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Abstract: Distributed acoustic sensing techniques based on Rayleigh scattering have been widely
used in many applications due to their unique advantages, such as long-distance detection, high
spatial resolution, and wide sensing bandwidth. In this paper, we provide a review of the recent
advancements in distributed acoustic sensing techniques. The research progress and operation
principles are systematically reviewed. The pivotal technologies and solutions applied to distributed
acoustic sensing are introduced in terms of polarization fading, coherent fading, spatial resolution,
frequency response, signal-to-noise ratio, and sensing distance. The applications of the distributed
acoustic sensing are covered, including perimeter security, earthquake monitoring, energy exploration,
underwater positioning, and railway monitoring. The potential developments of the distributed
acoustic sensing techniques are also discussed.

Keywords: distributed acoustic sensing; optical fiber sensor; optical time domain reflectometry;
Rayleigh backscattering; performance boost

1. Introduction

Optical fiber sensing techniques are an important means of evaluating the degree of a
country’s informatization [1,2]. Scattered light in the optical fiber is used as the information
carrier to sense and transmit the changes in external physical quantities. The scattered
light in an optical fiber includes Raman, Brillouin, and Rayleigh scattering. Among these,
the first two types are related to the vibrationally excited state of the optical fiber, and
both involve inelastic scattering. The difference between the two types is that the former
interacts with optical phonons and the latter interacts with acoustic phonons [3–5].

Rayleigh scattering was introduced because the inhomogeneous refractive index is
generated by the inhomogeneous distribution of the optical fiber material [6]. Rayleigh
scattering is a linear process because the scattered power is proportional to the incident
power. In addition, it is also known as elastic scattering because the frequency of the
scattered light does not change compared to the incident light. To date, it has been widely
used in the field of distributed sensing because of its strong scattered light intensity and
lack of frequency shifting. Thus, distributed acoustic sensing (DAS) techniques based
on Rayleigh scattering have attracted intensive research due to their unique distributed
sensing performance and high sensitivity measurement capability in applications [7–11].

Distributed detection is used to measure the variation information along the sensing
fiber by detecting the backscattering. In 1976, Barnoski et al. first proposed the optical time
domain reflectometer (OTDR) technique according to the design concept of LiDAR [12]
and applied it to detect the loss of optical fiber links.

Since the OTDR cannot respond to the phase modulation information caused by
interference events, Healy et al. proposed the concept of coherent OTDR (COTDR) in 1982
to further improve the performance of the system [13]. In 1993, Taylor et al. proposed a
high-sensitivity phase-sensitive OTDR (Φ-OTDR) technique [14], from which DAS entered
the qualitative detection stage.
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In order to extract the information of external physical quantities, the phase demodu-
lation technologies are proposed to demodulate the interferometric signal within the RBS.
In 2013, Newson et al. proposed phase demodulation based on a 3 × 3 coupler [15]. In
2015, Li et al. proposed a phase-generating carrier (PGC) demodulation method [16]. In
2016, Rao et al. used IQ demodulation to process optical fiber stretching signals [17], from
which DAS entered the quantitative detection stage.

Currently, DAS techniques have undergone great development due to the improve-
ment in performance indicators [18] (Figure 1), such as polarization fading, coherent fading,
spatial resolution, frequency response, signal-to-noise ratio, and detection distance.
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In this paper, first, the basic sensing principles of the DAS system are introduced, and
then the technical difficulties and solutions of DAS techniques in terms of polarization
fading, coherent fading, spatial resolution, frequency response, signal-to-noise ratio, and
detection distance are demonstrated. The latest progress of DAS techniques is also described
in the fields of perimeter security, earthquake monitoring, energy exploration, underwater
positioning, and railway monitoring. Finally, a summary of DAS techniques is presented.

2. Basic Sensing Principle

OTDR is the basis for distributed detection. DAS systems mainly include the phase
sensitive optical time domain reflectometer (Φ-OTDR) and the coherent optical time domain
reflectometer (COTDR). When a certain length of the sensing optical fiber is immersed in
the external physical field environment (such as acoustic wave, temperature, vibration,
or strain), the unit length and refractive index of the optical fiber are changed via the
elasto-optical or thermo-optical effect, which causes the optical features (amplitude or
phase) of the RBS within that optical fiber. The quantity of the external physical field can
be recovered by detection and demodulation.

2.1. Principle of OTDR Techniques

When an optical pulse is injected into the optical fiber under test (FUT), the RBS
generates different round-trip times at different positions, which are received by the pho-
todetector (PD). The RBS intensity at each position of the optical fiber is obtained by
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analyzing the electrical signal output from the PD. The position of the scattering point is
related to the return time of the RBS. The round-trip time at the input can be expressed as:

z =
cσ

2n
=

vgσ

2
, (1)

where σ is the time of backscattered detection, vg is the group speed in the optical fiber,
and the factor of 2 means that only the backscattered pulse is needed to return to the
detector. Under ideal conditions of the uniform refractive index of the optical fiber, the
amplitude of the backscattered light at any point is proportional to the amplitude of the
forward propagating light at that position, because Rayleigh backscattered light is a linear
process [19] (Figure 2).
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2.2. Principle of Φ-OTDR Techniques

To address the defect that traditional OTDR techniques cannot respond to external
interference, Φ-OTDR techniques evolved from traditional OTDR techniques; the main
difference between the two is the choice of laser, with Φ-OTDR techniques having more
demanding requirements. In Φ-OTDR, the line width of the laser is very narrow, usually
less than 100 kHz, so the coherent length is much longer than the pulse width. When a
certain section of optical fiber is affected by interference, it changes the phase of the RBS
passing through the corresponding position, leading to the change in the RBS’s intensity
due to the interference effect.

A narrow linewidth laser (NLL) emitting highly coherent light is used as the light
source, an acousto-optic modulator (AOM) is used to convert the continuous light into a
probe pulse, and an erbium-doped fiber amplifier (EDFA) is used to compensate for the
previous optical path and the loss of power to the optical path devices. The amplified
detection pulses are injected into the sensing optical fiber via a circulator (CIR). Then, its
RBS light is delivered through the CIR to a PD [20] (Figure 3).
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2.3. Principle of COTDR Techniques

Coherent detection techniques were introduced on the basis of Φ-OTDR; they process
the beat frequency signal of the local signal and the Rayleigh backscattering signal, and can
sense the phase information and position of the external vibration signal in real time. The
main difference between COTDR and traditional OTDR is that the former uses a narrow
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linewidth laser having a stable frequency and much longer coherence length than that of a
FUT. By comparing the electrical fields before and after modulation, it can be expressed as:

El(t) =
√

Plej2πv0t, (2)

and:

Ep(t) =
√

Ppej(2πv0t+2π f0t)α

(
t

Hp

)
, (3)

where α(t) is the window function, Hp is the probe pulse width, f 0 is the carrier frequency,
Pp and Pl are the power of the RBS light and the local light respectively, and v0 is the laser’s
center frequency. Then the photoelectric field of the PD can be expressed as:

ER(t) =
N

∑
i=1

Eiej[2πv0(t−σi)+2π f0(t−σi)]α

(
t− σi

Hp

)
, (4)

where N is the number of the scattering points along the FUT, σi is the round-trip time of
the i scattering point, and Ei is its photoelectrical field amplitude [21] (Figure 4).
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3. Research Progress
3.1. Polarization Fading

The birefringence phenomenon results in polarization fading because the polarization
state of the output light is different from that of the reference light [22]. The main feature of
polarization fading is the random fluctuations of amplitude of the beat frequency signal
of the interference between the signal light and the reference light. The amplitude of the
scattered waveform is close to zero at some positions when polarization fading occurs in
the phase demodulation.

As early as the 1970s, the fading phenomenon was preliminarily studied in the fields
of optical imaging [23] and wireless communication [24]. At present, it is addressed
using polarization-maintaining fiber depolarization [25], Faraday rotating mirrors [26],
input polarization state control [27], high-speed polarization modulation [28], diversity
reception [29], etc.

In 2014, Wu et al. proposed a stable coherent and polarization maintaining light path
structure with up to 40% visibility of interference fringes [30]. With the development of
the technique, dual frequency probe pulses could be used to suppress polarization fading.
In 2015, Alekseev et al. used the dual-pulse diverse frequency probe signal for phase
signal reconstruction at any positions on the Φ-OTDR system, and experimental results
demonstrated the feasibility of the scheme [31]. Although the scheme had significant
limitations and was not yet mature enough for the control of both pulses, the experiment
demonstrated the feasibility of the method and provided a direction for later researchers to
suppress polarization fading. In 2017, Chen et al. proposed a new form of phase detection
that effectively suppressed the effect of polarization fading. Experiments showed two
simultaneous vibrations were detected in a 35 km optical fiber with an SNR of more than
26 dB [32].

In 2020, Sun et al. proposed a distributed optical fiber acoustic sensing demodulation
scheme based on a dynamic birefringence estimation [33] (Figure 5). The experimental
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results showed the effective suppression of the drastic polarization change, which was
about 9.5 dB. The uniform background noise averaged about 1.2 × 10−3 Rad/

√
Hz at

different positions.
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Figure 5. (a) Experimental setup and demodulation procedure. (b) Backscattered light intensity of
backscattering enhanced fiber in different polarized states; PSD of fiber section A; PSD of fiber section
B in X polarized state, Y polarized state and depolarized algorithm [33].

In 2020, Rao et al. first proposed the bipolar Golay coding Φ-OTDR laser scan-
rate problem with heterodyne detection function and adopted a real-time compensation
(frequency drift compensation for the laser) method for its solution [34]. The method
combined the spectrum extraction and remix methods to suppress polarization fading.
Experiments showed that, compared with the unipolar code case, the SNR was improved
by 7.1 dB within the sensing range of 10 km, the spatial resolution reached 0.92 m, and
the measurement time was 1/2 of the original. By solving the frequency drift and fading
problems, the distributed sensing capability of optical pulse coding (OPC) Φ-OTDR was
realized, and the bipolar scheme could be applied in many other coding schemes, providing
more possibilities for OPC to enter Φ-OTDR.

In 2020, Guerrier et al. proposed a coherent-MIMO sensing technique, which was
based on the Φ-OTDR system [35] (Figure 6). The transmitter adopted double polarization
multiplexing and the receiver adopted polarization diversity. A comparison of two-phase
estimation methods for multiple polarization input-multiple polarization output sensing
(MIMO) and single polarization input–multiple polarization output sensing (SIMO) led to
the conclusion that coherent-MIMO sensing techniques outperform partial polarization
diversity sensing techniques in terms of sensitivity. The polarization effect had little
influence on the double polarization detection of the optical fiber sensor, which reduced
the probability of false alarms in the system and greatly improved its sensitivity. It is of
great significance to further study the double polarization demodulation of the optical
fiber sensor.
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applied [35].

In 2021, Gu et al. proposed a new spatial diversity technique based on multi-core
optical fiber [36] (Figure 7). By means of a fan-in and fan-out module, the independent
transmission and centralized reception of signals were carried out in the four cores of the
multi-core optical fiber, and the multiple signals were effectively combined by the coherent
combining techniques. The experimental results showed that the external interference
signal was well reconstructed, the signal fading was suppressed, and the noise floor of the
system was decreased to 5.2 dB compared with the optimized single-mode optical fiber
system. The sensor exhibited a high level of performance with a minimum noise floor of
−85 dB.

In 2021, Ogden et al. analyzed a COTDR system that was based on a frequency
multiplexed pulse sequence structure [37]. The method was implemented by increasing
the average power injected into the optical fiber, thereby suppressing polarization fading
while reducing noise, improving the linearity of the sensor, and achieving a minimum
detectable strain of 0.6 pε/

√
Hz. The research progress for suppressing polarization fading

is summarized in Table 1.
In summary, to solve the polarization fading problem, researchers changed the optical

path structure at an early stage. However, the suppression effect of polarization fading
problem was not obvious due to the hardware problem at that time. In recent years, phase
extraction was proposed by using the dual-pulse diverse frequency probe signal. This is able
to detect two simultaneous vibrations, but still has limitations and cannot be carried out on a
large scale. Recently, researchers started from the principle of the generation of polarization
fading, and the method of simultaneous improvement of software and hardware, such as
the demodulation scheme based on dynamic birefringence, was demonstrated. Frequency
drift was proposed using the bipolar Golay coding technique with the heterodyne detection
function. This significantly improved the system performance compared with traditional
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unipolar coding, but spatial resolution must be improved. The sensitivity was optimized by
spatial diversity techniques, but the experimental system was more complex. The changing
pulse sequence technique was used for fading suppression and can greatly reduce the noise,
but it requires a large amount of technical support and the system cost is high. In general,
the bipolar coding technique, spatial diversity technique, and changing pulse sequence
technique are not mature enough, but this does not affect their future improvements for
solving the problem of polarization fading and improving the system performance.
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Table 1. Research progress for suppression of polarization fading.

Published Date Researchers Polarization Fading
Suppression Scheme Performance

CJSI, 2014 Wu, et al. Coherent and polarization
maintaining light path structure

Interference fringe
visibility up to 40%

LP, 2015 Alekseev, et al. Dual-pulse
diverse frequency probe signal

OE, 2017 He, et al. Phase-detection SNR: 26 dB
CLEO, 2020 Sun, et al. Dynamic birefringence estimation Suppress about 9.5 dB noise

JLT, 2020 Rao, et al. Bipolar Golay coding Suppress about 7.1 dB noise
OE, 2020 Guerrier, et al. Coherent-MIMO sensing Improve sensitivity

AOS, 2021 Cai, et al. Spatial diversity Suppress about 5.2 dB noise

SR, 2021 Ogden, et al. Frequency multiplexed
pulse sequence

Strain noise:
0.6 pε/

√
Hz

3.2. Coherent Fading

Coherent fading relates to light fluctuating up and down of Φ-OTDRs when narrow
linewidth lasers having a long coherence length detect intra-pulse interference of the RBS
generated by the pulsed light. The RBS become weaker or even converges to zero at certain
locations, resulting in random detection blind spots in the time and frequency domains
because of coherent fading. In turn, the process of phase demodulation causes a sharp
deterioration in the signal-to-noise ratio, and the reconstructed phase information of the
external signal is far from the actual situation, leading to serious consequences of missed or
even false alarms [38,39].
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In order to solve the problems caused by coherent fading, researchers conducted
a series of studies, such as pulse coding techniques, frequency division multiplexing
(FDM), and internal pulse division methods [40,41]. The pulse coding techniques using the
multi-frequency pulse method have poor fading suppression because they need different
detection pulses of different frequencies, and exhibit a large variability from pulse to pulse.
Based on the above problems, in 2018, Cai et al. proposed a new method based on the differ-
ential phase shift pulse (DPSP) technique to improve the original phase extraction method.
The phase can be demodulated by the amplitude threshold to reduce the probability of
coherent fading [42].

In 2021, He et al. proposed a phase-shift transform method to suppress the coherent
fading of Φ-OTDR based on the original multi-frequency pulse method. The detected signal
was first decomposed and the π phase shift of a signal with complementary amplitude was
obtained. The false phase was corrected by synthesizing the complementary signal. This
experiment not only allowed the intensity fluctuations above 60 dB to be reduced to 15 dB,
but also reduced the standard deviation of the differential phase to 0.0224 [43].

To ensure the desired outcome without sacrificing spatial resolution, in 2019, Zhang et al.
proposed a coherent fading suppression method based on frequency division multiplexing
(FDM) Φ-OTDR to keep the signal distortion induced by coherent fading in the order of
10−2 [44] (Figure 8).
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In order to meet the performance requirements of commercial fields such as wireless
communication, FDM based on the above proof can effectively suppress coherent fading.
In 2021, Zhang et al. proposed a method to suppress coherent fading by Φ-OTDR based on
space division multiplexing (SDM), and the experimental results proved that the method
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could greatly reduce the distortion rate of the signal to maintain it below 2%. This was
useful in significantly improving the monitoring performance of commercial systems [45].

In 2021, He et al., proposed a method using time-gated digital-optical frequency do-
main reflectometry (TGD-OFDR) to suppress the coherent fading of Φ-OTDR [46] (Figure 9).
The chirped pulses were divided into overlapping bands and reassembled after digital
decoding to achieve a maximum detectable range of 80 km. The superiority of the approach
was proven in practical tests. The research progress for the suppression of coherent fading
is summarized in Table 2.
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Table 2. Research progress for suppression of coherent fading.

Published Date Researchers Coherent Fading
Suppression Scheme Performance

IEEE, 2018 Cai, et al. DPSP Sensing distance: 2.4 km
Elec, 2019 Zhang, et al. FDM Distortion rate: 1.26%

JLT, 2021 He, et al. Phase-shift transform Standard deviation of
differential phase: 0.0224

Sens, 2021 Zhang, et al. SDM distortion rate: <2%
Sens, 2021 He, et al. TGD-OFDR Sensing distance: 80 km
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In summary, a large number of techniques have been proposed to suppress coher-
ent fading. The DPSP can reduce the probability of interference without sacrificing the
vibration response bandwidth, but cannot be widely used due to the limitation of complex
experimental operations and performance loss. The phase shift transform technique greatly
improves on the weaknesses of the traditional multi-frequency pulse method and has the
ability to correct for shifted phases; moreover, although the system is more complex, it
does not require complex frequency/phase modulation. FDM can not only suppress the
distortion rate of the signal caused by coherent fading to 1.26%, but also improves the
overall frequency corresponding range, which requires greater hardware and changes the
original system structure. The SDM technique is not as accurate as the FDM technique, but
its structure is simple and it can effectively be adapted to commercial use. The TGD-OFDR
technique can ensure scattered light detection with a high enough SNR, and its commercial
performance index is also relatively outstanding, exceeding other commercial devices in
traditional SM fiber.

3.3. Spatial Resolution

Spatial resolution is the minimum distance that an optical fiber sensing system can
effectively identify two individual events. It is one of the main parameters used to measure
DAS system performance.

In general, the spatial resolution is mainly influenced by the pulse width, which can
be written as:

∆z =
cTw

2n
, (5)

where ∆z is the spatial resolution, c is the speed of light, and Tw and n are the pulse width
and the refractive index of the optical fiber, respectively. However, the pulse width is
inversely proportional to the SNR and the sensing distance. Determining how to balance
these three parameters is of great significance to researchers.

Improved sensing system structure and optical path devices have been used to im-
prove the spatial resolution of the system. In 2016, Shang et al. added an interferometer on
the basis of the traditional optical path, recovered the phase information via the phase car-
rier demodulation algorithm, and realized a flat frequency response curve and 10 m spatial
resolution [47]. In response to the shortcomings of conventional piezoelectric transducer
(PZT) modulation, such as low efficiency and insufficient performance, in 2021, Ma et al.
proposed an optical fiber PGC modulation structure based on a LiNbO3 through-waveguide
phase modulator [48]. This structure had greatly improved performance compared to the
traditional interferometer, was capable of detecting weak acoustic signals, and achieved a
spatial resolution of 10 m. It provided a new research idea for the development of DAS
systems. In 2021, Zhu et al. established a new Φ-OTDR optical path system [49] (Figure 10).
This system used a distributed feedback (DFB) semiconductor laser combined with an
optical waveguide ring resonator (OWRR) as the light source, and its linewidth and sta-
bility were excellent at a reduced cost. It offered the advantages of compactness, ease of
integration, and high interference immunity. Simultaneous measurements of two vibration
sources could be made over 4700 m of fiber with a spatial resolution of 13 m.

High spatial resolution was achieved using narrow width optical pulses or by intro-
ducing a swept pulse compression mechanism. In 2019, He et al. proposed a distributed
acoustic sensor scheme that was independent of polarization fading that overcame the
trade-off between spatial resolution and the sensing distance of conventional Φ-OTDR [50].
The spatial resolution was determined by the bandwidth and mismatch ratio of the chirped
pulses rather than the pulse duration, so the spatial resolution could be adjusted to suit
the actual requirements by varying the mismatch ratio. The system was available with
a spatial resolution of up to 2 m. In 2021, Wang et al. proposed a new method for bire-
fringence measurement using the RBS wave in a single-mode optical fiber [51] (Figure 11).
The experiment showed a spatial resolution of 8.6 cm and an average birefringence of
0.234 rad/m. It was shown for the first time that spatial resolution was essential for optical
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fiber birefringence measurement, and provided an effective tool for characterizing the
polarization properties of optical fiber links. In 2021, Qian et al. proposed the chirped
pulse conversion algorithm (CPCA), which was based on converting a normal detection
pulse into an equivalent chirped detection pulse by convolving the chirp coefficients of
the received signal from a Φ-OTDR system [52]. The algorithm demodulated the chirped
pulse Φ-OTDR in the Rayleigh interferogram pattern (RIP) to quantify the dynamic strain
of the conventional Φ-OTDR. In contrast to the complex and expensive drawbacks of con-
ventional chirp modulation, the generation of equivalent chirp pulses by means of digital
processing had the advantage of being simple and inexpensive. The method allowed full
quantification of the perturbation to achieve a spatial resolution of 4 m.

To determine the relationship between spatial resolution and SNR, in 2019, Zhang et al.
proposed a sensing scheme with multiple spatial resolutions (MSRs) for analyzing Φ-OTDR
sensing systems. This scheme could recover vibration events with different interference
ranges in a single test with the best SNR while maintaining the same detection frequency
range. The results demonstrated that it was extremely important to select the proper spatial
resolution, which was beneficial to improving the SNR of the sensing system [53].
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Figure 11. (a) Experimental setup. (b) Demodulated birefringence of simulation and experiments [51].

Multiplexing techniques can also improve the spatial resolution of the sensing system.
In 2021, Gong et al. proposed an OTDR system for dense wavelength division multiplexing
passive optical networks (DWDM-PONs). The system was selected to achieve wavelength
tunability by selecting an integrated tunable laser assembly (ITLA) as the light source
and using wavelet denoising to reconstruct the pulsed light to achieve a spatial resolu-
tion of 2 m [54] (Figure 12). The research progress for spatial resolution enhancement is
summarized in Table 3.
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Table 3. Research progress on for spatial resolution enhancement.

Published Date Researchers Spatial Resolution
Enhancement Scheme

Spatial
Resolution

ILE, 2016 Shang, et al. Phase carrier
demodulation algorithm 10 m

OE, 2019 He, et al. Chirped pulse 2 m
Sens, 2019 Zhang, et al. MSR

OE, 2021 Ma, et al. LiNbO3 straight-through waveguide
phase modulator 10 m

AO, 2021 Zhu, et al. DFB with OWRR 13 m
PS, 2021 Wang, et al. Pulse-Compression 0.086 m
OL, 2021 Qian, et al. CPCA 4 m

IEEE, 2021 Gong, et al. DWDM-PON 2 m

In summary, the previous researchers added an interferometer from the optical path
structure to improve the spatial resolution of the system, but the system structure was
complex. Recently, they complemented the interferometer with a laser structure, such as the
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LiNbO3 straight-through waveguide phase modulator and DFB lasers, which increased the
system cost but provided more hardware options to improve the spatial resolution. In terms
of techniques, pulse compression techniques, multiplexing techniques, and distributed
optical amplification techniques have become the main trend in development because they
cannot only greatly improve the spatial resolution of the sensing system, but also optimize
the optical path.

3.4. Frequency Response

In the DAS system, the frequency response reflects the characterization of the frequency
range of the system response to external disturbances. The higher the frequency response,
the wider the application range of the system. Moreover, more kinds of signals can be
effectively detected. However, the time intervals between the detection of optical pulses
cannot be less than the round-trip time of the light in the optical fiber, so the frequency
response of the system is limited by the sensing range, and these factors are inversely
proportional to each other. Determination of how to balance the relationship between these
two actors has become an important part of the development of DAS techniques.

In order to balance the relationship between these two factors, researchers carried
out a large amount of research in recent years. In 2016, Li et al. proposed a broadband
double-frequency ultrasound measurement system for distributed fiber laser sensors in
liquid media [55]. In comparing various fiber laser sensors, this system proved that DBR
optical fiber laser sensors performed better in broadband double-frequency ultrasound
measurements. In 2018, Shang et al. proposed a Φ-OTDR system using broadband weak
optical fiber Bragg grating arrays to achieve large temperature resistance of the distributed
acoustic sensor [56]. Simultaneous tests at 18 and 50 ◦C with large local temperature
differences resulted in a relatively flat frequency response from 20 to 1200 Hz. In 2021,
Yan et al. proposed an ultra-long distributed sensor based on forwarding transmission,
coherent detection, and frequency-shifted optical delay lines for ultra-wide frequency from
infrasound to ultrasound testing [57] (Figure 13). Compared with the existing distributed
sensors, this scheme had the advantages of simple system and sensing structures, ultra-
wide frequency response, and ultra-long sensing distance. It enabled ultra-long distributed
sensing and could be used to greatly improve performance indicators of the DAS systems.
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In addition to improving the system structure, the researchers also adopted the idea
of frequency division multiplexing to process the collected signals to realize the spread
spectrum of the Φ-OTDR system. In 2019, Zhang et al. proposed a Φ-OTDR system
based on an ultra-weak optical fiber Bragg grating (UWFBG) array and frequency division
multiplexing (FDM) scheme to expand the frequency response bandwidth (FRB) of the
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Φ-OTDR system [58]. The experimental results showed that vibration frequencies up to
440 kHz could be detected along the 330 m UWFBG. This was about 3 times higher than
the upper FRB limit of conventional systems, and provided a wider FRB and enhanced
visibility characteristics for the performance enhancement of the Φ-OTDR system. In
2021, a quasi-DAS system based on a heterogeneous frequency double pulse chain and an
array of WFBGs was proposed by Liu et al. [59]. Interference signals at different carrier
frequencies were obtained by injecting four different sets of double pulses continuously
into a weak optical fiber Bragg grating (WFBG)-sensing optical fiber. This achieved a
detection frequency response of 2 kHz and provided a direction for the development of
high response frequency for the DAS systems. In 2021, He et al. proposed a new type
of distributed optical fiber acoustic sensor based on time delay sampling and frequency
division multiplexing of sparse-wideband signals [60] (Figure 14). The sensor could detect
two vibration frequencies at the same position, and, by colliding with the frequencies of
these two vibrations in three sampling sequences, demodulation could be performed. The
system achieved a high SNR of 25 dB, and addressed the trade-off between the measurable
distance and the maximum measurable frequency.
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waveform of vibrations [60].

The above studies all involved single-mode fibers; however, as the use of multimode
fibers has increased, improving their frequency response is urgently needed. In 2021,
Murrey et al. proposed a distributed multimode optical fiber Φ-OTDR sensing system [61].
A high-speed camera was used to collect the Rayleigh backscattered light and build a com-
plete backscattered speckle field together with a local oscillator. It achieved a bandwidth of
400 Hz over 2 km of multimode optical fiber. The research progress for spatial resolution
enhancement is summarized in Table 4.
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Table 4. Research progress for frequency response enhancement.

Published Date Researchers Frequency Response
Enhancement Scheme Frequency Response

IT, 2016 Li, et al. DBR fiber laser sensor

IEEE, 2018 Shang, et al. Broadband weak
FBG array 1200 Hz @ 400 m

OFT, 2019 Zhang, et al. UWFBG with FDM 440,000 Hz @ 330 m

IEEE, 2021 Yan, et al. Ultra-long
Distributed sensor 20,000 Hz @ 615,000 m

AO, 2021 Liu, et al. FDM 2000 Hz @ 70,000 m
IEEE, 2021 He, et al. Time delay sampling with FDM 47,000 Hz @ 10,000 m

OSA, 2021 Murrey, et al. High-speed camera with
time-gated local oscillator 400 Hz @ 2000 m

In summary, the researchers previously improved DAS systems using hardware parts
as lasers and advanced the maturity of the DAS system structure. Recently, the UWFBG
method, the FDM method, and a combination of the two methods has been used to enhance
the frequency response of the sensors, providing a significant improvement compared to
traditional methods. However, the UWFBG method requires complex structure and has
high costs. The FDM method requires more sophisticated demodulation algorithms, and
was selected as the most suitable method after careful consideration by researchers.

3.5. Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is an important index of the DAS system. The greater
the noise, the worse the quality of the obtained signal, and the lower the SNR. This leads to
the insensitivity of the system to the signal, reducing the overall performance of the DAS
system, and having serious consequences such as missed or even false alarms. The main
sources of DAS noise include environmental noise, fading noise, mode noise, and system
noise, of which mode noise is affected by polarization fading, coherence fading, fiber strain,
and nonlinear effects.

In order to improve the SNR of DAS systems and enhance their sensitivity, researchers
have undertaken several studies. In the previous sections, the SNR was improved by
reducing the noise. However, the improvement can also be achieved by compensating
for or reducing the transmission loss. In 2017, Zhang et al. used optical fibers embedded
with UWFBGs for dynamic strain measurement of Φ-OTDR and demodulated the signal
phase by an asymmetric 3 × 3 coupler [62]. Experimental results demonstrated that
the system could obtain an SNR higher than 56 dB. In 2020, Yang et al. proposed an
enhanced distributed optical fiber sensor based on UWFBGs to improve the system SNR,
which achieved a system SNR higher than 59.2 dB by using an unbalanced Michelson
interferometer (MI) and a 3 × 3 coupler for phase modulation [63]. Based on this, in 2022,
Yang et al. used UWFBG and coherent detection to demonstrate that a high extinction ratio
and balanced input pulse optical power could improve the performance of the sensing
system to obtain a higher SNR [64] (Figure 15). The system structure can also be changed
to improve the system SNR. In 2021, Cai et al. proposed a dense multichannel integrated
DAS system to solve the system noise problem while eliminating the fading problem, and
experimentally demonstrated that the method improved the system SNR by 20 dB [65].

In 2020, Jin et al. first adopted an acousto-optic modulator cascaded with a semi-
conductor optical amplifier to improve the extinction ratio of the system, and later used
time-frequency analysis and minimum mean square error algorithms for amplitude de-
modulation and phase demodulation to improve the SNR of the system to 42.2 dB [66]
(Figure 16). Due to their popularity, artificial intelligence (AI) and machine learning (ML)
can be applied to DAS systems to improve the system SNR. In 2021, Zhang et al. proposed
a method using the optimal peak-seeking algorithm combined with machine learning for
signal identification, which greatly improved the system SNR, and the experimental results
provided potential applications for Φ-OTDR devices and future implementations of ma-
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chine learning algorithms [67]. The research progress for SNR enhancement is summarized
in Table 5.

In summary, although special fibers can effectively improve the SNR of the system,
it also has the disadvantage of high cost and increasing the complexity of the system.
In recent years, researchers also adopted algorithms to improve the SNR of the system;
for example, the least mean square error algorithm has the advantages of low cost and
simple operation. The introduction of artificial intelligence and machine learning models
has greatly improved the performance of the system by processing the signals. This may
become a popular direction in the future, but the operation is relatively difficult and requires
more advanced technical conditions.
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3.6. Detection Distance

Optical fiber is a sensor of the DAS system. Under ideal conditions, the transmission
of optical fiber is loss-free, but in the real state, the loss of light will increase with the
increase in the transmission distance. The detection distance is proportional to the amount
of detected light energy, and the main method of increasing the detection distance is to
increase the energy of the detected light. Researchers first used optical amplifiers to increase
the optical power of incident light, but was not able to amplify without limit, and was
limited by nonlinear effects.

In order to perform long-distance detection and eliminate the drawbacks of traditional
long-distance detection methods, in 2018, Fu et al. designed a hybrid DAS system inte-
grating a Brillouin optical time domain analyzer (BOTDA) and Φ-OTDR with a sensing
distance of 150.62 km [68]. However, in the course of the study, it was found that the
nonlinear effects in the stimulated Brillouin scattering had a more serious impact on the
detection distance compared with the stimulated Raman scattering. In 2019, He et al.
proposed a long-distance and high-sensitivity DAS system based on the time-gated digital
optical frequency domain reflection method, which used bidirectional distributed Raman
amplification to achieve long-distance measurement [69] (Figure 17). The length of the
experimental optical fiber was about 108 km. For the first time, a strain sensitivity of 220
and harmonic-free linear inversion were achieved on a 100 km optical fiber.
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In 2019, Cedilnik et al. proposed a maximum reachable DAS without inline ampli-
fication [70]. Up to 112 km could be achieved without any optimization, extending the
coverage of any DAS system by optimizing the form of optical fiber combinations. This
DAS system also has an extended range using a single standard optical fiber. The creation
of these two methods will enable future DAS systems to move over long distances.

In addition to the widely used distributed amplification method, in recent years,
researchers have used low-loss enhancement fibers to enhance the detection distance. In
2019, Uyar et al. proposed an ultra-long range distributed optical fiber acoustic sensing
system using a double acoustic light modulator and a double photodetector technique [71]
(Figure 18). The double acoustic optical modulator scheme reduced the coherent noise by
generating optical pulses with an extinction ratio of less than 110 dB, while the double
photodetector scheme was designed to achieve a high dynamic range. The system was
selected to process a signal of 102.7 km, yielding the maximum SNR of 24.7 dB. This was
the highest distance reported for a Φ-OTDR distributed acoustic sensor system based on
direct detection.

In 2021, Masoudi et al. proposed a DAS with a sensing range of more than 150 km by
adding a low-loss enhanced backscattering optical fiber to a single-mode optical fiber [72].
The measurement system had a frequency range of 0.1 to 100 Hz and a spatial resolution
of 5 m. The minimum detectable strain at 1 Hz for this combined system was 40 nε. The
research progress for detection distance enhancement is summarized in Table 6.
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Table 6. Research progress for detection distance enhancement.

Published Date Researchers Detection Distance
Enhancement Scheme Detection Distance

Sens, 2018 Fu, et al. BOTDR + Φ-OTDR 150.62 km

JLT, 2019 He, et al. Bi-directional distributed
Raman amplification 108 km

IEEE, 2019 Cedilnik, et al. Two cascaded
acousto-optic modulators 102.7 km

IEEE, 2019 Uyar, et al. Low-loss optical fiber 125 km

OL, 2021 Masoudi, et al. Low-loss enhanced-
backscattering fiber 150 km

In summary, two optical path systems can greatly improve the detection distance.
However, researchers must consider how to maximize the performance of these systems.
Improving the hardware facilities of the optical path system, such as with the use of bi-
directional distributed Raman amplification or two cascaded acoustic-optical modulators,
can improve detection distance, but increases the complexity of the system while increasing
the operational difficulties. The low-loss optical fibers have the disadvantage of high cost,
and require the researchers to carefully consider and select the most suitable method.

4. Application
4.1. Perimeter Security

Perimeter security has long been a core condition for the safety of people’s lives and
property, and national political stability. It plays an important role in border lines, railway
stations, airports, gas stations, large substations, and other areas [73]. The DAS system
has the characteristics of a wide monitoring range, a high degree of concealment, strong
environmental adaptability, and lack of a blind area. It is highly suitable for application
in the field of perimeter security. In recent years, the perimeter security research related
to DAS has continued to develop, and the challenge for perimeter security projects is to
improve the classification and recognition effect.

Conventional class recognition algorithms have low accuracy. Although deep learning-
based classification and recognition algorithms have high accuracy, they take a long time to
train and require a large amount of computation. In 2021, Shi et al., from Shantou University,
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proposed an event recognition method based on transfer training. The experiment was
conducted on 4252 groups of samples based on 8 events; Alex Net was pre-trained for
1/5 of the samples, and then trained for the remaining samples. Partial training achieved a
classification accuracy of 96.16% in less than 5 min [74] (Figure 19).
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Figure 19. Classification method steps [74].

In field applications, multiple vibrations often occur in close positions, resulting in the
collected vibration signals being mixed signals of multiple signals. To improve the accuracy
of intrusion classification at a reduced cost, in 2002 Ni et al., from the Laser Institute of
Shandong Academy of Sciences, proposed a recognition algorithm, 100 G-Net, based on a
group convolution neural network. The recognition of nine common signals including four
mixed signals was realized. Under the condition of a recognition speed of 20 ms/sample,
the recognition accuracy of the verification set reached 97.5% [75] (Figure 20).
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Existing optical fiber sensing technologies and data analysis methods have been
combined to reduce system complexity. In 2021, Shi et al. proposed an interferometric
optical fiber perimeter security system that was based on multi-domain feature fusion
and support vector machines (SVMs). The system was used to classify and identify non-
intrusion, climbing, shaking, iron bar knocking, and optical fiber cable shearing, and
achieved an average classification accuracy of 94.4% [76] (Figure 21). The latest progress
for perimeter security research is summarized in Table 7.
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Table 7. Summary of perimeter security applications.

Published Date Researchers Methods

JLT, 2021 Shi, et al. Transfer training recognition algorithm
IEEE, 2021 Shi, et al. Security system with multi-domain feature fusion
IEEE, 2022 Ni, et al. 100 G-Net recognition algorithm

4.2. Earthquake Monitoring

Earthquakes are among the disasters that endanger people’s lives and the safety of
property. Research into earthquake monitoring is important to ensure people’s safety and
social stability. The conventional earthquake monitoring method requires dense placement
of earthquake monitoring instruments on the ground surface, excavation, and backfilling
of the involved strata when laying sensing optical fiber cables, which greatly increases
the project cycle and cost. By comparison, the DAS techniques realizes the dynamic strain
detection of the optical fiber by measuring the phase change of the backscattered light in
the optical fiber and then realizes the recording of the earthquake wave field [77]. This is
expected to solve the current problems of the high data acquisition cost, limited coverage,
and unsuitability for urban implementation in seismic detection [78].

In December 2018 and December 2019, Wang et al. conducted observation experi-
ments twice in the urban area of Binchuan County, Yunnan Province, using the standard
single mode fiber provided by China Mobile and the air gun source signal. The artificial
drop weight signal was observed, which successfully verified the possibility of urban
communication optical cable as for earthquake early warning and underground structure
observation, and provided a new direction for DAS research and earthquake monitoring
research [79].

In 2021, Hudson et al. proposed a method using a two-dimensional DAS array
as an effective multi-component sensor to accurately characterize the transverse wave
splitting caused by anisotropic ice structures. They used the glacial environment as an
analogy to other earthquake environments, and the methodology and conclusions obtained
in this work contributed to the implementation of DAS systems for applications in other
microearthquake environments. When the DAS system was at a lower and near-quasi-static
frequency, the spectral SNR and bandwidth measured by the superposition of multiple
DAS channels were significantly improved compared to those of a single geophone [80]
(Figure 22).

In the field of sensing, although the exploration of natural disasters such as earth-
quakes and tsunamis, or of unknown terrains such as sea beds and rift valleys, has con-
tinued, the accompanying risk factors must be taken seriously. At present, the distributed
optical fiber acoustic sensing techniques can be very helpful to avoid danger. However,
due to the weak RBS light, the optical fiber sensing signal decays exponentially, and it is
difficult to achieve long-distance detection.
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In 2021, Avinash et al. used a dark-fiber DAS array located in the Sacramento Basin of
Northern California to detect small earthquakes in the geyser geothermal field at a distance
of about 100 km [81] (Figure 23). All earthquakes of M ≥ 2.4 during the experiment were
successfully detected by analyzing DAS data for 45 consecutive days. The latest progress
in earthquake monitoring is summarized in Table 8.
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Figure 23. Beamforming results at channels 2000–3000 (subarray aperture 2 km) for an M4.3 earth-
quake. (a) Record section showing filtered waveforms. (b) Vespagram (beam power in the 0–1 range
as a function of slowness and time). (c) Traces from the top to bottom [81].

Table 8. Summary of earthquake monitoring applications.

Published Date Researchers Methods

SCP, 2019 Wang, et al. Perimeter security
JSE, 2021 Hudson, et al. Two-dimensional DAS array
SRL, 2021 Avinash, et al. Dark-fiber DAS array

4.3. Energy Exploration

Oil, natural gas, and coal are important strategic resources in China, and the explo-
ration techniques for these resources have been continually studied. Energy exploration
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techniques can greatly reduce the cost of extraction, improve the accuracy of extraction, and
improve the energy pattern in China [82]. Conventional exploration techniques consume
large amounts of human and material resources, and are limited by high temperature and
pressure, which prevent the exploration requirements from being met. By comparison,
the DAS system with optical fiber cable as the main transmission body has a high spatial
and temporal resolution, in addition to a large sensing distance, which can cope with
the complex geological environment and meet the technical requirements of the surface
detector and in-well detector. An increasing number of researchers have started to study
the earthquake wave detection techniques of DAS [83].

To investigate the relationship between behavior and ground movement deformation
during coal mining, in 2019, Chai et al. used distributed optical fiber monitoring techniques
to record the strain on the ground surface [84]. The experiment proved that the distributed
optical fiber monitoring technique was expected to replace traditional coal mine monitoring
and provided a theoretical basis for surface subsidence prediction, geohazard evaluation,
and surface subsidence control in mining areas.

In 2021, Wang et al., from the Laser Institute of Shandong Academy of Sciences,
designed a distributed optical fiber acoustic monitoring system for oil and gas seismic wave
exploration and development. The optical cable was used as a sensor to detect the sound
signal, and the phase modulation and demodulation techniques based on back Rayleigh
scattering were adopted to realize the test of 10 m spatial resolution and −145.35 dB sound
pressure sensitivity. The field exploration of seismic bombs and guns was carried out [85]
(Figure 24). The earthquake wave signal acquisition and processing were completed, and
clear formation inversion information was obtained.
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In 2021, Wamriew et al. proposed a new deep learning method for real-time/semi-real-
time processing of large volumes of DAS data [86] (Figure 25). The method was trained on
publicly available data from Phase 2C hydraulic fracturing augmentation at the FORGE
research site near Milford, Utah, USA, and ray tracing was used in generating the training
dataset. Finally, in situ DAS microearthquake data acquired from hydraulic fracturing
operations were used for validation. The results showed that the model was able to learn
the relationship between microearthquake waveform data and event location, and was a
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high accuracy velocity model. The latest progress for energy exploration is summarized in
Table 9.
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Table 9. Summary of energy exploration applications.

Published Date Researchers Methods

OFT, 2019 Chai, et al. Perimeter security
SDS, 2021 Wang, et al. Propose monitoring system

Sens, 2021 Wamriew, et al. Deep learning methods for
real-time/semi-real-time data processing

4.4. Underwater Positioning

Underwater positioning techniques comprise one of the important research elements in
marine resource exploration and marine military defense. The DAS system has the ability to
adapt to complex environments and has a wide monitoring range [87]. It can achieve long-
distance underwater monitoring through submarine optical fiber cable and plays an impor-
tant role in marine oil and gas mineral development, submarine optical fiber cable pipeline
laying, maintenance, and other projects, and ship and submarine mobilization, in addition
to marine catastrophic geological research and underwater archaeological exploration.

Submarine optical cable is expensive, and its environment is harsh. Determining
how to monitor submarine optical cables is particularly important. In order to realize
timely monitoring, and advance prediction of failure of, submarine optical cables, in 2021,
Zhang et al. proposed a submarine optical cable detection system based on enhanced
coherent optical time domain reflectometry (E-COTDR) [88]. In the experiment, the system
achieved 121 km full coverage monitoring for multi-span cascaded submarine cables of
more than 1000 km, and, at the same time, also measured the loss of submarine cables.
The approach improved performance compared to that of traditional submarine cable
monitoring methods (Figure 26).

In 2021, Rivet et al. conducted an experiment on a 41.5 km long optical cable near the
French port of Toulon, using an oil tanker sailing near the optical cable and the position
map of the detected optical cable. From the 5.8 km offshore water depth of 85 m to the
20 km offshore water depth of 2000 m, the acoustic signal measured by DAS was used
for analysis, and beamforming was used to obtain the hull trajectory at the 85 m water
depth [89] (Figure 27). At the 2000 m water depth, due to serious signal attenuation, the
hull track was obtained, but the frequency band signal was still detected below 50 Hz.
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In 2021, Liu et al. proposed an underwater localization system that effectively recov-
ered acoustic signals [90]. The system was based on a phase-sensitive optical time domain
reflectometer with 3D printed sensing elements as the base optical path, and used a time-
difference (TDOA) algorithm for the 3D position. The method was flexible in its operation
and could be changed to suit practical needs, and showed great potential for development.

In 2022, Xu et al. used an optical frequency comb (OFC) formed by multi-frequency
detection pulses for underwater localization. The approach proved to be well-adapted
for the underwater environment and provided a new measurement method for future
underwater positioning [91]. The latest progress for underwater positioning research is
summarized in Table 10.
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Table 10. Summary of underwater positioning applications.

Published Date Researchers Methods

JASA, 2021 Rivet, et al. Detection of oil tankers at sea
OE, 2021 Liu, et al. Underwater localization system
OE, 2021 Zhang, et al. Submarine cable
OC, 2022 Xu, et al. OFC

4.5. Railway Monitoring

As a result of the global increase in traffic demand, railways are playing a more
important role, and railway safety issues are becoming increasingly prominent. Train
positioning and trajectory monitoring, track safety detection, and safety detection along the
line are of great significance to the safe operation of railways [92]. Because railway tracks
are exposed to nature all year round, they are subjected to wind, rain, freeze–thaw cycles,
and train loads [93], which may lead to many unexpected situations. At present, railway
inspection mainly relies on manpower and safety inspections of trains [94]. However,
due to the characteristics of railway’s day and night operations, conventional railway
monitoring methods have been unable to meet the growing demand. Thus, distributed
fiber acoustic sensing techniques have become a key trend in railway inspection because
they can achieve real-time detection of track conditions.

In 2021, Wang et al. took the high-speed railway track as the research object, con-
structed a track and train detection system based on distributed fiber acoustic sensing, and
proposed a new track state detection scheme with the deep convolutional network as the
core. In this system, the incident checks included those of a crack, beam joint, switch, and
lower road. The final recognition accuracy rate reached 98.04% [95] (Figure 28).
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Accurate tracking of the true position of trains on the track is the basis of all modern
railway monitoring concepts. It is important to provide sufficient safe separation between
trains at all times [96,97]. An accurate, reliable, and simple train tracking techniques is an
essential foundation for these new concepts.

In 2019, Kowarik et al. analyzed data from Deutsche Bahn’s ICE 4 trains to locate train
signals along with temporal or spatial directions in the data, using track-view, train-view,
and bogie cluster data analysis. The approach allowed train speeds to be determined in
three different ways, and the study presented new approaches for train monitoring [98]. In
2020, Christoph et al. proposed a real-time train tracking algorithm. The performance was
tested in tunnels with standard cable trenches and on open tracks with directly connected
cables [99] (Figure 29). The study provided a new idea for train positioning.
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Figure 29. (a) Subsampled signal through band energy calculation. (b) Train detection result for a
train on test site 2; the green boxes indicate coupled cable segments; the background without the train
shows increased noise. (c) False positive train track due to false positive vibration detection [99].

Artificial intelligence (AI) and machine learning (ML) are also very effective for train
monitoring. In 2022, Huang et al. used optical fiber cable as a sensing and transmission
tool to implement traffic monitoring and cable failure prevention on telecommunication
networks with the help of artificial intelligence (AI) and machine learning (ML) technologies.
Thus, the study provided strong support for the construction of future smart cities [100].
The latest progress for railway monitoring is summarized in Table 11.

Table 11. Summary of railway monitoring applications.

Published Date Researchers Methods

Sens, 2019 Kowarik, et al. Cluster data analysis
OE, 2020 Christoph, et al. Real-time train tracking algorithm
OC, 2021 Wang, et al. Track train detection system

SPIE, 2022 Huang, et al. AI and ML technologies

5. Conclusions

This paper systematically reviews the research and application progress of DAS
techniques. The latest research progress is specified in terms of polarization fading, coherent
fading, spatial resolution, frequency response, signal-to-noise ratio, and detection distance.
DAS techniques now also play a non-negligible role in applications such as soil salinity
and ocean measurement. At present, DAS techniques are not mature enough and the event
recognition rate for practical applications is low. There is still a considerable gap compared
to conventional point sensors in terms of sensitivity and other aspects. A balance is needed
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in the relationship between pulse width, SNR, and sensing distance, and the relationship
between frequency range and sensing range. With the breakthroughs in detection distance,
sensitivity, multi-parameter monitoring, and multi-dimension monitoring, in addition to
the combination with deep learning and neural networks, DAS techniques will play an
important role in many fields due to their unique advantages.
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