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Abstract: The crash of an aircraft with an almost vertical attitude in Wuzhou, Guangxi, China, on 21
March 2022, has caused a robust discussion in the civil aviation community. We propose an active
disturbance rejection controller (ADRC) for suppressing aeroelastic vibrations of a flexible aircraft at
the simulation level. The ADRC has a relatively simple structure and it has been proved in several
fields to provide better control than the classical proportional-integral-derivative (PID) control theory
and is easier to translate from theory to practice compared with other modern control theories. In
this paper, the vibration model of the flexible aircraft was built, based on the first elastic vibration
mode of the aircraft. In addition, the principle of ADRC is explained in detail, a second-order
ADRC was designed to control the vibration model, and the system’s closed-loop frequency domain
characteristics, tracking effect and sensitivity were comprehensively analyzed. The estimation error of
the extended state observer (ESO) and the anti-disturbance effect were analyzed, while the robustness
of the closed-loop system was verified using the Monte Carlo method, which was used for the first
time in this field. Simulation results showed that the ADRC suppressed aircraft elastic vibration better
than PID controllers and that the closed-loop system was robust in the face of dynamic parameters.

Keywords: ADRC; vibration suppression; PID; Monte Carlo; frequency domain analysis; simulation

1. Introduction

In recent years, civil aviation companies have tended to adopt aircraft designs with
larger aspect ratios to reduce their induced drag, achieve speed breakthroughs and reduce
fuel consumption. However, this design sacrifices the aircraft’s stability and produces
flight vibrations [1]. Compared to conventional designs, slender aircraft have larger wave
resistance and are subject to increased reaction forces. Therefore, as civil aircraft are
improved, more pronounced and sustained vibrations occur [2,3]. Corresponding to
the fatigue theory of engineering mechanics, elastic vibrations in flexible aircraft can
reduce their service life and may even damage the mechanical structure at certain specific
frequencies, leading to more severe effects [3].

In recent years, scholars have been focusing on effectively suppressing the elastic
vibration of aircraft to improve its performance. Chatter suppression techniques can be
divided into two main categories: passive suppression and active suppression. Passive
chatter suppression mainly seeks more stable operation at the expense of vehicle per-
formance, such as increasing airframe weight and reducing flight distance [4]. Active
suppression is mainly to effectively suppress the flutter phenomenon by optimizing the
aircraft’s control system. Active flutter suppression (AFS) technology can be traced back
to the research content of the famous project, active flexible wing (AFW), in the late 20th
century [5]. Currently, the more mainstream AFS techniques include classical PID control,
linear quadratic Gaussian (LQG) control, H∞ Control, sliding mode (SM) control, and fuzzy
logic controller (FLC) [6–26], all of which play essential roles in modern control theory and
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have attracted the research interest of scholars. Figure 1 shows the development of some
active flutter suppression techniques in chronological order.
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Figure 1. Timeline of the development of mainstream active flutter suppression controllers.

The invention of the PID control algorithm is primarily credited to Ziegler and Nichols,
who introduced the concept of PID to the world in 1942 [6]. PID is the most widely
used control algorithm and dominates the controller design subject. About 70 years later,
Wang et al. developed a vibration model of the aircraft takeoff and landing process to
facilitate the performance of the landing gear system through PID control [7]. After nearly
a century of development, the functionality of PID has been over-exploited to the point
that breakthroughs have been challenging. Many scholars have tried combining PID with
different reference-seeking models in recent years to improve the control effect [8–10].

Gupta first proposed LQG control in 1980 and compared it with conventional con-
trollers [11]. Ahmad, S., A. and Na, S., et al. have tried combining LQG with different
feedback control strategies [12,13]. After 10 years of development, Franciszek combined the
H∞ method with LQG to give a theoretical solution for nonlinear aeroelastic vibrations [14],
the H∞controller. Since its introduction in 1993, the control theory has been continuously
discussed by scholars [15]. The works of Navya and Alexandr V. conducted a simulation
analysis of the H∞ controller in the aerospace field [16,17]. The sliding model was first pro-
posed in 1990 and applied to aerospace control at the beginning of the 21st century [18]. In
the following 20 years, scholars have improved SMC strategies with different compensation
methods [19–21]. In recent years, deep learning has brought epic changes in various fields.
Han et al. proposed a controller combining SMC and reinforcement learning to achieve
greater robustness and control accuracy [22]. FLC is also an essential player in modern
control theory, and its performance has been widely discussed in the aerospace control
field [23–26]. However, the researchers realized that there are several problems with the
above algorithms, such as the PID algorithm seems too simple to adapt to industry appli-
cation. The assumptions of modern control algorithms, such as LQG and SMC, are valid.
However, the mathematical form is too complex and requires a high level of controller
design, making it difficult to achieve a breakthrough from simulation to application.
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The invention of the PID control algorithm is primarily credited to Ziegler and Nichols,
who introduced the concept of PID to the world in 1942 [6]. PID is the most widely
used control algorithm and dominates the controller design subject. About 70 years later,
Wang et al. developed a vibration model of the aircraft takeoff and landing process to
facilitate the performance of the landing gear system through PID control [7]. After nearly
a century of development, the functionality of PID has been over-exploited to the point
that breakthroughs have been challenging. Many scholars have tried combining PID with
different reference-seeking models in recent years to improve the control effect [8–10].

Gupta first proposed LQG control in 1980 and compared it with conventional con-
trollers [11]. Ahmad, S., A. and Na, S., et al. have tried combining LQG with different
feedback control strategies [12,13]. After 10 years of development, Franciszek combined the
H∞ method with LQG to give a theoretical solution for nonlinear aeroelastic vibrations [14],
the H∞ controller. Since its introduction in 1993, the control theory has been continuously
discussed by scholars [15]. The works of Navya and Alexandr V. conducted a simulation
analysis of the H∞ controller in the aerospace field [16,17]. The sliding model was first pro-
posed in 1990 and applied to aerospace control at the beginning of the 21st century [18]. In
the following 20 years, scholars have improved SMC strategies with different compensation
methods [19–21]. In recent years, deep learning has brought epic changes in various fields.
Han et al. proposed a controller combining SMC and reinforcement learning to achieve
greater robustness and control accuracy [22]. FLC is also an essential player in modern
control theory, and its performance has been widely discussed in the aerospace control
field [23–26]. However, the researchers realized that there are several problems with the
above algorithms, such as the PID algorithm seems too simple to adapt to industry appli-
cation. The assumptions of modern control algorithms, such as LQG and SMC, are valid.
However, the mathematical form is too complex and requires a high level of controller
design, making it difficult to achieve a breakthrough from simulation to application.
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The active disturbance rejection control (ADRC) algorithm, as an innovative product
of PID theory, is expected by developers to achieve a breakthrough from theory to practical
application of modern control algorithms. Jingqing Han formally proposed ADRC in 1998.
The core of ADRC is the extended state observer (ESO), which estimates the system’s state
and compensates for perturbations using the control method, turning the controlled object
into a purely integral object [27]. Han pointed out the problems of PID algorithms and tried
to use ADRC to solve the dilemma that PID has not made breakthroughs in development
for decades [27–29]. Gao simplified Han’s work to obtain the linear active disturbance
rejection control (LADRC) technique, which makes parameter tuning easier [30].

Regarding vibration suppression in aerospace, the control effectiveness of ADRC has
been affirmed by researchers at the simulation level. Liu et al. combined an electromechan-
ical actuator (EMA) with LADRC to propose a dynamic aircraft servo system [31]. Yang
et al. used ADRC to suppress the elastic vibration of a high aspect ratio UAV fuselage [32].
Chen and Zhao proposed a Support Vector Machine (SVM) ADRC control strategy for
UAVs to suppress the system chattering [33]. Wang et al. proposed an improved ADRC
strategy to simulate and analyze hypersonic aerospace models [34]. Duan et al. modeled
the helicopter load system to study the effect of load sway on the helicopter and confirmed
the effectiveness of ADRC [35]. Wang et al. analyzed the limit cycle vibration suppression
in hovering conditions. The results showed that ADRC has outstanding performance in
suppressing limit cycle vibration and eliminating attitude control errors [36]. The work of
Qiao and Zhong et al. brought innovation to ADRC control theory and applied it to the
simulation analysis of aerospace control [37,38]. ADRC has been applied in some fields,
such as financial [39] and industrial [40] fields, and some degree of progress has been made
due to the application of ADRC. For example, in 2010, ADRC was first applied to a factory,
reducing its energy consumption by 41% [40]. Therefore, ADRC algorithm’s role in aircraft
controller design is also highly anticipated and has a high research value.

On 21 March 2022, the near-vertical crash of China Eastern Airlines plane MU5735
became a worldwide sensation. It was the deadliest air crash in China in 28 years. Across
the globe, air crashes occur every year. Although air crashes do not occur as frequently
as traffic accidents, the damage caused is enormous. After every air crash, there seems to
be a warning that controllers need to be reformed to suit the needs of the airlines. In this
study, we take a comprehensive engineering frequency domain analysis of the aeroelastic
vibration model, mainly for flexible aircraft. In addition, we combined the developed
aircraft elastic vibration model with the designed second-order active disturbance suppres-
sion controller to analyze the closed-loop control effect and the tracking performance and
sensitivity of the closed-loop system. Finally, the Monte Carlo shooting method verified
the system’s robustness.

2. Flexible Aircraft Aerodynamic Vibration Model

Maki et al. created an aerodynamic vibration model of flexible aircraft in 1972 [41].
Furthermore, Zhong et al. built the aircraft model based on Maki’s theory in 2021 [38]. The
general mathematical model of flexible aircraft pitch angle difference and the first elastic
mode is given by [38,42]:{ ..

θ(t) = −b1
.
θ(t) + b2(θ(t) + α)− b3u(t)− b11

.
q1(t)− b21q1(t) + d1(t),

..
q1(t) = −2ξω1

.
q1(t)−ω2

1q1(t) + c1
.
θ(t) + c2θ(t) + c3u(t)− d2(t).

(1)

The two equations in Equation (1) represent the rigid body aerodynamic model chan-
nel of the aircraft pitch angle and the elastic vibration channel of the flexible aircraft,
respectively. Figure 2 is a schematic diagram of the mathematical model in a flexible
aircraft. Where θ(t) is the pitch angle difference, that is, the difference of the pitch angle
at immediate posture (in time) and the initial posture, u(t) is the control signal, q1(t) is
the first generalized elastic mode of vibration, and it simulates the elastic vibration of the
aircraft during flight. ξ and ω1 are the damping ratio and the natural frequency of the
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elastic mode, respectively, c3 represents the control gain of the elastic mode q1(t), c1, c2, b11
and b21 are the coupling coefficients between the pitch angle and the first mode, α is the
attack angle, d1(t) and d2(t) simulates the external disturbance of the system.
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Figure 2. Schematic diagram of the elastic aircraft model. (a) the establishment of a flexible aircraft
coordinate system; (b) schematic diagram of the mathematical model (Equation (1)). Among them,
pitch angled difference represents physical quantity θ(t), and pitch angle is equal to climb angle plus
attack angle (α).

The dynamic system’s Laplace-transfer matrix of zero initial condition is obtained. It
is worth noting that the study in this section focuses only on the control object itself, so the
external disturbance d1(t) and d2(t) are temporarily ignored in this section, and the angle
of attack α = 0 is assumed.

(
s2+b1s−b2
−b3

)
Θ(s) +

(
b11s+b21
−b3

)
Q(s) = U(s),(

−c1s−c2
c3

)
Θ(s) +

(
s2+2ξω1s+ω2

1
c3

)
Q(s) = U(s).

(2)
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According to Gramer’s Law, the transfer function matrix is calculated:

Gp =

[
G1
G2

]
=

 Θ(s)
U(s)
Q(s)
U(s)


=

 (s2+2ξω1s+ω2
1)(−b3)−(b11s+b21)(c3)

∆(s)
(c1s+c2)(−b3)+(s2+b1s−b2)(c3)

∆(s)

,

(3)

Among them,

∆(s) = s4 + (2ξω1 + b1)s3 + (ω2
1 + 2ξω1b1 − b2 + c1b11)s2+

(b1ω2
1 − 2ξω1b2 + c2b11 + c1b21)s + c2b21 − b2ω2

1.
(4)

b1 = 0.05, b2 = 4, b11 = 0.0005, b21 = 0.05, c1 = 0.05, c2 = 30, ξ = 0.006,
ω1 = 30 rad/s, b3 = 13 and c3 = 330 [38]. Bode plots of the transfer function G1 and
G2 are shown in Figure 3.
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Figure 3. Bode plots of the transfer function. (a) the Bode plot of G1; (b) the Bode plot of the G2.

For the transfer function G1, the bandwidth (w) is w1 = 1.28 rad/s, the resonant
peak (Mr) and resonant frequency (R f ) are Mr1 = 3.26 dB, R f1 = 0 rad/s respectively,
while for the transfer function G2, w2 is equal to 43.38 rad/s, Mr2 is 30.60 dB, while R f2
is 30.00 rad/s (equals to ω1). In general, the system bandwidth is relatively large, so the
system has a strong tracking capability for step signals. The resonant peaks and frequencies
are relatively large, so the system is less stable in response to step signals.

3. Active Disturbance Rejection Controller Design

The ADRC control system consists of two main components, namelyu the extended
state observer (ESO) and the proportional difference (PD) control method. In this section,
we designed a second-order ADRC from these two parts, summarized how to simplify the
ADRC parameter tuning, and analyzed the closed-loop system and its sensitivity.

3.1. Extended State Observer

Any dynamic system can be expressed by

y(n) + a1y(n−1) + · · ·+ an−1y(1) + any = k(u(m) + b1u(m−1) + · · ·+ bm−1u(1) + bmu) + w, (5)
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where y(n) refers to the nth order derivative of the control object output, u(m) refers to the
mth order derivative of the control signal, w is unknown terms for all external disturbances,

and the coefficient vectors
→
a and

→
b where any element ∈ R. The general expression of

..
y is

obtained by
..
y = f + b0u. (6)

Among them, b0 = bm/an−2, f contains all the terms in Equation (5) except y(2) and u.
Therefore, f is expressed by a linear combination of other terms, that is

f (y(n), y(n−1), · · · , u(m), · · · , u(1), w). (7)

Term f is defined as the generalized disturbance, including all perturbations inside and
outside the system, which can be estimated by ESO to obtain f̂ . The equation below is a
control law involved in ADRC:

u =
− f̂ + u0

b0
. (8)

which u0 will be discussed in PD controller design section. Rewrite Equation (6):

..
y =

(
f − f̂

)
+ u0, (9)

where
(

f − f̂
)

is the estimation error, and Equation (6) can be rewritten as the following
state-space equations: {

.
x = Ax + Bu + E

.
f ,

y = Cx,
(10)

Among them, 

.
x =

[ .
x1

.
x2

.
x3
]T

=
[

.
y

..
y

.
f
]T

,

A =

 0 1 0
0 0 1
0 0 0

, B =

 0
b0
0

, E =

 0
0
1

,

C =
[

1 0 0
]
.

(11)

ESO is a stuff used to estimate x1, x2 and f . The estimated state-space equations are
shown in the equation {

.̂
x = Ax̂ + Bu + E

.̂
f + L(x1 − x̂1),

x̂1 = Cx̂,
(12)

where x̂ =
[
ŷ

.̂
y f̂

]T
, L(x1 − x̂1) is estimated compensation items, L is expressed by[

α1 α2 α3
]T, is the gain vector of the ESO, and directly affects the performance of the

observer. Rewriting Equation (12) yields:

.̂
x = (A− LC)x̂ + Bu + E

.̂
f + Lx1. (13)

When the determinant of the matrix (A− LC) is equal to zero, the system can converge.

det(λI − (A− LC)) = det

λ + α1 −1 0
α2 λ −1
α3 0 λ

. (14)

The characteristic polynomial p(n) can be expressed as:

p(n) = λ3 + α1λ2 + α2λ + α3, (15)
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where α1, α2, α3 are the adjustable parameters. To simplify the work of parameter adjust-
ment, the equation below has been proposed [30].

p(n) = (λ + ω0)
3, (16)

where α1 = 3ω0, α2 = 3ω2
0, and α3 = ω3

0.

3.2. PD Control Law

Assuming that the estimated value f̂ has accurate estimation, then we obtain

..
y =

(
f − f̂

)
+ u0 ≈ u0. (17)

Then, u0 should be concerned, and the problem is solved by classical PD control law,

u0 = kp(r− x̂1)− kd x̂2. (18)

By rewriting Equations (17) and (18), the transfer function of the PD control law can
be obtained

Gpd =
kp

s2 + kds + kp
. (19)

To simplify the PD law’s parameters, the equation below has been proposed [30],

Gpd =
kp

(s + ωc)
2 , (20)

where kd = 2ωc and kp = ω2
c , the final value theorem tells us that the pole occurs at −ωc,

and if ωc is greater than zero, the system will eventually stabilize [3].

3.3. Closed-loop Analysis

For the flexible aircraft vibration model in the previous section, it is suggested to use
the second-order ADRC controller described above for its control. In order to simulate
the natural data acquisition pattern during flight, it is assumed that there is a specific
relationship equation between the first mode q1(t) and the pitch angle error θ(t) [38],

θm(t) = θ(t) + 0.2q1(t), (21)

where θm(t) is the state value obtained directly by the aircraft observer and 0.2 is the
measurement factor.

Combining ESO with the vibration model and rewriting the state-space Equation (10) obtains{
.
x = Ax + Bu(t) + C

.
f ,

y = Dx.
(22)

Among them,

x =
[

θm(t)
.
θm(t) f

]T
,

f = −b1
.
θm(t) + b2(θm(t) + α) + 0.2

..
q1(t)

(−b11 + 0.2b1)
.
q1(t) + (−b21 − 0.2b2)q1(t) + d1(t),

A =

 0 1 0
0 0 1
0 0 0

, B =
[

0 b0 0
]T ,

C =
[

0 0 1
]T , y = θm(t),

D =
[

1 0 0
]T .

(23)
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ESO estimates the state vector x and obtains the estimating equation:

.̂
x = Ax̂ + Bu(t) + C

.̂
f + L

(
θm(t)− θ̂m(t)

)
, (24)

where {
x̂ =

[
θ̂m(t)

.̂
θm(t) f̂

]T
,

L =
[

3ωo 3ω2
o ω3

o
]
.

(25)

In order to obtain the control signal u(t), it can be obtained by solving Equation (18),
u0(t), which is then converted to u(t) from Equation (8). Simplifying the progress obtains:

u(t) =
− f̂ + 2ωc

(
r− θ̂m(t)

)
−ω2

c
.̂
θm(t)

b0
. (26)

The aircraft model and the ADRC controller were successfully combined to form a
feedback closed-loop (see Figure 4), where Gp represents the controlled object and Gc and
F represents the active disturbance rejection controller (ADRC) [43].
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The transfer function of the closed-loop system needed to be analyzed to predict the
characteristics of the system. The transfer function of ADRC we designed can be given
by [43]: 

Gc =
kp(s3+β1s2+β2s+β3)

b0[s3+(β1+kd)s2+(β2+s2β1+kp)s]
,

F =
(kp β1+kd β2+β3)s2+(kp β2+kd β3)s+kp β3

kp(s3+β1s2+β2s+β3)
.

(27)

The transfer function of the controlled object is given by Equation (3), and combined
with Equation (27), the closed-loop transfer function Gcl can be found:

Gcl =

[
Gcl1
Gcl2

]
=

[
GcG1

1+FGcG1
0.2GcG1

1+0.2FGcG1

]
. (28)

3.4. Parameter Tuning

By simplifying the parameters, there were finally three parameters left, namely, b0,
ω0 and ωc. The designed ADRC was simulated with the model for closed-loop feedback
control, and the parameter values of the ADRC were trained using a unit-step setup signal.
The parameter tuning of the model was limited by the range of values of some parameters
in Table 1. Please refer to the following steps for the parameter tuning method.

• As shown in Table 1, the six parameters of the elastic vibration model take random
values within the intervals (simulation part), and each parameter has two boundary
values. We know that if the system converges under a combination of 64 boundary
values, any random set of parameters in the interval converge under the closed-loop
system [38].
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• Under the premise of step (a), select the mean value combination of the parameters of
the vibration model, that is, ω1 = 30, b2 = 4, b3 = 13, c3 = 330, d1 = 0 and d2 = 0,
continuously train the simulation effect of the closed loop, and analyze the simulation
results. The maximum percentage overshoot (MPO-the percentage of maximum
overshoot from the set value), setting time (TS-the earliest moment when the controlled
object stabilizes in the interval [0.99,1.01]) and integral absolute error (IAE-the sum of
the errors between the output value and the set value in the simulation time) are used
as indicators to find the best simulation effect, and, then, the controller parameters
are determined.

Table 1. Parameter variation range [38].

Term Nomenclature Value Range

ω1 The natural frequency of the elastic mode [24, 36] rad/s
b2 Kinetic coefficient [3.2, 4.8]
b3 Kinetic coefficient [10.4, 15.6]
c3 Kinetic coefficient [264, 396]
d1 External disturbance of pitch angle [−0.07, 0.07] rad/s
d2 External disturbance of elastic modes [−1,1] rad/s2

Through continuous training of the model, the controller parameters were finally
determined, ω0 = 7.8 rad/s, ωc = 1.68 rad/s and b0 = −12.6, respectively. In real life,
almost every field involving control can find the shadow of the PID controller. It is no
exaggeration to say that among all controllers, PID is the most widely used controller at
present. In order to show more clearly the advantages of ADRC compared to PID, a closed-
loop containing a PID controller was considered. Considering the parameter tuning method
mentioned above and the optimization parameters of the genetic algorithm, the robust
characteristics of the PID controller were ensured [44], and the parameters of the designed
controller were the proportional coefficient (KP = −0.7), the integral coefficient (KI = −0.2),
the derivative coefficient (KD = −0.7) and the filter coefficient (N = 1), respectively.

Figure 5 illustrates the tracking effect of ADRC and PID closed-loop results. The
ADRC closed-loop control was far superior to the PID loop for pitch angle difference
and control signal input. At the same time, the PID controller lost credibility in the face
of the fourth-order instability object. Focusing on Figure 5a, for ADRC loop, the pitch
angle error peaked at 1.2942 rad at 3.58 s with a maximum overshoot of 29.42%. The 1%
setting-point was used as the upper and lower limits of the acceptable state. The setting
time of the closed-loop was considered as the point where it first maintained the acceptable
range, that is, θm(t) is in [0.99,1.01]. Therefore, the setting time of the ADRC loop was
8.65 s. Analyzing the control signal (Figure 5b), the minimum signal was minus 0.22 rad
at 1.00 s, and the maximum signal was 0.43 rad at 3.34 s. Such a smooth control signal
was appreciated. Overall, the designed ADRC controller achieved a good control effect by
parameter adjustment.

Moreover, the frequency domain of the closed-loop transfer function needed to be
analyzed. Analyzing the rad solid-lines of Bode diagrams (Figure 6) of the closed-loop
TFs Equation (28), for the transfer function Gcl1, the amplitude margin (Gm) was equal to
49.43 dB, and the phase margin (Pm) accounted for 60.34◦, the cutoff frequency (C f ) was
30.00 Hz, while for Gcl2, the Gm = 28.08 dB, the Pm = −89.39◦, and the C f = 19.04 Hz. The
relatively high cutoff frequency of the closed-loop system reflected the more extraordinary
ability of the system to cope with the dynamic response. The high amplitude margin
indicated the higher inclusivity and stability of the closed-loop system.
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Figure 5. Comparison of the control effects of ADRC and PID controller (tracking test). (a) The
simulation result of pitch angle of aircraft dynamic model under unit step signal; (b) The simulation
result of control signal of aircraft dynamic model under unit step signal.
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Figure 6. The Bode plots. (a) The Bode diagrams of closed-loop transfer function Gcl1 (rad solid-line),
the sensitivity transfer function S1 (blue dotted-line); (b) The Bode diagrams of closed-loop transfer
function Gcl2 (rad solid-line), the sensitivity transfer function S2 (blue dotted-line).

3.5. Closed-Loop Sensitivity

Sensitivity is an essential indicator of the robustness of a closed-loop control system.
For the closed-loop TFs (Equation (28)), the sensitivity function is given by [45]:

S =
d ln Gcl
d ln Gp

=
dGcl/Gcl
dGp/Gp

=
Gp

Gcl

dGcl
dGp

. (29)
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Given that the parameters of the controller transfer function Gc are fixed, while the
parameter set of the control object Gp is variable, bringing Equations (3) and (28) into
Equation (29), we obtain, by rewriting:

S =

[
S1
S2

]
=

[
1

1+FGcG1
1

1+0.2FGcG2

]
. (30)

The Bode diagrams of S1 and S2 have been shown by the blue dotted-lines (see
Figure 6). The Nyquist lines of F(jω)Gc(jω)G1(jω) and 0.2F(jω)Gc(jω)G2(jω) are planned
to be plotted in an imaginary coordinate system, and the point with the smallest distance
from the plotted line to the coordinate (−1,0) is found, while the maximum value of
sensitivity can be obtained. Its significance is elaborated in Wang’s book [46], where the
maximum amplitude of the sensitivity Ms is given by the following Equation:

Ms = max|S(jω)| = 1/r, (31)

where r refers to the radius of inscribed circle with the center point (−1,0), which is tangent
to the Nyquist graph line in the imaginary coordinate system (see Figure 7).
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Figure 7 shows the results of the sensitivity analysis of the closed-loop system with
two inscribed circles of radius r1 and r2, which were 0.62 and 0.57, respectively. Therefore,
the maximum amplitude of the sensitivity was Ms1 and Ms2, which were 1.61 and 1.74,
respectively. They were numerically equal to the resonance peaks analyzed from the Bode
plot. The maximum amplitudes were less than 2, indicating that the system was robust in
the face of parameter variations [46].

4. Simulation

In this section, the estimation error of ESO is first discussed, and then the parameters of
the aircraft model are randomly selected according to the Gaussian distribution. Simulation
results for each set of parameters are analyzed, and the system’s robustness is discussed.
Figure 8 shows the mathematical model used for the simulation, implemented by the
Simulink of Matlab.
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4. Simulation

In this section, the estimation error of ESO is first discussed, and then the parameters of
the aircraft model are randomly selected according to the Gaussian distribution. Simulation
results for each set of parameters are analyzed, and the system’s robustness is discussed.
Figure 8 shows the mathematical model used for the simulation, implemented by the
Simulink of Matlab.

Figure 8. Simulation model building.

4.1. ESO Estimation Error Analysis

A superiority of ADRC over the classic PID control method is its ability to provide
an observational estimate of the state. The control effectiveness of ADRC for pitch angle
vibration suppression is closely related to the accuracy of the ESO estimate.

As shown in Figure 9a–c, the maximum estimation error of θm(t) occurred at 1.19 s
with an error of 0.02 rad, and the estimation of θm(t) by ESO was very accurate because it
largely coincided with the true value. The maximum estimation error of

.
θm(t) occurred at

1.13 s with an estimation error of 0.64 rad/s. In general, the ESO’s estimation to
.
θm(t) was

relatively accurate. For the total perturbation f (t) estimation, the maximum estimation
error of 14.78 rad/s2 occurred at 1.00 s. The effectiveness of ESO in estimating the total
perturbation seemed less satisfactory, but such a result was acceptable because it included
the total disturbance of the system, which had larger uncertainty. The estimation error of
f (t) stabilized in the range of [–1,1] after 2.77 s and, eventually, became stable as the system
converged. Overall, the ESO estimates of the state variables largely overlapped with the
system’s output response, demonstrating the superiority of ADRC.

Figure 8. Simulation model building.

4.1. ESO Estimation Error Analysis

A superiority of ADRC over the classic PID control method is its ability to provide
an observational estimate of the state. The control effectiveness of ADRC for pitch angle
vibration suppression is closely related to the accuracy of the ESO estimate.

As shown in Figure 9a–c, the maximum estimation error of θm(t) occurred at 1.19 s
with an error of 0.02 rad, and the estimation of θm(t) by ESO was very accurate because it
largely coincided with the true value. The maximum estimation error of

.
θm(t) occurred at

1.13 s with an estimation error of 0.64 rad/s. In general, the ESO’s estimation to
.
θm(t) was

relatively accurate. For the total perturbation f (t) estimation, the maximum estimation
error of 14.78 rad/s2 occurred at 1.00 s. The effectiveness of ESO in estimating the total
perturbation seemed less satisfactory, but such a result was acceptable because it included
the total disturbance of the system, which had larger uncertainty. The estimation error
of f (t) stabilized in the range of [−1,1] after 2.77 s and, eventually, became stable as the
system converged. Overall, the ESO estimates of the state variables largely overlapped
with the system’s output response, demonstrating the superiority of ADRC.
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4.2. Disturbance Rejection Test

The system’s immunity to interference should be mentioned, and it is recommended
to consider the step disturbance terms d1(t) and d2(t) at 11 s, where d1(t) = 0.07 rad/s2

and d2(t) = −1.00 m/s2 [38]. As shown in Figure 8d, the pitch angle maximum occurred at
18.56s at 1.0029 rad with a maximum overshoot percentage of 0.29%, which indicated that
the system was always within the acceptable interval. At approximately 18s, the control
signal u(t) reached a maximum value of 0.294 rad and, finally, converged to a control signal
of 0.293 rad. The subtle changes in pitch angle and control signal proved that the system
had relatively good immunity to interference.

4.3. Robustness Analysis

In this section, we designed an innovative ADRC robustness testing method, the main
idea of which is based on Monte Carlo statistical analysis using Gaussian distribution. Un-
der the 3σ principle, it randomly draws the parameter values and composes 22,000 groups,
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guaranteeing a 99.73% confidence level in computer simulation. The random range of
values for each parameter is given in Table 1. The median of each variable parameter was
the mean value (u) of the Gaussian distribution, and one-third of the difference between
the mean and the upper or lower bound was used as the standard deviation (σ). Figure 10
shows the Gaussian probability density function curves for the six parameters in Table 1.
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Figure 10. The Gaussian probability density function curves for the six variable parameters: (a) The
natural frequency of elastic mode ω1; (b) The kinetic coefficient b2; (c) The kinetic coefficient b3; (d) The
kinetic coefficient c3; (e) The external disturbance of pitch angle d1; (f) The external disturbance of
elastic modes.

Simulations performed for each set of parameters, and the outputs were analyzed.
Three indices were planned to evaluate the system’s output: setting time (TS), maximum
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percentage overshoot (MPO), and integral absolute error (IAE). Of the 22,000 experiments
perform, 364 had parameters outside the upper and lower bounds of random values (3σ
principle). Therefore, only 21,636 sets of data were available.

Figure 11a,b show the simulation results for a total of 18,000 simulations, of which
17,706 sets of parameters satisfied the 3σ principal, and Figure 11c,d are the convergence
curves saved at the 2000th and 8000th simulations, respectively, during the experimental
process. From Figure 11a, there was a clear stratification of the setting time, which mainly
occurred at 6.64 s, 8.92 s and 11.32 s. The second stratification occurred at 8.92 s, and
the simulations with the setting time of less than 8.92 s accounted for 79.49% of the valid
simulation. In addition, the amounts of simulation with a maximum overshoot percentage
of less than 35% accounted for 78.59%, and the number when the integral absolute error
was less than 1200 was 99.28%. Overall, the control system showed strong robustness in
response to parameter changes.
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Figure 11. Monte Carlo shooting results. (a) The simulation results of the closed-loop system
under the combination of the 17,706 valid parameters sets out of total 18,000 (the co-relations be-
tween all three indictors); (b) The simulation results and the correlation between maximum percent-
age overshoot and integral absolute error; (c) 2000 convergence curves drawn during simulation;
(d) 8000 convergence curves drawn during simulation.
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Based on the experimental results, Table 2 counts three percentages under different
simulation times. The first one was the proportion of valid simulations (parameters
satisfying the 3σ principal). The second one was the ratio of the number of simulations
with the setting time less than 8.92s to the number of valid simulations. As can be seen
from Figure 11b, there was a strong linear relationship between the maximum percent
overshoot and the integral absolute error, and we chose one of them as the third percentage
in Table 2, which was the ratio of the number of simulations with the maximum percent
overshoot less than 35% to the valid number of simulations. It can be seen from Table 2 that
when the number of experiments reached more than 12,000 times, the changes of the three
percentages were less than 0.1%. Therefore, for a 6-parameter Monte Carlo shooting test,
the number of experiments was maintained at more than 12,000 times, and the number of
experiments could be considered sufficient.

Table 2. Statistical results under different simulation times.

Total Number of Monte
Carlo Shooting Valid Simulation (%) Setting Time < 8.92 s (%) Maximum Percentage

Overshoot < 35% (%)

100 100.00 77.00 76.00
200 99.50 77.89 75.38
300 98.33 78.98 77.63
400 98.75 78.48 78.96

...
1000 98.80 80.77 79.76

...
5000 98.48 80.34 79.54

...
10,000 98.34 79.18 78.24

...
12,000 98.36 79.42 78.51

...
15,000 98.43 79.44 78.53

...
18,000 98.36 79.49 78.59

...
22,000 98.35 79.41 78.51

The first column counts the total number of simulations, the second, third, and fourth columns count three
percentages under different simulation times, valid simulation is the ratio of the amounts of valid simulations to
the total simulation, and the third column counts the ratio of the number of simulations with the setting time less
than 8.92s to the number of valid simulations. The fourth column counts the ratio of the number of simulations
with the maximum percent overshoot less than 35% to the valid number of simulations. When the number of
experiments is greater than 12,000, there are subtle changes in the three percentages (less than 0.1%).

5. Discussion

The constant vibration frequency was the most significant deficiency of this study. In
actual flight missions, the vibration frequency is variable, due to unknown external and
internal disturbances. Therefore, it is recommended that deep learning algorithms, such as
critical Recurrent Neural Networks (RNN) or Long Short-Term Memory (LSTM) neural
networks, be considered in future studies to monitor and predict the system frequency
changes at each moment, enabling ESO to achieve more accurate disturbance prediction.
However, the combination of ADRC with deep learning algorithms can lose its usefulness
to some extent.
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6. Conclusions

This paper established a pitch angle vibration model of the flexible aircraft using
Matlab/Simulink. The frequency domain characteristics of the system were analyzed
comprehensively through a series of engineering analysis methods, while the design process
of second-order ADRC was discussed in detail. Subsequently, an empirical summary of
the ADRC parameter tuning process was proposed. In the presence of disturbances and
uncertainties, the aircraft vibration model was controlled by two different robust control
techniques, classical PID and ADRC techniques, respectively. Furthermore, the Monte Carlo
shooting method was proposed to verify the robustness of the closed-loop control system.
It was clarified that when the system parameters change in significant ranges, the designed
controller showed a robust system within a 99.73% confidence interval by considering three
indicators (MPO, TS, and IAE). In the test of referring to six dynamic parameters, more than
12,000 Monte Carlo simulations could reflect the statistical characteristics of the results. The
structure of ADRC is also relatively simple compared with other modern control theories,
and its control effect is better than the PID algorithm. The characteristics of robust control
give ADRC the potential to evolve from simulation to practical engineering application.
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26. Żyluk, A.; Kuźma, K.; Grzesik, N.; Zieja, M.; Tomaszewska, J. Fuzzy Logic in Aircraft Onboard Systems Reliability Evaluation—A
New Approach. Sensors 2021, 21, 7913. [CrossRef]

27. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [CrossRef]
28. Han, J.Q. Auto disturbance rejection controller and it’s applications. Control Decis. 1998, 13, 19–23.
29. Han, J.Q. Auto disturbance rejection control technology. Front. Sci. 2007, 1, 24–31. (In Chinese)
30. Gao, Z. Scaling and Bandwidth-Parameterization Based Controller Tuning; Citeseer; ACC: Mumbai, India, 2003.
31. Chunqiang, L.; Guangzhao, L.; Zhe, C.; Wencong, T.; Cai, Q. A linear ADRC-based robust high-dynamic double-loop servo

system for aircraft electro-mechanical actuators. Chin. J. Aeronaut. 2019, 32, 2174–2187.
32. Yang, Q.; Men, J.; Wu, Y. Aeroservoelastic Analysis and Active Disturbance Rejection Control Scheme for the High-aspect-ratio

UAVs. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November
2020; IEEE: Piscataway, NJ, USA, 2020.

33. Chen, Z.; Zhao, Y. Active Disturbance Rejection Control for Hypersonic Flutter Suppression Based on Parametric ROM. J. Aerosp.
Eng. 2020, 33, 04020083. [CrossRef]

34. Wang, L.; Wang, X.; Liu, G.; Li, Y. Improved Auto Disturbance Rejection Control Based on Moth Flame Optimization for
Permanent Magnet Synchronous Motor. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 1124–1135. [CrossRef]

35. Duan, D.; Zhang, C.; Wang, Z.; Li, J. Active Control for Helicopters with Slung Load by Combining ADRC and Input Shaper
Technology. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020;
IEEE: Piscataway, NJ, USA, 2020.

36. Wang, L.; Jiang, W.; Jiao, Z.; Zhao, L. Limit cycle oscillation suppression controller design and stability analysis of the periodically
time-varying flapping flight dynamics in hover. Nonlinear Dyn. 2022, 107, 3385–3405. [CrossRef]

37. Qiao, H.; Meng, H.; Ke, W.; Gao, Q.; Wang, S. Adaptive control of missile attitude based on BP–ADRC. Aircr. Eng. Aerosp. Technol.
2020, 92, 1475–1481. [CrossRef]

38. Zhong, S.; Huang, Y.; Chen, S.; Dai, L. A novel ADRC-based design for a kind of flexible aerocraft. Control Theory Technol. 2021,
19, 35–48. [CrossRef]

39. Zheng, W.; Zhang, G. Complete Synchronization of Finance Chaotic System with Disturbance by Using ADRC. In Proceedings of
the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; IEEE: Piscataway, NJ, USA, 2018.

40. Huang, C.-E.; Li, D.; Xue, Y. Active disturbance rejection control for the ALSTOM gasifier benchmark problem. Control Eng. Pract.
2013, 21, 556–564. [CrossRef]

41. Maki, M.; DE VEGTE, J.V. Optimal and constrained-optimal control of a flexible launch vehicle. AIAA J. 1972, 10, 796–799.
[CrossRef]

42. Liu, X.; Huang, W.; Wu, Y.; Xiong, S. Passive, active and compound control for elastic missile and applicability analysis. J. New
Ind. 2014, 4, 11–19.

http://doi.org/10.1007/s00707-006-0419-3
http://doi.org/10.1108/AEAT-11-2016-0215
http://doi.org/10.1109/87.238400
http://doi.org/10.46300/9104.2021.15.25
http://doi.org/10.3390/aerospace8100290
http://doi.org/10.1016/j.isatra.2009.08.003
http://www.ncbi.nlm.nih.gov/pubmed/19747677
http://doi.org/10.1016/j.ast.2012.01.012
http://doi.org/10.12785/ijcds/090608
http://doi.org/10.3390/math8020207
http://doi.org/10.3390/s21237913
http://doi.org/10.1109/TIE.2008.2011621
http://doi.org/10.1061/(ASCE)AS.1943-5525.0001201
http://doi.org/10.1002/tee.23410
http://doi.org/10.1007/s11071-021-07145-0
http://doi.org/10.1108/AEAT-05-2020-0081
http://doi.org/10.1007/s11768-020-00030-y
http://doi.org/10.1016/j.conengprac.2012.11.014
http://doi.org/10.2514/3.50213


Sensors 2022, 22, 6207 19 of 19

43. He, T.; Wu, Z.; Li, D.; Wang, J. A tuning method of active disturbance rejection control for a class of high-order processes. IEEE
Trans. Ind. Electron. 2019, 67, 3191–3201. [CrossRef]

44. Liu, J. Intelligent Control Design and Matlab Simulation; Springer: Berlin/Heidelberg, Germany, 2018.
45. Wang, G.; He, L. Control System Design; Tsinghua University Press: Beijing, China, 2008. (In Chinese)
46. Åström, K.J.; Panagopoulos, H.; Hägglund, T. Design of PI controllers based on non-convex optimization. Automatica 1998, 34,

585–601. [CrossRef]

http://doi.org/10.1109/TIE.2019.2908592
http://doi.org/10.1016/S0005-1098(98)00011-9

	Introduction 
	Flexible Aircraft Aerodynamic Vibration Model 
	Active Disturbance Rejection Controller Design 
	Extended State Observer 
	PD Control Law 
	Closed-loop Analysis 
	Parameter Tuning 
	Closed-loop Sensitivity 

	Simulation 
	ESO Estimation Error Analysis 
	Disturbance Rejection Test 
	Robustness Analysis 

	Discussion 
	Conclusions 
	References

