
Citation: Ou, Y.; Fan, Y.; Zhang, X.;

Lin, Y.; Yang, W. Improved A* Path

Planning Method Based on the Grid

Map. Sensors 2022, 22, 6198. https://

doi.org/10.3390/s22166198

Academic Editor: Sašo Blažič

Received: 19 July 2022

Accepted: 17 August 2022

Published: 18 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improved A* Path Planning Method Based on the Grid Map
Yangqi Ou 1,*, Yuexin Fan 2,* , Xinglan Zhang 2, Yanhua Lin 2 and Weijing Yang 2

1 College of Automation, Chongqing University, Chongqing 400044, China
2 College of Computer Science and Engineering, Chongqing University of Technology,

Chongqing 400054, China
* Correspondence: yangqiou@cqu.edu.cn (Y.O.); fyx@2020.cqut.edu.cn (Y.F.)

Abstract: In obstacle spatial path planning, the traditional A* algorithm has the problem of too many
turning points and slow search speed. With this in mind, a path planning method that improves
the A* (A-Star) algorithm is proposed. The mobile robot platform was equipped with a lidar and
inertial measurement unit (IMU). The Hdl_graph_slam mapping algorithm was used to construct a
two-dimensional grid map, and the improved A* algorithm was used for path planning of the mobile
robot. The algorithm introduced the path smoothing strategy and safety protection mechanism, and
it eliminated redundant points and minimal corner points by judging whether there were obstacles
in the connection of two path nodes. The algorithm effectively improved the smoothness of the path
and facilitated the robot to move in the actual operation. It could avoid the wear of the robot by
expanding obstacles and improving the safety performance of the robot. Subsequently, the algorithm
introduced the steering cost model and the adaptive cost function to improve the search efficiency,
making the search purposeful and effective. Lastly, the effectiveness of the proposed algorithm was
verified by experiments. The average path search time was reduced by 13%. The average search
extension node was reduced by 11%. The problems of too many turning points and slow search
speed of traditional A* algorithm in path planning were improved.

Keywords: mobile robots; improved A* algorithm; path searching; Hdl_graph_slam mapping

1. Introduction

When a robot performs a task, planning the optimal or suboptimal movement path
from the starting point to the target point in the obstacle space is a core problem. For
traditional path planning algorithms, when planning paths for obstacle spaces, there are
too many turning points and slow search speeds [1]. The map environment model is needed
to study the path planning problem; the mobile robot is equipped with multiple sensors
to collect environmental information, and the map model is carried out by simultaneous
positioning and mapping (SLAM). The most commonly used methods for representing
map models are the grid method, topology method, and viewable method. Common path
programming algorithms include the A* algorithm, Dijkstra algorithm, D*Lite algorithm,
genetic algorithm, and artificial potential field [2,3].

For different path planning algorithms, the Dijkstra algorithm needs to search for
many unnecessary inflection points in the execution process, which wastes computer
resources [4,5]. Due to the error of the heuristic value of the D* Lite algorithm, the planned
path crosses obstacles, which is unfavorable for actual mobile robot operation [6,7]. The
path search of the genetic algorithm has a slow convergence speed and poor local search
ability [8,9]. When the target point is near the obstacle, the artificial potential field method
is prone to falling into local oscillation, becoming unable find the final path [10]. The A*
algorithm establishes the cost function between the starting point and the target point
through the heuristic function to make the search purposeful and accelerate the search
speed [11,12].

Sensors 2022, 22, 6198. https://doi.org/10.3390/s22166198 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166198
https://doi.org/10.3390/s22166198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0848-6159
https://doi.org/10.3390/s22166198
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166198?type=check_update&version=2

Sensors 2022, 22, 6198 2 of 13

Researchers have performed extensive research to improve path planning. The authors
of [13] proposed the Gmapping algorithm based on the particle filter to construct an
environmental grid map, and they adopted the A* algorithm to realize global path planning
of the mobile robot. However, the problems of excessive path turning points and slow
search speed were not considered; hence, the method was not applicable. The authors
of [14] proposed an improved cartographer algorithm based on graph optimization to
create grid maps, and the cost functions of predictive distance and dynamic measurement
heuristic were introduced into the A* algorithm. This approach effectively solved the
problem of the A* algorithm easily falling into a local optimum due to many extended
grids in path planning. However, the cartographer algorithm is time-consuming compared
with the Hdl_graph_slam algorithm. The authors of [15] presented an improved ant colony
algorithm, by changing the pheromone update methods and effectively reducing initial
path planning of the blind search to improve the search efficiency. The authors of [16]
put forward an improved A* algorithm, introducing the extension distance, bidirectional
search, and smooth path; the proposed method improved the efficiency of path planning,
as well as reduced the search grid number and right-angle turn number.

Inspired by the above discussion, this paper proposes an improved A* algorithm
and proposes some new methods to further improve the performance. The goal of this
paper was to achieve the global path planning of mobile robots, focusing on accelerating
the search speed and improving the overall performance of the algorithm. The main
contributions of this paper are as follows:

(1) The path smoothing strategy is introduced to eliminate redundant points and inflec-
tion points and reduce the frequent direction changes of mobile robots during walking;

(2) The safety protection mechanism is increased to avoid damage caused by friction
between the mobile robot and obstacles in the process of walking;

(3) The steering cost model and adaptive cost function are added to reduce the search
time and improve the efficiency of the algorithm;

(4) Autonomous path planning of mobile robots is realized by combining the mapping
algorithm of Hdl_graph_slam with the improved A* path planning algorithm.

(5) Lastly, the comparative experimental results are given to prove the superiority of
the algorithm.

The remainder of the paper is organized as follows: the Hdl_graph_slam environment
modeling is described in Section 2, the improved path planning method is introduced
in Section 3, the comparative experiment-level results are introduced and discussed in
Section 4, and the conclusions are presented in Section 5.

2. Hdl_Graph_Slam Environment Modeling

Hdl_graph_slam is a graph-building method based on graph optimization. The
mobile robot platform is equipped with lidar and IMU sensors to collect environmental
information by subscribing to sensor topics. It uses IMU data to correct the distortion of
point cloud data obtained by lidar and then performs ConditionalRemoval, VoxelGrid, and
RadiusOutlierRemoval to remove noise points and outliers. The processed point cloud
information is passed to the point cloud matching module and floor detection module. The
point cloud matching module adopts the multi-thread algorithm of normal distribution
transform (NDT_OMP) to match the relative pose of two adjacent point clouds. The
NDT_OMP algorithm describes the local characteristics of the point clouds as a probability
density function, which reduces the memory cost of the storing point cloud information as
a function of the coordinate value. The floor detection module adds a ground constraint to
the mapping module to effectively reduce the elevation error [17]. The point cloud data
processed using the point cloud matching module and floor detection module are input
into the map optimization module to complete the map construction, and the grid map is
constructed using octree.

Sensors 2022, 22, 6198 3 of 13

2.1. Point Cloud Matching

As shown in Figure 1, a normal distribution indicates that the point cloud data can
describe the local morphology of the point cloud.

Figure 1. NDT diagram. The blue dots show the various normal distributions.

By calculating the mean and covariance in each grid in the reference point cloud on
the left side of Figure 1,

q =
1
m∑i Xi, (1)

∑ =
1
m∑i (Xi − q)(Xi − q)T , (2)

where Xi represents the coordinates of the point cloud, and the blue ellipse is the ellipse
fitted with a normal distribution. In Figure 1, the right side represents the target point
cloud scanned at the current moment, calculates the coordinates of the target point cloud
in the reference point cloud, and determines the corresponding normal distribution of the
target point cloud in the reference point cloud. Coordinates of the target point cloud with
respect to the reference point cloud are expressed as

X′i = T(Xi, P), (3)

P = (pi)
i
i=1...3 = (tx, ty, φ)T , (4)

where T represents the process of converting the target point cloud coordinates to the
reference point cloud coordinates, P represents the transformation matrix of the target
point cloud to the reference point cloud, and the objective function is expressed as

score(P) = ∑i exp(
−(X′i − qi)

T∑−1
i (X′i − qi)

2
). (5)

Equation (5) can be abbreviated as

s = − exp
−qt∑−1 q

2
, (6)

q = X′i − qi. (7)

The optimization problem is usually described as a minimization problem. The
Newton algorithm is used to iteratively identify the parameters that minimize the function,
and the optimal parameters are calculated by iteratively solving the following equation:

H∆P = −g, (8)

where g is the transpose gradient of score(P), and H is the Hessian matrix of score(P) [18].

2.2. Floor Detection

In a flat environment, the mobile robot moves without much jitter, and the elevation
error can be reduced by adding floor detection constraints. Due to a large number of point
clouds, all point clouds do not need to participate in the calculation of the floor detection

Sensors 2022, 22, 6198 4 of 13

algorithm. To save computing resources, the floor is detected every 10 s, and the floor
detection algorithm firstly performs point cloud segmentation on the filtered point cloud,
which is segmented twice in total to extract the point cloud data in the specified range above
and below the sensor [19,20]. Floor detection assumes that there is global consistent ground,
and the RANSAC algorithm is used to detect floor features and correct pose estimation.

As shown in Figure 2, it is assumed that, in the world coordinate system XwYwZw, the
general equation of the global plane π1 is

Ax + By + Cz + D = 0, (9)

the lidar coordinate system is XlYlZl , and the transformation from the world coordinate
system to lidar is Tl

w(R, T).

Figure 2. Conversion of world coordinate system to lidar coordinate system. A red triangle is a plane
in three dimensions.

According to the general equation of the global plane and the transformation matrix
from the world coordinate system to the lidar coordinate system, the parameter equation of
the global plane in the lidar coordinate system can be solved. Assuming the normal vector
→
n = (xn, yn, zn) of the plane at a point a(xa, ya, za) on the global ground, the parametric
equation of the global plane can be obtained as

xnx + yny + znz− (xnxa + ynya + znza) = 0. (10)

The plane normal vector
→
n in radar coordinate system can be expressed as

→
n′ = R(xn, yn, zn)

T . (11)

Point a(xa, ya, za) is expressed in the lidar coordinate system as

a′(x′a, y′a, z′a) = Ra(xa, ya, za) + T. (12)

The expression of the global ground in the lidar coordinate system is

x′nx + y′ny + z′nz− (x′nx′a + y′ny′a + z′nz′a) = 0. (13)

The floor detection equation fitted by the RANSAC function is as follows:

xdx + ydx + zdx + Dd = 0. (14)

In the lidar coordinate system, two plane equations are obtained. Due to measurement
error, the coefficients of the two plane equations are different; hence, it is necessary to define
an error equation to measure the degree of inconsistency. In Figure 3, there are two fitted
planes in the lidar coordinate system. The blue plane represents the plane of global uniform
ground conversion to the radar coordinate system, and the red plane represents the plane
of RANSAC fitting. Their normal vectors correspond to vectors of the same color [21].

Sensors 2022, 22, 6198 5 of 13

Figure 3. Two fitting planes in the lidar coordinate system.

To express this error quantitatively, a rotation matrix is constructed. The plane normal
vector of the globally uniform ground in the lidar coordinate system is rotated to the X-axis
as follows: 1

0
0

 = Rx

 x′n
y′n
z′n

. (15)

This rotation angle is denoted as α, and the rotation matrix is applied to the plane
equation fitted by RANSAC algorithm as follows: x′d

y′d
z′d

 = Rx

 xd
yd
zd

. (16)

This rotation angle is denoted as β, and the errors represented by the included angles
of the two transformed normal vectors, α and β, are expressed as

α = arctan2(y′d, x′d), (17)

β= arctan2(z′d,
√

y′d
2 + x′d

2
)

. (18)

If the two planes are parallel, they are represented by the intercept between the two
planes, denoting D′ as the intercept of the global ground fitting plane in the lidar coordinate
system; then, the error function of the system can be expressed as

D′ = −(x′nx′a + y′ny′a + z′nz′a), (19)

err = [α, β, D′,−Dd]
T , (20)

e = err
TΩerr. (21)

2.3. Using Octree to Build Grid Maps

In this experiment, an octree was used to construct a map model, which can not only
compress the size of the point cloud data but also quickly search the state of the grid. The
octree divides the whole point cloud map into eight equal parts. The schematic diagram of
the octree is shown in Figure 4.

The whole point cloud map is taken as the root node, and each root node is extended
to eight subnodes, where each node represents a small cube recursively to the smallest
sub-node in turn. The state of the grid is represented by the probability that each node is
occupied, and the search for a node is stopped when the probability of all the children of
the node is equal. In order to improve the real-time performance of the system, key frames
were selected in this experiment to construct an octree map [22,23].

Sensors 2022, 22, 6198 6 of 13

Figure 4. Schematic diagram of octree.

3. Path Planning for Mobile Robots

The A* algorithm makes the search purposeful by establishing the cost function
between the starting point and the target point. The traditional A* algorithm divides the
cost function into two sections, i.e., the cost from the starting point to the current grid
and the cost from the current grid to the target point. It is a heuristic algorithm to select
the grid with the lowest generation value as the extended grid by calculating the total
cost function. Compared with the Dijkstra algorithm, the A* algorithm has an advantage
in search speed in terms of time, but there are too many turning points, leading to an
unsmooth planned path. Too many turning points in the actual operation of mobile robots
will reduce the efficiency of operation and increase the wear of machine parts. At the same
time, because the A* algorithm seeks the optimal or suboptimal path from the target point,
the path planned by the A* algorithm always fits obstacles, resulting in the mobile robot
encountering obstacles in the process of walking. Therefore, the A* algorithm needs to
be improved.

A safety protection mechanism is introduced to expand the two-dimensional grid
map, where the expansion distance is equal to the diameter of the robot. The path planned
by the restricted path planning algorithm does not fit the edge of obstacles to protect the
mobile robot from wear.

The path smoothing strategy is introduced to determine whether there is obstacle
information on the line between the planned path nodes. If there is no obstacle on the
line between two points, it indicates that the path node between two points is redundant
and can be removed. If there are obstacles to the connection between two points, the
intermediate node cannot be removed, as shown in Figure 5.

Figure 5. Elimination of redundant points. The letters A–F represent nodes in the planned path,
red lines represent planned paths, blue and green lines represent lines between nodes, and black
represents obstacles.

The solid red line in Figure 5 represents the path. The connection between nodes C
and E crosses an obstacle; hence, node D cannot be deleted. The line between nodes A and
D does not cross obstacles; thus, nodes B and C between nodes A and D are redundant
nodes. They can be deleted from the path node set to increase the smoothness of the path
and shorten the total path distance.

When the mobile robot is in actual operation, the turning time of the inflection point
cannot be ignored. By adding the steering cost model into the total cost function, the
planned path is in line with the operability of the actual mobile robot. The mobile robot is
set to turn toward the center point of the grid each time, and the steering cost angle model
is as shown in Figures 6 and 7.

Sensors 2022, 22, 6198 7 of 13

Figure 6. Angle of steering cost model of expansion node.

Figure 7. Calculation model of steering cost model angle.

The relationship between coordinate transformation and steering angle is shown in
Table 1, where the X-axis change refers to the changes in the X-axis coordinates of the robot
at different moments, and the Y-axis change refers to the changes in the Y-axis coordinates
of the robot at different moments:

Table 1. Coordinate transformation and turn angle mapping table.

X-axis Change Y-axis Change Steering Angleθ (◦)

1 0 0
1 1 45
0 1 90
−1 1 135
−1 0 180
−1 −1 225
0 −1 275
1 −1 360

The coordinate transformation of nodes at the current moment and the previous
moment is denoted as follows:

∆x = x1 − x0, (22)

∆y = y1 − y0. (23)

The current moment and the previous moment are denoted as α according to the
steering angle corresponding to Table 1.

The coordinate transformation of nodes at the next moment and the current moment
is denoted as follows:

∆x = x2 − x1, (24)

∆y = y2 − y1. (25)

The next moment and the current moment are denoted as β according to the steering
angle corresponding to Table 1.

Sensors 2022, 22, 6198 8 of 13

The formula of the steering cost model is as follows:

turn_w =

{
k α−β

45 , α− β ≤ 180◦

k α−β−180
45 , α− β > 180◦

, (26)

where k represents the proportionality coefficient, and k = 10 in this experiment. The h(n)
of the total cost function uses the Manhattan distance to estimate the cost of the current
node from the target node; this, h(n) has a great influence on the performance of the path
search algorithm. The search performance of the algorithm can be improved by increasing
the weight of h(n). In cases where g(n) and turn_w(n) are defined, the value of h(n) plays
an important role. When the extended node is closer to the target node, the corresponding
value of h(n) is smaller. A dynamic balance method is adopted to determine the weight
of h(n) and increase the efficiency of the algorithm. When the node is far from the target
point, the weight is large, and, when the node is close to the target point, the weight is
small. The adaptive weight adjustment of h(n) is realized, and the search efficiency of the
robot in different positions is improved. The improved expression of the total cost function
in this paper is as follows:

f (n) = g(n) + turn_w(n) + (1 +
d
D
)× h(n), (27)

where d represents the Euclidean distance from the current node to the target node, and D
represents the Euclidean distance from the start node to the target node.

4. Experiment

The emulation configuration used in this work was as follows: Ubuntu18.04; Ros-
melodic; Quadruped driven mobile robot; Hesai PandarXT-16; Lpms-IG1-4 85 IMU. The
horizontal angular resolution of the lidar sensor was 0.09◦, approximately 60,000 point
cloud data were collected per frame, and the angular resolution of the IMU was 0.01◦. The
experimental device of this experiment is shown in Figure 8. Through data collection in the
indoor environment, the total data size was 2.8 GB, the total duration was 93.19 s, and the
total distance was 20.36 m.

Figure 8. Experimental device.

4.1. Environmental Modeling

The sensor information collected in the indoor environment was successively filtered
using ConditionalRemoval, VoxelGrid, and RadiusOutlierRemoval, and the changes in the
number of point clouds are shown in Figure 9. From the original, more than 60,000 point
clouds were filtered to yield more than 2000 point clouds, thereby improving the speed of
system mapping.

Sensors 2022, 22, 6198 9 of 13

Figure 9. Rendering of lidar filtering.

The comparison results of the running time of the four inter-frame matching algorithms
in the indoor environment are shown in Figure 10. The ICP algorithm and NDT_OMP
algorithm performed better according to the evaluation criterion of time consumption.

Figure 10. Time consumption of four inter-frame matching algorithm.

Figure 11 shows the construction effects of four types of inter-frame matching in an
indoor environment.

In the indoor environment, the 3D space track effect and the XYZ direction track
coordinate values are shown in Figure 12. The figure shows the trajectories of the four
matching algorithms in 3D space and the views in the XYZ direction. It can be seen from
the figure that the ICP algorithm had a serious drift phenomenon. The predicted trajectories
of the NDT_OMP algorithm were closer to the reference trajectories, and the mapping
effect of the NDT_OMP algorithm was the best. Figure 13 shows the relative error of
the predicted trajectory and the reference trajectory using the NDT_OMP algorithm in an
indoor environment. It can be observed that the ICP algorithm had a huge elevation error.
The relative error of the NDT_OMP algorithm with respect to the reference trajectory was
within the acceptable range, and there were no sections with a large error. The results show

Sensors 2022, 22, 6198 10 of 13

that the NDT_OMP algorithm could meet the real-time accuracy of map construction in an
indoor environment.

Figure 11. Drawing effect of four matching algorithms. (a) ICP-mapping, (b) GICP-mapping,
(c) NDT-mapping, (d) NDT_OMP-mapping.

Figure 12. (a) Three-dimensional trajectory diagram and (b) XYZ coordinate data.

Figure 13. (a) Three-dimensional trajectory relative error and (b) specific value of relative error.

Sensors 2022, 22, 6198 11 of 13

4.2. Path Planning Experiment

Many scholars have improved the A* algorithm, e.g., the JPS (jump point search)
algorithm, which improves the search speed of path planning by reducing the operation
of OpenList tables. However, through experiments, we found that there were redundant
points in the final path planned by the JPS algorithm. In a large map, the path planned by
the JPS algorithm would increase the work of the mobile robot. Figure 14 shows a result
of the JPS algorithm. Looking at Figure 14, it can be seen that the red dashed line had a
shorter path length than the pink solid line; therefore, the yellow points were redundant
nodes, which could be removed in the path set, thereby reducing the path length and
the power consumption of the mobile robot in the process of moving. The improved
algorithm proposed in this paper can remove such redundant points and simplify the
nodes of the path set. In addition, the A* algorithm is extensible and can be applied to grid
map, Navmesh, and Waypoint nodes, while the JPS algorithm is only applicable to grid
map nodes.

Figure 14. JPS algorithm path planning result. Black represents obstacles. The green five-pointed
star represents the starting point, the red five-pointed star represents the target point, and the pink
solid line represents the path planning result of the JPS algorithm. The red dashed line represents the
connection between nodes. Yellow dots represent path planning nodes.

The improved A* algorithm proposed in this paper was applied to the constructed
laboratory graph. After the host computer program created the map, the mobile robot
waited for the host computer to send the location information of the target point, and then
carried out autonomous path planning according to its current position and the location of
the target point. Figure 15 shows the results. It can be observed that the inflection point
of the red path was significantly smaller than that of the green path, effectively reducing
the number of nodes in the path set. Compared with the traditional A* algorithm, the
improved algorithm proposed in this paper achieved better results in terms of search speed
and path smoothness. It can be seen that the path planned by the improved A* algorithm
was more in line with the operability of the actual mobile robot.

Table 2 shows the search time of mobile robot path planning and the number of search
extension nodes, where A* represents the original A* algorithm, and A* + turn_w represents
the algorithm improved by adding the steering cost function, A* + turn_w + W represents
the algorithm improved by adding the steering cost function and weight coefficient, time
indicates the time consumed by the algorithm in ms, number indicates the number of exten-
sion nodes searched by the algorithm, Tir represents the time performance improvement

Sensors 2022, 22, 6198 12 of 13

rate of the algorithm compared with the original A* algorithm as a percentage, and Enr
represents the improvement rate of the algorithm in search extension node performance
compared with the original A* algorithm as a percentage.

Figure 15. Example path planning diagram. (a) The first type of path planning, (b) The second
type of path planning. The coordinate system position represents the starting position of the mobile
robot, the red circle represents the target position, the green path is used to represent the result of the
original A* algorithm, and the red path represents the result of the improved A* algorithm.

Table 2. Performance comparison of three different path planning algorithms.

Start and Finish The Algorithm Name Time (ms) Number Tir (%) Enr (%)

Start (109, 89)
Finish (71, 88)

A* 1.817 12,988 - -
A* + turn_w 1.699 12,408 8.145 4.465

A* + turn_w + W 1.625 11,338 10.566 12.704

Start (109, 89)
Finish (108, 33)

A* 4.090 22,322 - -
A* + turn_w 3.687 21,336 9.853 4.417

A* + turn_w + W 3.362 20,072 17.799 10.079

Start (109, 89)
Finish (125, 126)

A* 2.385 16,007 - -
A* + turn_w 2.168 15,728 9.098 1.742

A* + turn_w + W 1.926 14,310 11.162 10.601

It can be seen from Table 2 that the performance of the improved A* algorithm was
improved in terms of search time and the number of extended nodes. The safety protec-
tion mechanism, path smoothing strategy, steering work function, and dynamic weight
coefficient were introduced to optimize the traditional A* algorithm, thereby improving
the planned path performance, bringing it more in line with the actual scene of mobile
robot operation.

5. Discussion

In this paper, aiming at real-time and accurate mobile robot path planning, the indoor
environment map was constructed using the Hdl_graph_slam mapping algorithm, and the
path planning of a mobile robot was realized using an improved A* algorithm. The average
path search time was decreased by 13%, and the average number of search extension nodes
was decreased by 11%. According to results of this study, the accuracy, reliability, and
operability of the proposed method can meet daily needs.

Author Contributions: Conceptualization, X.Z., Y.L. and W.Y.; methodology, Y.O.; software, Y.O.
and Y.F.; validation, Y.O. and Y.F.; formal analysis, Y.O.; resources, Y.O. and Y.F.; writing—original
draft preparation, Y.O.; writing—review and editing, Y.F., X.Z., Y.L. and W.Y.; visualization, Y.O.;
supervision, X.Z., Y.L. and W.Y.; project administration, Y.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (Grant
No.61933012): Advanced Control theory and Autonomous Cooperation Strategy for Unmanned
Systems in Dynamic Environments. This support is sincerely appreciated.

Sensors 2022, 22, 6198 13 of 13

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to the project requirements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, R.; Liu, J.; Wang, M.Y.; Zhang, Y.X. Improved A* algorithm of mobile robot path planning and design. J. Tianjing Univ.

Technol. Edu. 2022, 32, 14–19. [CrossRef]
2. Wang, S.X.; Tan, G.Q.; Jiang, Q.; Su, C. Mobile Robot Path Planning Based on Improved A* Algorithm. Comput. Simul. 2021,

38, 386–389+404. [CrossRef]
3. Li, Y.; Shi, C. Localization and Navigation for Indoor Mobile Robot Based on ROS. In Proceedings of the 2018 Chinese Automation

Congress, Xi’an, China, 30 November–2 December 2018; p. 11351139. [CrossRef]
4. Zhu, Z.; Li, L.; Wu, W.; Jiao, Y. Application of improved Dijkstra algorithm in intelligent ship path planning. In Proceedings of the

2021 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021; pp. 4926–4931. [CrossRef]
5. Luo, M.; Hou, X.; Yang, J. Surface Optimal Path Planning Using an Extended Dijkstra Algorithm. IEEE Access 2020,

8, 147827–147838. [CrossRef]
6. Du, X.; Ou, Z.Z. Path Planning for Mobile Robots based on Improved D * Lite and Artificial Potential Field Method. Manuf.

Autom. 2022, 44, 153–158. [CrossRef]
7. Zhang, J.; Chen, W.L. Optimal escape path planning and design based on D* Lite algorithm. Sci. Technol. Innov. 2021, 19, 63–64.

[CrossRef]
8. Chen, G.; Hou, J.; Dong, J.H.; Li, Z.J.; Gu, S.D.; Zhang, B.; Yu, J.W.; Knoll, A. Multiobjective Scheduling Strategy with Genetic

Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots.
IEEE/ASME Trans. Mechatron. 2021, 26, 1547–1557. [CrossRef]

9. Ma, T.; Wang, T.; Yan, D.; Hu, J. Improved genetic algorithm based on K-Means to solve path planning problem. In Proceedings
of the 2020 International Conference on Information Science, Parallel and Distributed Systems, Xi’an, China, 14–16 August 2020;
pp. 283–286. [CrossRef]

10. Li, Y.; Tian, B.; Yang, Y.; Li, C. Path planning of robot based on artificial potential field method. In Proceedings of the 2022 IEEE
6th Information Technology and Mechatronics Engineering Conference, Chongqing, China, 4–6 March 2022; pp. 91–94. [CrossRef]

11. Ju, C.; Luo, Q.; Yan, X. Path Planning Using an Improved A-star Algorithm. In Proceedings of the 2020 11th International
Conference on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, 23–25 October 2020; pp. 23–26.
[CrossRef]

12. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path
Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]

13. Ye, Q.Q.; Zheng, M.K.; Qiu, X. Indoor Autonomous Navigation Mobile Robot System Based on ROS. Sens. Microsyst. 2022,
41, 90–93. [CrossRef]

14. Yang, M.L.; Li, N. Improved A* Algorithm for Mobile Robot Path Planning. Mech. Sci. Technol. Aerosp. Eng. 2022, 41, 795–800.
[CrossRef]

15. Luo, Q.; Pang, D.S. Research on Path Planning of Mobile Robot Based on Improved Ant Colony Algorithm. Neural Comput. Appl.
2020, 32, 1555–1566. [CrossRef]

16. Wang, H.; Lou, S.; Jing, J.; Wang, Y.; Liu, W.; Liu, T. The EBS-A* algorithm: An improved A* algorithm for path planning.
PLoS ONE 2022, 17, e0263841. [CrossRef] [PubMed]

17. Ni, Z.K. Research on MOBILE Robot SLAM Algorithm Based on 3D Laser. Master’s Thesis, Suzhou University, Suzhou, China,
2020. [CrossRef]

18. Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the
IEEE International Workshop on Intelligent Robots and Systems, Beijing, China, 27–31 October 2003; Volume 3, pp. 2743–2748.
[CrossRef]

19. Schütz, M.; Ohrhallinger, S.; Wimmer, M. Fast Out-of-Core Octree Generation for Massive Point Clouds. Comput. Graph. Forum
2020, 39, 155–167. [CrossRef]

20. Fichtner, F.W.; Diakité, A.; Zlatanova, S.; Voûte, R. Semantic Enrichment of Octree Structured Point Clouds for Multi-story 3D
Pathfinding. Trans. GIS 2018, 22, 233–248. [CrossRef]

21. Cai, Z.H.; Zhao, H.; Zhou, L.; Du, X.Y. Design of A Multi-line LiDAR Outdoor Small Range Navigation Algorithm. Mech. Des.
Manuf. 2022, 4, 258–261. [CrossRef]

22. Zhang, Y.; Hu, Y.; Hu, X.; Xing, B. Path Planning for Mobile Robot Based on RGB-D SLAM and Pedestrian Trajectory Prediction.
In Proceedings of the 2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA), Changsha,
China, 5–6 September 2020; pp. 341–346. [CrossRef]

23. Zhou, K.S.; Fan, P.Q. Improved A* Algorithm and Artificial Potential Field Algorithm for Mobile Robot Path Planning. Electron.
Devices 2021, 44, 368–374. [CrossRef]

http://doi.org/10.19573/j.issn2095-0926.202201003
http://doi.org/10.3969/j.issn.1006-9348.2021.09.077
http://doi.org/10.1109/CAC.2018.8623225
http://doi.org/10.1109/CCDC52312.2021.9602021
http://doi.org/10.1109/ACCESS.2020.3015976
http://doi.org/10.3969/j.issn.1009-0134.2022.02.032
http://doi.org/10.3969/j.issn.1673-1328.2021.19.028
http://doi.org/10.1109/TMECH.2020.3023261
http://doi.org/10.1109/ISPDS51347.2020.00065
http://doi.org/10.1109/ITOEC53115.2022.9734712
http://doi.org/10.1109/PHM-Jinan48558.2020.00012
http://doi.org/10.1109/ACCESS.2021.3070054
http://doi.org/10.13873/J.1000-9787(2022)02-0090-04
http://doi.org/10.13433/j.cnki.1003-8728.20220005
http://doi.org/10.1007/s00521-019-04172-2
http://doi.org/10.1371/journal.pone.0263841
http://www.ncbi.nlm.nih.gov/pubmed/35176092
http://doi.org/10.27351/d.cnki.gszhu.2020.001063
http://doi.org/10.1109/IROS.2003.1249285
http://doi.org/10.1111/cgf.14134
http://doi.org/10.1111/tgis.12308
http://doi.org/10.19356/j.cnki.1001-3997.20211111.027
http://doi.org/10.1109/ICDSBA51020.2020.00094
http://doi.org/10.3969/j.issn.1005-9490.2021.02.021

	Introduction
	Hdl_Graph_Slam Environment Modeling
	Point Cloud Matching
	Floor Detection
	Using Octree to Build Grid Maps

	Path Planning for Mobile Robots
	Experiment
	Environmental Modeling
	Path Planning Experiment

	Discussion
	References

