p < 0.001; ln VLF/ln HF
ratio: r = 0.677, p < 0.001). Additionally, note that the heart rate is not significantly different
(r = −0.160, p > 0.05).
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3.5. Classification Performance and Permutation Test

In this study, the 2D and VR viewing conditions are classified. The features for the
classification are only five statistically significant indicators (SDNN, pNN50, ln VLF, ln HF,
and ln VLF/ln HF ratio). The heart rate is not included in the classification features. The
optimized hyperparameters are as follows: the data for all methods are standardized; the
number of neighbors for KNN is 28, and Euclidean distance is applied; the split criterion
for DT is maximum deviance reduction, and the maximum number of splits is 2; the box
constraint level for LSVM is 0.0706. The accuracies, recalls, precisions, f1 scores, and AUCs
of the four classifiers (LDA, KNN, DT, and LSVM) are listed in Table 2. The ROC curves
for all classifiers are shown in Figure 7. All the classifiers are significant (p < 0.0001) in the
permutation test. Figure 8 shows the permutation test’s accuracy distributions for all the
classifiers (10,000 iterations).

Table 2. Performance of the different types of classifiers for the 2D and VR viewing conditions.

Accuracy Recall Precision F-1 Score AUC

LDA 85.7 89.3 83.3 86.2 0.94
KNN 87.5 92.9 83.9 88.2 0.93
DT 87.5 78.6 95.7 86.3 0.83

LSVM 91.1 96.4 87.1 91.5 0.96

3.6. Real-Time System to Monitor MS

The developed real-time system for assessing MS comprises a Wireless ECG Amplifier
(Bionomadix BN-ECG2 units), a power supply (MP160), and a personal computer for
analysis. It can classify an MS or normal state in a VR environment using an HMD device.
This system monitors user behavior via webcam and VR scenes and confirms the results of
cardiac features in both the time and frequency domains. In addition, the results depending
on time for assessing MS can be confirmed using a sliding bar for each time log. The system
was developed using MATLAB App designer (2020b, Mathworks Inc., Natick, MA, USA),
and signal processing is performed using the MATLAB toolbox (2020b, Mathworks Inc.,
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Natick, MA, USA), as shown in Figure 9. A real-time system was constructed to record the
onset-trigger for the start of the HMD device using user datagram protocol communication
to synchronize with the computer for MATLAB. As shown in Figure 10, the proposed
method for classifying the MS state involves the processes of signal measurement and
synchronization, pre-processing, feature extraction, and classification.
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Figure 9. Real-time system for assessing MS using cardiac activity. (A) User monitor cam. (B) VR
scene. (C) ECG raw signals and detecting the R-peaks. (D) HRV by FFT. (E) Results of the cardiac
time domain indices (i.e., SDNN and pNN50). (F) Results of the cardiac frequency domain indices
(i.e., ln HF, ln VLF, and ln VLF/ln HF ratio). (G) Results of the nine zone in autonomic balance by the
normalized HRV. (H) Sliding bar in each time log. (I) The binary decision for MS.
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4. Discussion

This paper proposes a quantitative method for measuring MS based on cardiac ac-
tivity and a real-time system for assessing the same. This study confirms whether 2D
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and VR viewing conditions cause MS in subjects based on SSQ scores. The subjects in
the VR viewing condition demonstrably experience MS but not in the 2D viewing con-
dition, because the SSQ scores show a statistically significant difference between the 2D
and VR viewing conditions. This study yields four significant findings: (1) The cardiac
features, such as SDNN, pNN50, ln VLF, ln HF, and ln VLF/ln HF ratio, show a significant
difference between the 2D and VR viewing conditions based on the ANCOVA analysis.
(2) Considering the normalized HRV, the autonomic balance is located within the reference
zone in the normal state. However, it moves almost into Zone 5 in MS. (3) The correlation
coefficients between the total SSQ score and significant cardiac features are in the range
of −0.377 to −0.711 (for SDNN, pNN50, and ln HF) or 0.653 to 0.677 (for ln VLF and ln
VLF/ln HF ratio), indicating significant negative or positive correlations, respectively, in
the range of weak to strong. (4) Among the algorithms for classifying MS, the highest
average accuracy, recall, precision, F1 score, and AUC of MS classification results using the
LSVM achieved 91.1, 96.4, 87.1, 91.5, and 0.96 (10-fold cross validation), respectively. The
ROC curve is a useful tool when predicting the probability of a binary classification. In
general, skillful models reveal curves that bow up to the top left of the plot. When the curve
is close to the point (0,1), it is evaluated to be the perfect model. In addition, recall and
precision are defined as the ratio of correctly classified positive samples to a total number
of classified positive samples (either correctly or incorrectly) and the ratio between the
numbers of positive samples correctly classified as positive to the total number of positive
samples. Recall and precision are metrics used to assess the performance of classification
algorithms since accuracy alone is not sufficient to understand, and improving precision
typically reduces recall and vice versa. A good classification model needs to strike the right
balance between precision and recall [59]. F1 score is used by combining precision and
recall to obtain a balanced classification model. The proposed LSVM-based classification
model was confirmed to have good performance. The permutation test generates a null
distribution by calculating the accuracy of the classifier on 10,000 different permutations
from the experimental data set, and the permutation-based p-values are used to assess the
competence of a classifier. This study confirmed that the classification model for the MS
reveals a significant result in the permutation test (10,000 iterations, p < 0.0001).

A significant difference can be observed in the cardiac activity results of individuals
with subjective symptoms of MS. In this study, both the SNS’s activation and the PNS’s
deactivation are determined from the normalized HRV indices in subjects that experience
MS. The normalized HRV features have been demonstrated to best reflect the SNS and PNS
activities [60,61]. The findings of this study are consistent with those of previous studies
in the following aspects: (1) SNS activation (i.e., increasing VLF or LF power) [1,62–64]
and (2) PNS deactivation (i.e., decreasing HF power) [1,58,61]. Physiological and mor-
phological connections exist between the vestibular and autonomic nervous systems (i.e.,
the SNS and PNS) [65,66]. Conflicting inputs of afferent signals from visual, vestibular,
and somatosensory signals cause MS, and MS typically transmits vestibuloautonomic
responses in humans [67]. The activation of SNS can be interpreted as a defensive reaction
against the sensation of nausea [68] and is closely related to physiological stress [69]. In a
study combining HRV and functional magnetic resonance imaging, brain regions of the
medial prefrontal cortex (MPFC) were reported to correlate significantly with the PNS
activation during moderate and strong nausea. The MPFC, known to reflect automatic
modulatory regions, may have an excitatory influence on the autonomic control regions.
MS is closely associated with the switch from the inhibitory to excitatory influences on the
cardiovagal outflow [70]. In addition, SDNN reflects both the sympathetic and parasympa-
thetic influences, and pNN50 corresponds to the parasympathetic neural regulation from
heart activity [71]. This study verifiably demonstrates that the SDNN and pNN50 show a
significant difference between the MS and normal states, and the results of this study agree
with those of previous studies [44,72]. Moreover, cardiac-related features are verified to
be closely related to the phenomenon of MS and are significant indicators for quantitative
assessment of MS.
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In addition, many previous studies have reported that MS is strongly associated with
the cognitive load caused by inconsistencies or conflicts among different types of sensory
information (i.e., visual and motor) [2,16,73–75]. Sensory conflict is a well-known theory
that explains MS, and it can be caused by a mismatch or inconsistency between the visual
and vestibular senses during HMD usage [76]. MS can lead to distortions and delays in
visual information processing by the brain due to a mismatch between sensory information;
moreover, it can be interpreted as consuming excessive neural resources for processing
the massive visual information in VR compared to that in 2D [2,16]. Cardiac activity is
strongly associated with cognitive load. The heart transmits sensory information related to
its activities to the brain based on afferent pathways, and this phenomenon is known as
heartbeat-evoked potentials (HEPs) [1,77]. Cognitive processing in the brain is influenced
by the changes in heart rhythm via the afferent and efferent pathways between the heart
and brain [77–79]. Our previous work demonstrated that increasing cognitive load is
correlated with an irregular pattern of heart rhythms (that is, increasing SDNN and pNN50),
increasing the activation of SNS, and decreasing the activation of PNS [40]. In previous
studies, significant results of cardiac activity have also been confirmed as an indicator of
cognitive load [80–83]. Thus, the findings in this study related to changes in cardiac activity
can suggest that the cognitive load can be interpreted as conflict among sensory inputs and
processing large amounts of visual information. In addition, a quantitative method and real-
time system for monitoring MS are developed in this study. Many previous studies have
attempted to perform quantitative measurements using EEG, HEP, vision responses, and
multi-modal fusion. These studies reported that MS can be classified with 74.7% to 99.1%
accuracy [2,16,24–35]. In this study, a competitive classification accuracy (91.1%) of MS
compared to previous studies was achieved using a single measurement. In addition, the
approach used in previous studies has high complexity and disadvantages for measuring
or evaluating MS, such as the measurements requiring sensor attachments, as well as
low usability compared to cardiac activity. The proposed method also has the advantage
of minimizing limitations such as complex and expensive equipment, inconvenience,
and the burden of sensor attachment, which can be further minimized by replacing the
implemented ECG sensor with photoplethysmography, compared to approaches using
EEG or multimodal fusion, as in past studies. The method proposed in this study cannot
be judged to have improved performance or contribution compared previous studies, but
there will be differences in potential fields of application based on the advantages and
disadvantages of each measurement method. For example, EEG or other features can
be used primarily for precise measurements of MS because they have the advantage of
measuring more important and significant data. We believe that the proposed method will
have a contribution that can be applied to fields requiring fast and convenient measurement
of MS based on usability, which is simple to measure. In addition, the symptoms of MS
are known to be caused by various factors, such as user characteristics (i.e., viewing time,
age, gender), viewing environment (i.e., gaze angle, fixation, field of view), device, and VR
content (i.e., resolution). The relationship between the MS state and these causal factors
should be verified to minimize the sensitivity of the MS. To verify each condition’s effect
on the MS, the development of a methodology for quantitatively evaluating the MS state
should be preceded. Thus, the proposed method can contribute to improving the VR
experience for viewers by minimizing MS.

This study has several limitations. (1) This study selected an SSQ questionnaire
to perform the subjective measurement of MS, because the SSQ questionnaire is the best-
known test for the subjective measurement for MS. However, traditional SSQ questionnaires
were developed for measuring cybersickness and may differ significantly from today’s VR
experience. In future studies, recently revised questionnaires need to be considered (e.g.,
virtual reality sickness questionnaire [84]), including the traditional SSQ questionnaire.
(2) Previous studies related to MS have often reported conflicting results. For example, after
experiencing the phenomena of MS, one study reported an increase in HR [36], whereas
another identified a decrease in HR [37]. This study confirmed a decrease in HR consistent
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with the previous study [37], but it showed no statistically significant difference between
2D and HMD. These discrepancies in study conclusions may be attributed in part to
experimental and procedural differences [85]. Alternatively, they could be attributable to
differences in VR content or HMD device. Thus, it cannot be determined that the proposed
method can measure all of the MS symptoms caused by various conditions. This limitation
needs to be validated via future studies.

5. Conclusions

This paper proposes a method for assessing MS caused by watching VR content on an
HMD using cardiac features. This study demonstrates a significant difference in cardiac
features between the MS and normal states, and the classification performance achieves an
average accuracy of 91.1%. In addition, a real-time system was developed for continuously
monitoring MS using significant cardiac features. The proposed method can quantify the
level of MS severity and determine the optimal viewing factors of a VR environment (i.e.,
viewer characteristics, viewing condition, VR content factors, and HMD device factors) to
minimize the symptoms of MS. This research will consequently help improve the viewing
environment and lead to the establishment of viewer-friendly VR. However, since MS
is strongly correlated with various factors, such as age and gender [86], further research
should be conducted to increase the generality of the classifiers in subjects of different ages
and genders.
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Appendix A

Table A1. Simulator sickness questionnaire [45]. Instruction: Circle how much each symptom below
is affecting you right now.

SSQ Item None: 0, Slight: 1, Moderate: 2, Severe: 3

General discomfort None� Slight� Moderate� Severe�
Fatigue None� Slight� Moderate� Severe�

Headache None� Slight� Moderate� Severe�
Eyestrain None� Slight� Moderate� Severe�

Difficulty focusing None� Slight� Moderate� Severe�
Increased salivation None� Slight� Moderate� Severe�

Sweating None� Slight� Moderate� Severe�
Nausea None� Slight� Moderate� Severe�

Difficulty concentrating None� Slight� Moderate� Severe�
Fullness of Head None� Slight� Moderate� Severe�

Blurred vision None� Slight� Moderate� Severe�
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Table A1. Cont.

SSQ Item None: 0, Slight: 1, Moderate: 2, Severe: 3

Dizziness with eye open None� Slight� Moderate� Severe�
Dizziness with eye closed None� Slight� Moderate� Severe�

Vertigo None� Slight� Moderate� Severe�
Stomach awareness None� Slight� Moderate� Severe�

Burping None� Slight� Moderate� Severe�
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