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Abstract: Image style transfer is a challenging problem in computer vision which aims at rendering
an image into different styles. A lot of progress has been made to transfer the style of one painting
of a representative artist in real time, whereas less attention has been focused on transferring an
artist’s style from a collection of his paintings. This task requests capturing the artist’s precise style
from his painting collection. Existing methods did not pay more attention on the possible disruption
of original content details and image structures by texture elements and noises, which leads to
the structure deformation or edge blurring of the generated images. To address this problem, we
propose IFFMStyle, a high-quality image style transfer framework. Specifically, we introduce invalid
feature filtering modules (IFFM) to the encoder–decoder architecture to filter the content-independent
features in the original image and the generated image. Then, the content-consistency constraint
is used to enhance the model’s content-preserving capability. We also introduce style perception
consistency loss to jointly train a network with content loss and adversarial loss to maintain the
distinction of different semantic content in the generated image. Additionally, we have no requirement
for paired content image and style image. The experimental results show that the stylized image
generated by the proposed method significantly improves the quality of the generated images, and
can realize the style transfer based on the semantic information of the content image. Compared with
the advanced method, our method is more favored by users.

Keywords: style collection; IFFM; semantic style transfer

1. Introduction

The process of separating and recombining content and style of images using neural
representations is called neural style transfer. Gatys et al. [1] first proposed this technique
and successfully created high-quality artistic images using a convolutional neural network.
Since then, neural style transfer had drawn much attention in the field of computer vision.
However, based on image optimization, the speed is limited. Therefore, researchers have
proposed many different algorithms for accelerating the realization of style transfer.

Methods in [2–4] introduce a feedforward network to accelerate the process of style
reconstruction. These methods can perform real-time single style transfer. However,
for transferring new style, it is needed to retrain the model. some studies [5,6] propose
embedding affine transformation in the middle of the autoencoder to achieve style transfer
of multiple styles. To transfer new styles, the methods only need to retrain the middle
layers separately instead of retraining the entire model. Anyway, the above methods take
extra time to retrain the model when transferring a new style. Furthermore, methods [7–10]
propose style feature embedding networks to achieve arbitrary style transfer without
retraining the model.

The zero-shot methods mentioned above [7–10] can only transfer the style of one
painting of representative artist, which is not enough to represent the artist’s general artistic
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style. Recently, GAN-based style transfer methods are proposed to transfer artist’s style
from the image collection [11–13]. A content image can be transferred to a kind of style of
a painter instead of a single style artwork. The style transfer methods based on the style
collection integrate the collective characteristic of the images, and it is essentially fusing a
content image with multiple style images of similar themes. Complex textures in so many
style images may dilute the structure and content of the original image. The generated
images are prone to distortion or edge blurring. (See Section 4.3).

In this paper, we propose to embed a pair of invalid feature filter modules in GAN
to filter out the secondary features not related to the structure and to better preserve
original content features and local structures. In addition, it is important to perform style
transfer according to semantic information. This can help distinguish different semantic
content in the stylized images. Therefore, we introduce the style perception loss function
to measure the difference between the style image and the stylized image in the latent
space. By jointly optimizing the style loss function and the content loss, the output images
are encouraged to transfer the corresponding style according to the semantic features of
the content. Experiments show that proposed method can achieve semantic-related style
transfer. As shown in Figure 1, the part in the red box reflects that our method can better
retain the green part of the lawn in the original image, and we turn the color of the sky and
lake into blue.
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Figure 1. Comparison with Sanakoyeu et al. [12] and Zhu et al. [13] from Van Gogh’s style. These
methods implement style transfer based on a collection of style images. The red frame shows that the
effectiveness of jointly training IFFM content loss and style loss, and our method can achieve style
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It should be noted that our method does not have the requirement for paired data,
and does not need to manually select the content image matching the style image for
training as in [11,13]. For constructing the collection of style images, given a style image,
we automatically select the style images related to given image from the style image
dataset, and the content image can be any photo. Comparison experiments and ablation
experiments show that our method can obtain better stylized images, and can achieve
style transfer according to the semantic knowledge of the content, which also significantly
improves the texture distortion and uneven color distribution.

The main contributions of this paper are: (1) We introduce a pair of invalid feature
filter modules in the network to better preserve the structural features of the content. (2) We
propose a high-quality style transfer method based on style collection, which represents a
kind of style of a painter. By jointly training the style perception loss and content feature
loss with a GAN architecture, the style transfer based on semantic information can be
achieved. (3) Experiments show that the stylized results generated by our method can meet
the needs of high-quality and real-time style transfer.
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2. Related Work
2.1. Style Transfer

Early style transfer algorithms include methods [14,15] based on image rendering that
belongs to the field of non-photorealistic graphics. However, these traditional methods
have not been applied to the industrial field on a large scale due to restrictions such as a
single type of style or must be paired input. The style transfer algorithm in the computer
vision field includes the method of texture transfer [2,16]. This type of method does not
consider the semantic relationship between content and style and only transfers low-level
image features, so the result of stylization is not very satisfactory.

Gatys et al. [1] proposed the use of convolutional neural networks for style modeling
in style images. The stylization results obtained by this method are very effective, and
for the first time the idea of deep learning is used for style transfer, which has laid a
good foundation for the development of style transfer. In recent years, there has been
an endless stream of research on neural style transfer. Wang et al. [17] proved that style
transfer can be regarded as a domain adaptation problem through derivation based on [1].
Li et al. [16] introduced Laplacian loss to guide image synthesis, and Li et al. [18] proposed
using Markov random field loss instead of Gram matrix loss in order to improve the style
characteristics of style transfer.

The above methods based on model iteration have great limitations in speed, which
are not convenient for industrial applications. In order to solve the speed problem,
Ulyanov et al. [3] used a multi-scale texture network to synthesize stylized images, on
this basis, Ulyanov et al. [4] set the batch size to 1 and introduce instance normalization
layer training to make the model converge faster. Johnson et al. [2] proposed to train a
forward residual model with perceptual loss. Two perceptual loss functions are defined to
measure the high-level perception and semantic differences between images, which can
achieve style transfer based on semantic knowledge. However, this type of methods can
only realize the transfer of one style image for one content image by training a model, so
multi-style and arbitrary-style style transfer methods are proposed.

Chen et al. [5] proposed that StyleBank is bound to each style so that only this part
needs to be retrained when converting a new style image. Dumoulin et al. [6] proposed
conditional instance normalization. To transfer to the new style, just do an affine trans-
formation on the instance normalization layer. The above methods still need extra time
training to achieve the style transfer of the new style, so Li et al. [8] proposed the use
of whitening and coloring operations plus the structure of the encoder and decoder to
achieve arbitrary style transfer. Xun et al. [7] proposed adaptive instance normalization to
directly normalize the content in the image into different styles through large-scale training;
Sheng et al. [2] proposed a style decorator to align style features to images corresponding
to semantic information to achieve multi-scale zero style transfer. Park et al. [9] proposed a
style attention network and identity loss function to achieve arbitrary real-time transfer.

Recently, there are several methods [11–13] based on generative adversarial networks [19]
that can achieve the style transfer of a class of style collection. The generative adversarial
network is composed of two parts: generator and discriminator. The main thought is
mixing the spurious with the genuine to achieve a dynamic balance. Zhu et al. [13] intro-
duced the cycle consistency loss to transfer the image from the source domain to the target
domain, but the result generated by this method will produce rough texture because the
loss function measures the difference between the generated image and the content image
in the RGB space. In order to solve the above problems, Sanakoyeu et al. [12] proposed a
style-aware content loss function to optimize the content features in the stylized results,
but the stylized images may inevitably produce deformations and texture distortions.
Ma et al. [11] proposed that [12] did not consider semantic information and regarded the
content domain and style domain as two separable parts, so they proposed dual consistency
loss to achieve semantic-related style transfer. However, the limitation lies in the need to
manually select content images related to the theme of the style image. Recent contrastive
learning models [20–22] show that the non-linear projection head can filter out the invalid
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features. Therefore, this article refers to the idea of introducing an invalid feature filtering
module into the encoder–decoder structure, which extracts the structural features of the
content after the input image and the generated image are filtered to avoid the interference
of redundant texture features.

2.2. MLP

After Ting Chen of the Hinton group proposed SimCLR [20], contrastive learning
has attracted strong attention. Subsequently, many scholars have proposed different
comparative learning models [21–23], and their models even exceed the performance
of supervised learning. The common point of these models is that they all introduce
Non-linear projection head behind the encoder.

The study of SimSiam [23] also shows that its performance is hardly improved without
Non-linear projection head. The main function of MLP is to filter out the invalid feature that
is represented to obtain the essence. Additionally, we just want to avoid the interference of
redundant texture features, so we introduce an invalid feature filtering module into the
model, which is mainly composed of Non-linear projection head.

Recently, Non-linear projection head has set off a wave of enthusiasm in the field
of computer vision, because the Google team, the Tsinghua team, and scholars from Ox-
ford University [24–27] introduced the use of Non-linear projection head-based models to
achieve image classification, semantic segmentation, image generation and other visual
tasks. Its experiments also show that its efficiency and accuracy can achieve comparable ef-
fects with convolutional neural networks and transformer modules. This also further proves
the rationality of our application of the Non-linear projection head module, and our experi-
mental results also confirm that the stylization results have been significantly improved.

3. Method
3.1. Network Architecture

The network architecture of our method is shown in Figure 2. It is a GAN-based
approach. The generator is composed of an encoder and decoder structure. The encoder E
extracts the features of the input image xc and maps it to the representation space z = E(xc).
The decoder G is used to generate the stylized image xcs = G(z). The discriminator D(·)
is used to distinguish the generated stylized image xcs from the real original style image
xs. Specially, we embed invalid feature filtering module I in the network to optimize the
content structure of the generated image.
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3.2. Training

We use the standard discriminator loss function to optimize the style characteristics of
the generated results. The adversarial loss is as follows:

Ladv(E, G, D) = Ey∼pY(y)[log D(y)]
+Ex∼pX(x)[log(1− D(G(E(x)))]

(1)

where y represents a style image, y ∈ Y, x ∈ X, and x represents a content image.
In addition to capturing style from style images, preserving the content structure of the

original image is important. We consequently introduce the content-consistency constraint
to enhance the model’s content-preserving capability. The methods based on the style
collection combine the collective characteristic of the images. Complex textures in so many
style images may dilute the structure and content of the original image. The generated
images are prone to distortion or edge blurring. In order to reduce the interference of the
texture unrelated to the structure, we propose to introduce invalid feature filter modules
(IFFM) into the network to filter out the invalid features in the image. We define the content
loss between content image xc and the output image xcs as:

Lcontent(E, G) =
1

CHW
‖ I(xc)− I(xcs) ‖2

2 (2)

where CHW is the size of the input image xc, I is invalid feature filtering module. The
detailed structure of IFFM is described in Section 3.2.

In addition, performing style transfer according to different semantic content is sig-
nificant. Therefore, we introduce style perception loss to measure the difference between
style image xs and stylized image xcs = G(E(xc)) in latent space. In this way, the gen-
erated image preserves desired content information of the original image according to
corresponding style. The style perception loss and content loss are jointly trained with
GAN to optimize semantic features of stylized images. However, directly using the Gram
matrix to match the pixels between the style image and the generated image may cause
the generated result to appear messy and uneven color distribution, so we define style
perception loss as the Euclidean distance between generated stylized image xcs and real
style image xs in latent space:

Lstyle(E, G) = Ey∼pY(y)[
1
d
‖ E(y)− E(G(E(x))) ‖2

2] (3)

where d is the dimension of the latent space.
Using the above three losses, the total loss is formulated as:

L(E, G, D) = Lcontent + Lstyle + λLadv (4)

where λ is the weight parameter that controls content style consistency loss and adversarial
loss. We optimize our model through the following optimization problems.

E, G = arg min
E,G

max
D

L(E, G, D) (5)

3.3. Invalid Feature Filtering Module

Our proposed invalid feature filtering module (IFFM) consists of a pair of non-linear
projection heads h(·), which are used to filter out the redundant texture features of the input
image and the generated stylized image. Since our style transfer algorithm is based on a
collection of style images, generated stylized images may contain rich textures of multiple
style images, which may interfere with the content structure. Therefore, we use the invalid
feature filtering module to only retain the structural features related to the content and then
measure the content loss, which can reduce the occurrence of edge distortion and structural
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deformation. h(·) = W(2)σ(W(1)x) is obtained through projection head modules with two
layers, where σ is a RELU non-linear activation function [20].

The reason why we thought of using non-linear projection heads for filtering is be-
cause Chen et al. [23] introduced non-linear projection heads into the network, and showed
through experiments that the prediction accuracy performance of the model without the
projection head was poor. Additionally, it reached the same conclusion as [20]: the projec-
tion head module plays an important role in removing the invalid feature of the image.

However, unlike the classic MLP structure, we replace the batch normalization layer
with the instance normalization layer. The instance normalization is suitable for the
generation model, especially the style transfer, so applying the instance normalization
layer not only allows the model to converge faster, but also maintains the independence
between images [28]. This prevents instance-specific mean and covariance shift simplifying
the learning process. Differently from batch normalization, furthermore, the instance
normalization layer is applied at test time as well. The normalization process allows to
remove instance-specific contrast information from the content image, which simplifies
generation. The structure of the invalid feature filtering module is shown in Figure 3.
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The idea of [18]’s method is similar with ours. Sanakoyeu et al. [12] proposed to
inject a transformer block to the model, then measured transformation loss to discard
unnecessary details in the content image according to the style. The image transformation
is achieved through a pooling layer, which may cause the content image to become fuzzy
instead of filtering out the true redundant features of the image, so the resulting image may
be deformed more severely.

4. Experiments
4.1. Training Details

The basic model of our encoder decoder adopts the structure in [2]. The encoder
network consists of 5 convolutional layers: 1 convolutional block with a step length of
1 followed by 4 stride-2 convolutional block, and the decoder network contains 9 residual
blocks [29] that are composed of 4 up-sampling blocks and a convolutional layer with
stride-1. In addition, the instance normalization layer is used after the convolutional
layer. The discriminator network uses the multi-scale structure from [30] that is a fully
convolutional network consisting of 7 convolutional blocks with stride-2. For the training of
the overall network, we set λ in Equation (4) to 0.01. We train for a total of 300,000 iterations
and the batch size is 1. The Adam [30] optimizer is used and the learning rate is set to
0.0002 to optimize the network.

4.2. Data Composition

We use Places365 [31] as the dataset of content images in order to better adapt to the
style transfer of more scenes. This dataset contains 365 scene classes in life, covering a
wide range and comprehensiveness, including 1.8 million training images. We randomly
sampled 768 × 768 image patches from the dataset as content images for training. There is
no need to manually choose the paired images related to the structure theme as in [24]. We
adopt the collection of style images selected by automatic grouping in [26] from Wikiart [32].
An example of the style image collection after style grouping is shown in Figure 4 (part of
the Van Gogh style image collection example).
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4.3. Experimental Results

We compared our method with the previous three types of works, including collection-
based methods [12,13], arbitrary style methods [7,8] and single style transfer methods [1,17].
For [7,8], we use the pre-trained model provided by the author; For methods [12,13]
and [1,17], we use the source code provided by the author to train through our dataset.

Figures 5–7, respectively, shows three style collections, which are style of Van Gogh,
Picasso and Monet. Our method is compared with CycleGAN [13] and the style-aware
content loss method [12]. The results of method [13] show that it is difficult to distinguish
different content because the colors of different content become similar. For example, the
lake in the third and fifth rows of Figure 5 has been integrated with stones and bridges and
the color all turned green, while the color of lake in the stylized image generated by our
method has turned blue, and the color of tree trunks and stones are brown. Our method
can clearly distinguish the colors of different content. The fundamental reason why the
stylized results generated by CycleGAN [13] are not so natural is that the cycle consistency
loss directly measures the difference between the stylized results and the reverse mapping
of the content images in the RGB space. This has a bad influence on the results for content
images and style images with large structural differences.

For Picasso style, the structure of the style image is relatively abstract and the process
of style transfer is decomposed and reassembled, so the difference in the structure of the
content image and the style image will not have a particularly large impact on generated results.
However, the stylization result of [18] may show blurred edges and uneven color distribution
(see line 6 in Figure 6). For Monet’s Impressionist style, the stylized results produced by
CycleGAN may produce noisy textures and brushstrokes (see lines 1, 4, and 5 in Figure 7).

In order to solve the above problems, Sanakoyeu et al. [12] proposed the style-aware
content loss to determine the content details to be retained according to the style. This
may result in serious structural deformation. For example, in the fourth row of Figure 6,
the woman’s legs have been merged with the background and the pole behind her is
also severely deformed. In comparison, our method better weighs the representation
between content images and style images, and better retains the structure of content features
relatively. In addition, our method can achieve style transfer based on different semantic
content. The method [12] cannot perform style transfer based on the semantic relationship
between the content image and the style image. For example, in lines 3, 5, and 6 in Figure 5,
our method can convert color of lake to blue and color of tree trunks, stones and bridges to
brown, but the method [12] cannot do this.

We also compared with fast arbitrary style transfer methods, including WCT [8] and
AdaIN [7]. Figure 8 shows the comparison results of our method and two zero-shot style
transfer methods. These two methods can retain good style characteristics, and do not limit
the types of styles. However, in the results generated by the method of WCT [8], more
content features are lost, and style features are over reserved. The stylized results generated
by AdaIN [7] are more prone to texture bending and distortion. In contrast, our method can
better retain the content characteristics and it is not easy to appear deform the structure.
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Figure 9 shows the comparison between our method and the researches based on
single style transfer. In theory, the effect of using a convolutional neural network to achieve
style transfer proposed by Gatys et al. [1] is the best. However, as shown in Figure 9, the
methods [1,17] implement style transfer between a single content image and a single style
image, which may cause uneven color distribution. On the contrary, our stylized images
can represent a type of painting from a certain painter. Therefore, our stylized results
naturally contain the information of multiple style images, and the colors of the styles
corresponding to different content in our generated images are also different, which greatly
reduces the uneven color distribution. Although the studies [11,12] mentioned that the
transfer based on the style image collection can be realized by calculating the Gram matrix
of different style images, it also shows that the effect of the style transfer based on the
calculation of the Gram average is not good. Our method can not only preserve the visually
reasonable results, but also meet the real-time style transfer.
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In addition, the details of our stylized images are kept clear when the size of the
stylized result generated by our method is 1280× 1280 pixels, which means that our method
can meet the needs of high-definition transfer images. As shown in Figure 10 the images
generated by our method can retain fine details and strokes even with high resolution.
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4.4. User Research

There is currently no more authoritative unified quantitative evaluation standard to
judge the performance of style transfer tasks. Moreover, the goal of style transfer is to
meet the needs of users, so the subjective feelings of users are crucial to the evaluation
of stylized results. Therefore, we evaluate different methods through user voting. We
compare our method with three researches [7,12,13]. For each method, we choose three
styles, and randomly select 5 style transfer images for each style. Given the original content
image and the corresponding style, users choose their favorite image from the images in
each style. Figure 11 shows the result of collecting 1230 votes from 82 users and converting
them into an average percentage. It is obvious that our method is more popular.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 11. User preference voting for 4 algorithms. 

We also count the percentage of votes obtained by the three styles of each method. 
As shown in Figure 12, our method IFFMStyle comprehensively got the most votes among 
the three styles. However, the number of votes in the styles of Picasso and Monet is 
slightly less than the method of AdaIN [7]. The reason is that the image structure of Pi-
casso style and Monet’s style is more complicated, so the images change larger after style 
transfer, and users are more inclined to choose a result that is closer to the original content 
image. Our method is to synthesize multiple styles of a painter, while AdaIN’s stylized 
images represent only single style of stylized image, which leads to slight differences in 
the generated results. Moreover, the users may be less sensitive to distortion of the styl-
ized image. For the Van Gogh style, most users choose our stylized images. Overall, our 
method can better meet the needs and preferences of users. 

 
Figure 12. Comparison of user votes between methods. 

4.5. Ablation Experiment 
4.5.1. Loss Function 

We produce ablation experiments to verify the effectiveness of each loss function, as 
shown in Figure 13. The content structure loss in the generated results is very serious 
because only the adversarial loss is used to train our network (b). The color distribution 
of the results generated without content loss training is not natural (c). Instead of style 
loss to train the network, the content structure of generated images is unclear and the 

45%

11%
12%

32%

Ours Sanakoyeu et al. CycleGAN AdaIN

0%

10%

20%

30%

40%

50%

60%

70%

Ours Sanakoyeu et al. CycleGAN AdaIN

Comparison of user votes between methods

VanGogh Picasso Monet

Figure 11. User preference voting for 4 algorithms.

We also count the percentage of votes obtained by the three styles of each method. As
shown in Figure 12, our method IFFMStyle comprehensively got the most votes among the
three styles. However, the number of votes in the styles of Picasso and Monet is slightly less
than the method of AdaIN [7]. The reason is that the image structure of Picasso style and
Monet’s style is more complicated, so the images change larger after style transfer, and users
are more inclined to choose a result that is closer to the original content image. Our method
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is to synthesize multiple styles of a painter, while AdaIN’s stylized images represent only
single style of stylized image, which leads to slight differences in the generated results.
Moreover, the users may be less sensitive to distortion of the stylized image. For the Van
Gogh style, most users choose our stylized images. Overall, our method can better meet
the needs and preferences of users.
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4.5. Ablation Experiment
4.5.1. Loss Function

We produce ablation experiments to verify the effectiveness of each loss function, as
shown in Figure 13. The content structure loss in the generated results is very serious
because only the adversarial loss is used to train our network (b). The color distribution of
the results generated without content loss training is not natural (c). Instead of style loss
to train the network, the content structure of generated images is unclear and the texture
features are disordered (d). We use auto-encoder loss to replace the content loss of the
IFFM, which result in the content features not being retained well (e). The stylized image
generated by training the network with the above three loss functions is optimal (f). This
also proves that every piece of our model is meaningful, and the performance is best when
all the modules are combined.
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4.5.2. Analysis of Weight Parameters

We also analyze the influence of the weight parameter in Equation (4) on the experi-
mental results. The weight parameter λ mainly controls the importance of adversarial loss,
and adversarial loss mainly optimizes style characteristics, so the style characteristics be-
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come more and more obvious with the increase in λ in Figure 14. In order to better balance
content features and style features, we set λ to 0.01 in a comprehensive consideration.
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5. Conclusions

We propose a real-time style transfer method based on a collection of style images,
which can achieve style transfer according to the semantic information of content images.
There is no pairing restriction on the content image and the style image. In addition, we
propose the invalid feature filtering modules in the encoder decoder structure to filter the
redundant feature of the input images and the generated images, which can reduce the
interference of features not related to structure. Style transfer based on semantic features
can be achieved to alleviate the color disorder by jointly training style-content-consistency
loss and adversarial loss. Experiments prove that the quality of the stylized results is high
and can meet the needs of high definition and real time, and the images generated by our
method are more popular than other advanced methods.

The main limitation of this work is that there is no unified objective standard for
the evaluation of stylized images, and it can only rely on people’s subjective judgments,
so different people may have inconsistent preferences. In addition, the content images
targeted by our method are various scenes in life, and the styles are paintings of many
painters. If a new style is transferred to a specific image, the effect achieved by this method
may not be applicable.
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