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Abstract: Under the background of spatially correlated color noise, the incidence angle of a jamming
signal in a high-speed moving platform rapidly changes, which leads to the degradation of the
anti-interference performance and the waveform distortion of the adaptive beamformer. In this
paper, a projection-constrained null broadening beamforming algorithm based on the Toeplitz matrix
structure is proposed. The algorithm first extracts the subspace of the covariance matrix of the steering
vector of the pre-determined extended angle interval and constructs the constraint matrix and the
projection transformation matrix. The received signal covariance matrix with a Toeplitz structure is
then constructed using the correlation number between each array element and the pre-set reference
array element. Finally, the constructed covariance matrix is transformed through projection, and the
weight of each array element is constrained by the constraint matrix. The theoretical optimal solution
of adaptive wide null beamforming in spatially correlated color noise is obtained. The simulation
results show that, compared with the existing robust adaptive beamforming algorithms, the proposed
algorithm can efficiently improve the distortion of adaptive anti-jamming beams, and can achieve null
broadening in the jamming direction under the condition of spatially correlated color noise, which
improves the output signal to the interference-plus-noise ratio (SINR) of the adaptive beamformer.

Keywords: spatially correlated color noise; robust adaptive beamforming; Toeplitz structure; projection
transformation; linear constraint

1. Introduction

Adaptive beamforming technology is used in communication, radar, and navigation
by adaptively adjusting the weights of array elements so that the beam forms nulls in
the direction of the jammers, which efficiently suppresses the interference [1–3]. High-
performance robust adaptive beamforming methods currently exist, such as the correlation
matrix diagonal loading algorithm [4], eigenspace-based algorithm [5], and algorithm using
semidefinite relaxation [6]. In an actual situation, the external environment background
noise mainly contains ground clutter, sea clutter, atmospheric noise, solar noise, etc. This
external environment background radiation is full of the whole three-dimensional space of
continuous distributions of radiation sources. The array antennas in each array element
facing the external environment are almost the same, and the external environment noise
is correlated. The background noise of the array antenna is, therefore, often spatially
correlated color noise [7–10]. On the other hand, the sample covariance matrix of the
signal is obtained from the number of snapshots over a period of time. In addition, the
finite number of snapshots results in the fact that the covariance matrix of the noise signal
is not a diagonal matrix, the correlation between the array elements is non-ignorable,
and the spatial correlation color noise characteristic of the background noise is further
increased [11]. The color noise in the receiver leads to an increase in the distortion of the
adaptive beamforming, such as a mainlobe shift and sidelobe elevation [12]. In addition,
the adaptive array carries platforms, such as warplanes and missiles, which are often in
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a high-speed motion state. In this case, the rapid change in the position of the interferer
source and the relatively slow update of the adaptive weights causes the interferer signal
to not strictly fall in the narrow null of the adaptive beamforming. This results in the rapid
degradation of the array’s anti-interference performance [13–15].

In the study of robust adaptive beamforming for color noise backgrounds, the per-
formance of the modified covariance matrix-based beamforming algorithm depends on
the accurate estimation of the noise covariance matrix, but the accurate estimation is very
difficult to achieve [16–18]. The authors in [19] applied the Kalman filtering method for
whitening the non-stationary colored noise, which is not applicable to the background of
spatially correlated color noise. The reconstruction of interference-plus-noise covariance
matrices is the current method for adaptive beamforming in color noise backgrounds with
higher performance [20,21]. The literature [20] applies a co-prime array to estimate the
direction-of-arrival (DOA) for each source by matching the super-resolution spatial spectra
of a pair of sparse uniform linear subarrays and estimates the power of each source via
joint covariance matrix optimization. In the literature [21], the entire airspace is divided
into the desired signal airspace, the interference airspace, and the noisy signal airspace. In
addition, the normalized cross-Capon power matrix is calculated in the delineated noisy
airspace, and the colored noise covariance matrix (CNCM) can be further estimated. Com-
bining the signal sample covariance matrix allows for the derivation of the expression for
calculating the power of the interference. These covariance matrix reconstruction methods
with complex calculation steps can lead to the slower updating of weights, so that these
methods cannot be applied to scenarios where the array moves the platform at high speed,
and the parameters selected with this algorithm affect the output performance of the array.
The adaptive beamforming algorithm with a wide null is a robust beamforming algorithm
that effectively solves the mismatch between the incident angle of the interference and the
null angle of the adaptive beam. The covariance matrix sharpening can broaden the null,
while the null depth becomes shallower and the array gain is reduced [22,23]. The wide
null algorithm with derivative constraints [24,25] lets multiple null constraints spread the
null in one direction, sacrificing large degrees of freedom, while the null width is not easily
controlled. In recent years, the null broadening algorithm based on spatial projection [26]
and linear constraint [27] has achieved null widening in a set area and controllable null
depth. In these algorithms, the background noise of the array receiver is assumed to be
Gaussian white noise, which results in an adaptive beam that is far less immune to inter-
ference than the simulated beam [28]. Therefore, a robust beam formation of high-speed
motion array platforms in the background of spatially correlated color noise is crucial to
guarantee the effective transmission of battlefield information.

This study is inspired by the fact that the rank of the received signal covariance
matrix with a Toeplitz structure is not affected by the received signal correlation for solving
the adaptive beamforming of coherent signals. The main contributions of this paper are
threefold. Firstly, we design a robust adaptive beamforming algorithm, which considers
the background of spatially correlated color noise in practical highly dynamic situations.
Secondly, we analyze that the projection constraint allows the zero trap to be widened
and deepened, and that the Toeplitz matrix structure can effectively reduce the effect of
background color noise and derive the optimal weights for the array antenna. Thirdly, we
simulate and compare the beamforming performance under spatially correlated color noise,
and the anti-interference performance of different robust beamforming algorithms under
colored noise and a high-speed motion platform. The simulation experiments show that
the proposed algorithm can perform null broadening under spatially correlated color noise,
while outputting a higher SINR and effectively suppressing beam distortion.

2. Wave Distortion in Spatially Correlated Color Noise

From Figure 1, without the loss of generality, a uniform linear array (ULA) with N
element spacing of d was considered. There was one non-circular desired signal from
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θ0 and P non-circular interferences from θk(k = 1, 2, · · · , P) incident to the array, whose
envelops were s0(t) and sk(t)(k = 1, 2, · · · , P), respectively.
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The signal xl(t)(l = 1, 2, · · · , N) received by the l element in the array could then be
expressed as [29]:

xl(t) = a(θs)s0(t) +
P

∑
k=1

a(θk)sk(t) + nl(t) (1)

where the steering vector of a uniform linear array is given by:

a(θ) = [1, e−j2πd sin θ/λ, · · · , e−j2π(N−1)d sin θ/λ]
T

(2)

where [.]T stands for the transpose, the envelope of the non-circular signal has the character
of s(t) = s∗(t), []* stands for the conjugate, λ is the wavelength, A = [a(θ0), a(θ1), . . . , a(θP)]
is the steering vector matrix of the array, θ is the signal incident angle relative to the array,
and nl(t) is the noise received by the l element in the array.

Using Equation (1), the covariance matrix RX of the received signal was given by:

RX = E[X(t)XH(t)] = ARSAH + Rn (3)

where X(t) = [x1(t), x2(t), · · · , xM(t)]T is the signal vector received by the uniform linear
array, RS = E[s(t)sH(t)] is the covariance matrix between the interference and the desired
signal, s(t) = [s0(t), s1(t), · · · , sP(t)]

T is the envelope of the desired signal and the interfer-
ence received by the uniform linear array, Rn = E[N(t)NH(t)] is the correlation matrix of
the noise signal, and N(t) = [n1(t), n2(t), · · · , nM(t)]T is the noise signal vector received
by the uniform linear array. When the background noise was Gaussian white noise, the
covariance matrix of the noise signal Rn = σ2

nI was a diagonal matrix, where σ2
n is the noise

power of a single array element. However, in the background of color noise, the covariance
matrix of the noise signal was not a diagonal matrix. In the sequel, the influence of the
spatially correlated color noise on the adaptive beamforming was analyzed in the presence
of a single interference in space.

Usually, the power of the desired signal received by the array is much less than the
power of the interference. At this time, the covariance matrix of the received signal could
be approximated using the covariance matrix of the interference and noise as:

RX ≈ πJa(θj)aH(θj) + Rn (4)

where a(θj) is the steering vector of the interference and πJ is the power of interference.
According to the maximum signal-to-noise ratio criterion, the adaptive weight of the

linear array was given by:
w = µR−1

X a(θs) (5)
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where a(θs) is the steering vector of the desired signal. In addition, µ could be expressed as:

µ =
1

aH(θs)R−1
X a(θs)

(6)

The inverse of Equation (4) was then obtained:

R−1
X = R−1

n −
πJR−1

n a(θJ)aH(θJ)R−1
n

1 + πJaH(θJ)R−1
n a(θJ)

(7)

When the interference power was large, Equation (7) could be substituted into Equation (5)
to obtain:

w = µ(I−
R−1

n a(θJ)aH(θJ)

aH(θJ)R−1
n a(θJ)

)R−1
n a(θs) (8)

The adaptive beam pattern was expressed as:

B(θ) =
∣∣∣wHa(θ)

∣∣∣ (9)

where a(θ) is the steering vector with an incident angle of θ in the uniform linear array.
In the case of white noise, the weight of the array w1 and the directional gain of the

adaptive beam pattern B1(θ) could be obtained by combining the above equations:

w1 = µ′(I−
a(θJ)aH(θJ)

aH(θJ)a(θJ)
)a(θs) (10)

and:

B1(θ) =

∣∣∣∣∣µ′aH(θs)(I−
a(θJ)aH(θJ)

aH(θJ)a(θJ)
)a(θ)

∣∣∣∣∣
2

(11)

where µ′ = σ2
nµ. The adaptive weights in the white noise environment were orthogonal

to the interference vector, thus, creating a null in the interference direction, and the beam
shape was approximately similar to the static directional map in the other directions. In
the background of color noise, the weights of the array w2 and the adaptive beam pattern
B2(θ) were, respectively:

w2 = µ(I−
R−1

n a(θJ)aH(θJ)

aH(θJ)R−1
n a(θJ)

)R−1
n a(θs) (12)

and:

B2(θ) =

∣∣∣∣∣µ′aH(θs)(R−1
n )

H
(I−

R−1
n a(θJ)aH(θJ)

aH(θJ)R−1
n a(θJ)

)a(θ)

∣∣∣∣∣
2

(13)

An oblique projection of the adaptive array with a weight of R−1
n a(θs) could then be

performed in the spatially correlated color noise environment. Therefore, in the spatially
correlated color noise environment, since the adaptive weight was still orthogonal to the
direction of the interference, the null could be formed in the interference direction. In other
directions, because the noise correlation matrix Rn was not a diagonal matrix, different
weights could be applied in the other directions, which resulted in different adaptive beams
and static patterns, resulting in waveform distortions.

3. The Proposed Algorithm

In this section, a robust beamforming algorithm based on the construction of the
projection transformation and constraint matrix, the received signal covariance matrix
with a Toeplitz structure, and the calculation of the optimal array weight was proposed.
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It effectively solved the problem of robust beamforming of a high-speed motion platform
array under the condition of spatially correlated color noise.

3.1. Construction of the Projection Transformation and Constraint Matrix

Through prior estimation, the signal angle interval to be widened was Θ, and the
steering vector matrix between the interval was expressed as [30,31]:

Rθ =
∫
Θ

a(θ)aH(θ)dθ (14)

where (.)H denotes the Hermitian transpose operator.
Since Rθ was a Hermite matrix, it was decomposed and the eigenvectors u1, u2, · · · , uL

corresponding to L large eigenvalues were used as the basis vector to form the eigen-
subspace UL of Rθ as:

UL = span{u1, u2, · · · , uL} (15)

In addition, the matrix P which was composed of the eigenvectors u1, u2, · · · , uL could
be expressed as:

P = [u1, u2, · · · , uL] (16)

The basis vector in UL was constructed as a projection operator:

T =
L

∑
k=1

ukuH
k (17)

The gain in the desired signal direction was constant, and the weight vector of the array
w was orthogonal to the subspace UL to ensure the null broadening in the pre-determined
region Θ. A constraint equation then existed:

wH [a(θS), P] = [1, 0] (18)

Afterwards, the constraint matrix C and the constrained response matrix were com-
puted as:

C = [a(θS), P] (19)

f = [1, 0, · · · , 0︸ ︷︷ ︸
M

]1×(M+1) (20)

The noise component in the signal was further reduced through a projection trans-
formation, and the null depth was further deepened due to the power limitation in the
widened region.

3.2. The Received Signal Covariance Matrix with Toeplitz Structure

The received signal covariance matrix with a Toeplitz structure was proposed for the
conventional covariance matrix of coherent sources with insufficient rank. The rank of the
correlation matrix of the Toeplitz structure was only related to the incident angle of the
signal, and it was not affected by the signal correlation. Using the constructed matrix with a
Toeplitz structure to replace the covariance matrix of the received signal effectively reduced
the influence of the correlation of the received noise of each array element on beamforming.

Using the first array element in the linear array as the reference array element, the
correlation coefficient between this array element and the received data of an array element
in the array was given by [32]:

r1l = E[x1(t)xH
l (t)]

= A(1)RS0AH(k) + Rn(1, k)
(21)
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where k = 1, 2, · · · , M, x1(t) is the signal received by the first array element, xl(t) is the
signal received by the k element in the array, A(k) is the kth row of the steering vector
matrix, RS0 represents the correlation matrix of the received desired signal, and Rn(1, k) is
the data in the first row and k column of the covariance matrix of spatially correlated color
noise in the array. By constructing the Toeplitz matrix structure, the covariance matrix of
the received signal was replaced with:

RT =


r11 r12 r1M
r∗12 r11 r1,M−1

. . .
r∗1M r∗1,M−1 r11

 (22)

3.3. Calculation of the Optimal Array Weight

The projection transformation of the correlation matrix was expressed as:

RT = TRTTH (23)

The proposed algorithm performed a projection transformation on the received signal,
which enhanced the signal subspace and improved the orthogonality between the signal
subspace and the noise subspace. Such an approach further reduced the height of the
sidelobe. It can be seen in the simulation that the mainlobe width was slightly widened.
According to the criterion of the maximum signal to the interference-plus-noise ratio, the
Lagrange function for calculating the weight was constructed as:

L(w) = wHRTw + λ(wHC− f) (24)

By solving Equation (24), it was deduced that the optimal weight of the array null
broadening under the background of spatially correlated color noise was given by:

wopt = R−1
T C(CHR−1

T C)
−1

fH (25)

4. Simulation and Performance Analysis

In this paper, the simulation was built on a uniform linear array with 10 elements and
half-wavelength spacing between adjacent elements. The desired signal was incident to
the array from 0 degrees, two independent interferences were incident to the array from
30 degrees and −30 degrees, and the interference-to-noise ratio was 30 dB. The color noise
in the simulation was spatially correlated color noise, and the covariance matrix of the
color noise in the array was Rn(a, b) = σ2

n0.7|a−b|ejπ(a−b)/10, where σ2
n is the noise power.

To analyze the performance of the proposed Toeplitz null broadening (TNB) algorithm,
it was compared with the covariance matrix reconstruction of interference-plus-noise
(RINC) [21], the variable diagonal loading (VLD) [33], the maximum eigenspace-based
(LESB) algorithm [34], and the classical sample matrix inversion (SMI) [35]. The diagonal
loading factor γ = 10σ4

n in Equation (10) in [33] and the noise incidence angles in [21] were
set to −85, −66, −47, −25, −9, 9, 25, 47, 66, and 85 degrees. It was assumed that due to
the rapid movement of the platform, the direction of the incidence of the disturbance may
have deviated from that which occurred by plus or minus three degrees. In addition, the
null spreading angle interval of the proposed algorithm was [–33, 27] degrees and [27, 33]
degrees, and the number of subspace basis vectors was five. All the experimental results
were obtained from 100 independent Monte Carlo experiments.

4.1. Performance Analysis of the Proposed Algorithm under Different Background Noises

This section analyzed the anti-interference performance of the SMI algorithm and the
proposed algorithm under the background of white noise and spatially correlated color
noise, respectively. The obtained results are shown in Figure 2. More precisely, Figure 2a
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shows the variation curves of the output SINR with the input signal-to-noise ratio (SNR)
for the two algorithms under different background noises for a snapshot number of 2000.
Figure 2b shows the variation curves of the output SINR of the two algorithms at different
snapshot numbers for an input SNR of 5 dB. Figure 2c shows the anti-interference beam
formed with the array using the two algorithms for a number of snapshots of 2000 and an
input SNR of 5 dB.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 12 
 

 

color noise in the array was 2 ( )/10

n ( , ) 0.7 a b j a b

nR a b e  − −= , where 2

n  is the noise power. To 

analyze the performance of the proposed Toeplitz null broadening (TNB) algorithm, it 

was compared with the covariance matrix reconstruction of interference-plus-noise 

(RINC) [21], the variable diagonal loading (VLD) [33], the maximum eigenspace-based 

(LESB) algorithm [34], and the classical sample matrix inversion (SMI) [35]. The diagonal 

loading factor 410 n =  in Equation (10) in [33] and the noise incidence angles in [21] 

were set to −85, −66, −47, −25, −9, 9, 25, 47, 66, and 85 degrees. It was assumed that due to 

the rapid movement of the platform, the direction of the incidence of the disturbance may 

have deviated from that which occurred by plus or minus three degrees. In addition, the 

null spreading angle interval of the proposed algorithm was [–33, 27] degrees and [27, 33] 

degrees, and the number of subspace basis vectors was five. All the experimental results 

were obtained from 100 independent Monte Carlo experiments. 

4.1. Performance Analysis of the Proposed Algorithm under Different Background Noises 

This section analyzed the anti-interference performance of the SMI algorithm and the 

proposed algorithm under the background of white noise and spatially correlated color 

noise, respectively. The obtained results are shown in Figure 2. More precisely, Figure 2a 

shows the variation curves of the output SINR with the input signal-to-noise ratio (SNR) 

for the two algorithms under different background noises for a snapshot number of 2000. 

Figure 2b shows the variation curves of the output SINR of the two algorithms at different 

snapshot numbers for an input SNR of 5 dB. Figure 2c shows the anti-interference beam 

formed with the array using the two algorithms for a number of snapshots of 2000 and an 

input SNR of 5 dB. 

  
(a) (b) 

Desired Signal Interference

 
(c) 

Figure 2. Anti-interference performance of SMI and the proposed algorithm under different back-
ground noises. (a) Performance comparison under different SNR values. (b) Performance comparison
under different snapshot numbers. (c) Anti-jamming beam pattern of the SMI and the proposed
algorithm under different background noises.

A comparative analysis of Figure 2 led to the following conclusions:
It can be seen from Figure 2a that the SMI and TNB algorithms outputted higher

SINR in the white noise background, compared with the spatially correlated color noise
background. The background condition of spatially correlated color noise reduced the
anti-interference performance of the array adaptive beam. On the contrary, the output SINR
of the proposed algorithm in the white noise and color noise backgrounds was similar,
and the background noise had less influence on the anti-interference performance of the
proposed algorithm.

The SMI algorithm increased the output SINR, while the SNR ratio gradually in-
creased. When the input SNR continued to increase, the SMI algorithm appeared to be
self-canceling, and the output SINR decreased as the SNR increased. On the contrary, in this
experiment, the proposed algorithm did not show an inflection point of the degradation of
anti-interference performance when the SNR increased.
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It can be seen from Figure 2b that the proposed algorithm needed almost 60 snapshots
to converge to the maximum output SINR with a constant input signal-to-noise ratio. On
the contrary, the SMI algorithm was greatly affected by background noise, and it took
300 fast beats to converge to the maximum output SINR in the white noise background,
while the maximum output SINR could be reached in 60 fast beats in the color noise
background. However, the output SINR after convergence in the color noise background
was lower.

It can be seen from Figure 2c that the sidelobe of the anti-interference beam map of
the proposed algorithm in the color noise background was slightly higher than that in the
beam map in the white noise background. In addition, the null depth and null width were
mainly the same. On the contrary, the sidelobe of the SMI algorithm in the color noise
background significantly increased, and the mainlobe was shifted by a certain angle.

In summary, the proposed algorithm was more adaptable to different background
noises and had a stable interference suppression under different background noises.

4.2. Performance Analysis of the Algorithms under Spatially Correlated Color Noise

This section analyzed the performance of different robust beamforming algorithms
under spatially correlated color noise. The obtained results are shown in Figure 3. More
precisely, Figure 3a shows the variation curves of the algorithm’s output SINR at different
input SNRs for a number of snapshots of 2000. Figure 3b shows the variation curves of the
algorithm’s output SINR at different snapshot numbers for an input SNR of 5 dB. Figure 3c
shows the anti-interference beam of the algorithm at a snapshot number of 2000 and an
input SNR ratio of 5 dB.
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A comparative analysis of Figure 3 led to the following conclusions:
It can be seen from Figure 3a that, when the number of snapshots was large enough,

the proposed algorithm had an output SINR similar to that of other robust beamforming
algorithms under different signal-to-noise ratios. The SMI algorithm outputted the lowest
SINR under the same conditions, while the LESB, VLD, and the proposed algorithms
outputted a large SINR, which was almost 7 dB greater than that of the SMI algorithm.
However, the output SINR and the interference suppression effect of the LESB algorithm
rapidly decreased when the input SNR was low, and, therefore, it was not suitable for the
case of low input SNR.

According to the analysis of Figure 3a,b, the output SINR of the proposed algorithm
was less than that of the RICM algorithm by almost 5 dB. When the input SNR of the
adaptive filter was the same, the number of snapshots required for the SMI, VLD, and the
proposed algorithms to converge to the maximum output SINR was almost 60, while that
required for RICM to converge to the maximum output signal-to-interference noise ratio
was almost 200. The number of snapshots required for the proposed algorithm to converge
to the maximum output SINR was low. The RICM algorithm estimated the normalized
cross-Capon power matrix in the divided noisy area and calculated the covariance of the
noise signal and the covariance of the interference signal relatively accurately. Compared
with the proposed algorithm, the influence of spatial correlation colored noise was reduced
by constructing the Toeplitz matrix. The RICM algorithm was closer to the beamforming
criterion of the maximum output SINR and could reduce the correlation of the spatially
correlated color noise more effectively. At the same time, the complexity of the algorithm
was also higher. It could be seen from Figure 3c that under the background of spatially
correlated color noise, the beam pattern of the RICM algorithm had the deepest null depth.
The null depth formed with the proposed algorithm was similar to that of VLD and LESB,
and the sidelobe was slightly higher than that of the VLD, LESB, and RICM algorithms.

The proposed, LESB, and VLD algorithms had a similar SINR under the background of
color noise. Under the condition of sufficient snapshots, the interference suppression effect of
the proposed algorithm was not as good as that of the RICM algorithm. However, when this
algorithm converged to the maximum SINR, the required number of snapshots was small,
and the RICM algorithm had many steps. The selection of the input angle of the analog noise
signal was uncertain, which resulted in the instability of the anti-interference performance. In
conclusion, the proposed algorithm had a stronger engineering adaptability.

4.3. Performance Analysis of the Algorithms in the Case of Angle Mismatch

This section simulated the anti-jamming performance of different robust beamforming
algorithms in the case of an angle mismatch between the jamming signal angle and the null
angle of the adaptive beamforming in the case of a spatially correlated color noise. Figure 4
shows the output SINR of each algorithm at different angle mismatches.
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It can be seen from Figure 4 that the proposed algorithm had high anti-interference
performance when the mismatch angle was less than 5 degrees. When the angle mismatch
was 6 degrees, the anti-interference performance of the algorithm rapidly decreased because
it was out of the range of null broadening. Compared with the proposed algorithm, due to
the narrow nulling of the formed beam, when the angle was mismatched, the output SINR
rapidly decreased. After the mismatching angle was 3 degrees, the output SINR tended
to be stable with a slight change. Compared with the RICM algorithm which had the
highest performance, when the interference angle and null angle were matched, the output
SINR of the proposed algorithm was almost 7 dB higher after the mismatch convergence.
The anti-interference performance of the proposed algorithm was basically unaffected in
the null broadening range when the mismatch occurred, which was almost 14 dB higher
than that of the RICM algorithm. Compared with the VLD algorithm, which had the
highest anti-jamming performance in the case of mismatches, the output SINR was almost
6 dB higher. In summary, the proposed algorithm had a more stable anti-interference
performance under the background of spatially correlated color noise and a high-speed
moving array platform.

5. Conclusions

In this paper, the problem of robust beamforming for a high-speed moving array
platform under the background of spatially correlated colored noise was studied. After
analyzing the influence of the background noise on the adaptive beamforming, an adap-
tive wide null beamforming algorithm based on the Toeplitz matrix structure projection
constraint was proposed.

The subspace of the integration of the correlation matrix of the steering vector in
the pre-determined extended region was first extracted, and the constraint matrix and
the projection transformation matrix were constructed. The covariance matrix of the
array-received signal with a Toeplitz structure was then constructed using the correlation
numbers of the received data of each array element and the reference array element. Finally,
the optimal weight vector of the array was obtained through a projection transformation
and linear constraint on the constructed covariance matrix. The simulation results showed
that the anti-jamming performance of the proposed algorithm was less affected by the
background noise. It could perform the null broadening of the beam in the pre-determined
region and solve the problems of distortion sidelobe lifting and mainlobe offset of adaptive
beamforming caused by spatially correlated color noise.
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