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Abstract: Chipless radio frequency identification (RFID) technology has been widely used in the
field of structural health monitoring (SHM), but most of the current research mainly focuses on
the detection of mechanical properties and there are few studies on the multi-physical parameters
(for example, temperature and humidity) in the climatic environment around the structure. Thus,
it is necessary to design a small and compact sensor for multi-parameter detection. This paper
proposes a multi-parameter chipless RFID sensor based on microstrip coupling, which supports
4-bit ID code and integrates two detection functions of temperature and humidity. Through linear
normalization fitting, the sensitivity of the sensor is about 2.18 MHz/RH in the ambient relative
humidity test and the sensitivity of the sensor is about 898.63 KHz/◦C in the experimental test of
water bath heating from 24.6 ◦C to 75 ◦C. In addition, this paper proposes an engineering application
detection method, designs a lightweight dynamic spectrum detection and wireless transmission
platform based on a lightweight vector network analyzer (VNA) and realizes the real-time extraction
and transmission of RFID spectrum sensing data. The means are more flexible and economical than
traditional experimental scenarios.

Keywords: chipless radio frequency identification; multi-parameter sensor; structural health monitoring;
temperature and humidity sensing; wireless detection system

1. Introduction

In recent years, the integration of chipless radio frequency identification (RFID) tech-
nology in the Internet of Things (IoT) has facilitated the structural health monitoring of
modern industrial systems’ critical infrastructure [1]. Structural health monitoring (SHM) is
a combination of sensor technology and the Internet of Things (IoT) to realize an automatic
detection system for structural damage to civil infrastructure. However, the majority of the
current research on structural health monitoring is still limited to stress characteristics [2–4],
and the monitoring of physical parameters in the environment where the structure is lo-
cated, such as temperature and humidity, gas content, pH and other parameters, has not
yet been fully researched. Therefore, it is necessary to develop a single chipless RFID sensor
for multi-physical parameter sensing.

RFID technology utilizes wireless signals to identify the target. Currently, chipless fre-
quency domain RFID uses resonant structures to encode data into the frequency spectrum
and is associated with ID via basic coding elements corresponding to pre-designed simple
shapes, and the functions of signal reception, signal processing and signal transmission
are no longer separated in geometry and concept, but coupled within the same structure.
Consequently, the cost, dependability and recyclability of tags have increased. With the
development of the IoT era, RFID technology has opened a new paradigm, especially the
combination of information sensing and the IoT, which has greatly stimulated the potential
in the field of structural health monitoring [5,6].

Combining novel sensing materials and chipless RFID sensors to create multi-parameter
chipless RFID sensors has become the subject of research [7] with the advent of high-
performance composite materials. The interaction of environmental physical elements with
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chipless RFID sensors alters the dielectric constant of the sensitive material, resulting in
a shift in the resonant frequency and a corresponding change in the amplitude of each
sensor element [8,9]. Typically, researchers combine sensing materials into chipless RFID
tags using two distinct ways. The first strategy is to employ sensing materials as sub-
strates. When physical parameters associated with the surrounding environment change,
the substrate’s dielectric constant also alters. Additionally, implement sensing and the
detection of the surrounding environment by the modification of involved parameters
such as the sensor’s resonance frequency. M. Borgese et al. proposed a unique inkjet-
printed chipless RFID humidity sensor in 2017, which was inkjet-printed on a thin sheet
of Mitsubishi paper and passed through the Mitsubishi paper’s dielectric. The change
in the constant causes the frequency of the resonance peak to shift, allowing humidity to
be monitored [10]. In 2021, Nimra Javed et al. fabricated a 12-bit tag with a humidity-
sensitive Kapton HN substrate by deploying a multi-walled carbon in the center of the
tag nanotubes (MWCNTs) to change their electrical conductivity through CO2 gas sensing
properties, allowing humidity and CO2 gas to be monitored simultaneously [11]. The
second method is to form a polymer substance with sensitive qualities into a film shape
and cover the surface of an existing chipless RFID tag in order for it to function. Changes
in the physical components of the surroundings cause changes in film-related parameters,
which are subsequently transferred to the sensor’s corresponding resonance. In terms
of frequency, the sensor’s frequency shift characteristic is employed to define changes in
physical parameters in the surrounding environment [12,13]. Polyvinyl alcohol (PVA) is a
water-soluble polymer with numerous applications. It is easily soluble in water because
it forms hydrogen bonds quickly with water. P.Bergo and others discussed the PVA film
production technique and the relationship between PVA dielectric constant and water
content [14]. Because of its temperature-sensitive characteristics, reduced graphene oxide
(rGO) is commonly employed to construct temperature-sensitive sensors. Using rGO as a
substrate or combining rGO materials with other materials to inspire its potential in the
field of temperature sensing [15].

With the evolution of sensors and micromachining technologies, it has become possible
to integrate multi-parameter sensors. This sensor may simultaneously measure multiple
parameters, and each sensor element is independent of the others. Adding the coding
function enables the effective identification of a single sensor when numerous sensors are
present. Therefore, numerous researchers have explored the multifunctional integration of
multi-parameter sensing and tag identification. Emran M. Amin created a multi-parameter
chipless RFID sensor with integrated coding, humidity and temperature monitoring in
2016 by combining temperature-sensitive Phenanthrene and humidity-sensitive polyvinyl
alcohol. As an ID encoder and an electric field LC-coupled (ELC) resonator coated with
a smart material layer, temperature and humidity sensing and information encoding are
realized in a small planar configuration [16]. The complementary split ring resonator
(CSRR) structure was initially introduced by Pendry et al. and was subsequently widely
utilized to characterize changes in parameters such as stress, temperature, humidity and
gas [17–19]. Ma et al. created a chipless sensor based on frequency domain coding by
incorporating CSRR resonant units of varying sizes on a microstrip line, which greatly
improved frequency band utilization [20].

The employment of intelligent materials in conjunction with chipless RFID sensors
has significantly increased the potential of tag sensors in application scenarios. Presently,
the majority of research on the sensitive qualities of ambient physical factors focuses on
the construction of RCS chipless RFID tag sensors, among which ELC-type resonators are
extensively employed due to their capacitance-oriented design. The chipless RFID tag
based on the microstrip transmission line has a bigger data capacity than the RCS tag based
on backscattering, the mutual coupling interference can be alleviated by adjusting the
distance between different resonant units and the cross-polarized transceiver antenna can
be matched by retransmission. Without the need for cumbersome horn antennae, detection
is conducted [21,22].
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In this paper, a multi-resonator cascade design based on a 50 Ω microstrip transmission
line is implemented, and a coupling sensor tag based on CSRR and ELC resonator is
proposed. Four different-sized CSRR resonant units are intended for the identification
of tag identity information. An additional CSRR resonator is installed to characterize
the environmental temperature sensing, at the same time, an ELC resonator is integrated
to improve the humidity sensing capability of the tag. Then, the variation law of the
amplitude and shift of the resonant frequency peak of the multi-parameter sensor under
different temperature and humidity conditions was discussed. The contributions of this
paper are summarized as follows. (I) A chipless RFID multi-parameter sensor is designed,
which realizes the integration of three functions of temperature, humidity and encoding.
The three functions of the designed sensor are independent of each other and can be
combined flexibly. (II) Through the linear normalization fitting of the resonant frequency
shift characteristics of the tag, its good temperature and humidity sensing characteristics
are verified. (III) An engineering-focused, lightweight technique for wireless dynamic
spectrum detection is proposed.

2. Design of Chipless Sensor Based on Microstrip Coupling Resonance
2.1. Theory of Designing Microstrip Resonators

Microstrip patch antenna is a good choice for sensor fabrication because of its simplic-
ity and low production cost. The main characteristic of the microstrip antenna is that it
has more physical parameters than conventional antenna, so it can be designed in various
shapes and sizes. Based on the frequency domain characteristics of microstrip antenna,
the resonant frequencies of multiple parameters are realized in the working frequency
band by designing a coupling cascade of multiple resonators and microstrip transmission
lines. The resonant frequency of the microstrip resonator is closely related to the electri-
cal length of the designed resonator, and the relationship between them can be given by
Equation (1) [23]:

f res =
1
√

εe f f

nc
2Lres

(1)

where c is the speed of light, εeff is the effective permittivity, Lres is the effective electrical
length of the resonator and n is the nth resonant mode.

2.2. Design of CSRR and ELC Resonators Based on Microstrip Coupling

CSRR symmetrical structure resonator is a resonant structure with high-quality fac-
tor (Q value) and generates a very compact frequency bandwidth, so it can efficiently
implement more resonant unit settings in the same frequency band [24].

In the frequency domain, a kind of composed of multiple complementary split ring
resonators is presented in this paper, which the CSRR resonance unit with the main coupled
microstrip line feeds. Its structural layout is shown in Figure 1a. In order to better compare
the sensitivity of the proposed CSRR resonant unit to ambient temperature and humidity,
an existing reported ELC resonator with good capacitance characteristics is combined in
Figure 1b. As shown in Figure 1b, a CSRR resonant unit and an ELC resonant unit are
simultaneously set on the main microstrip transmission line in the tag. Figure 1 shows
the main parameter dimensions of the tag design. In this work, Rogers 5880 is used as
the dielectric substrate and the optimization design is carried out in the radiofrequency
(RF) simulation software HFSS. Table 1 shows the specific values of each parameter after
tag optimization.
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Figure 1. Chipless RFID tag design: (a) Microstrip-coupled CSRR resonator design; (b) The 2-bit 
RFID tag design. 
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Figure 1. Chipless RFID tag design: (a) Microstrip-coupled CSRR resonator design; (b) The 2-bit
RFID tag design.

Figure 2 shows the equivalent circuit of the CSRR and ELC resonators coupled si-
multaneously on the microstrip line. The L11 represents the equivalent inductance on
the main transmission line. The greater the value of L11, the greater the loss of signal,
which means that the narrower the microstrip line, the greater the attenuation of the signal.
C11 and C12 represent the degree of coupling between the microstrip line and the CSRR
and ELC resonators, respectively. The smaller the gap between the resonator and the
microstrip line, the greater the degree of coupling, and the greater the return loss obtained
at the resonant frequency. The bandstop resonance characteristics of the resonator can be
modeled with lumped-circuit elements, where the L21, C21 equivalent elements are used
to generate the resonant frequency of the CSRR resonator, and the L31, C31 equivalent
elements are used to generate the resonant frequency of the ELC resonator. The simplified
circuit model of the ELC unit resonant frequency and the CSRR unit resonant frequency
is ωr =

√
1/(LrCr). Where the equivalent inductance and capacitance of CSRR can be

derived as follows [25–27]:

C0 = ε0
K
√

1− k2

K(k)
(2)

k =
d/2

w+d/2
(3)

Here, K (k) is the first complete elliptic integral, d is space of the CSRR inner and outer
rings, w is the line width of the CSRR microstrip frame and C0 is the capacitance of unit
length of the two split ring.

C21 = C0[L + 3(d + w)/2] (4)
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L21 =
µ0

2
lavg

4
4.86

[
ln
(

0.98
ρ

)
+ 1.84ρ

]
(5)

Attention coefficients ρ = w+d
L−w−d is the filling factor, lavg = 8[ L

2 −
(w+d)

2 ].
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S11 is about 0 dB. Figure 3b shows the S11 and S21 parameter response curves of a single 
CSRR and a single ELC coupled with the main microstrip transmission line at the same 
time, where the resonant frequency generated by CSRR is about 3.26 GHz, and that gen-
erated by ELC is about 3.95 GHz. The resonant bandwidth of CSRR is about 5 MHz, which 
is less than the 9 MHz bandwidth of ELC, so the notch curve is more compact. Moreover, 
CSRR has lower resonant frequency and higher return loss than the ELC resonator when 
the size difference between the two is not much. 

Figure 2. Equivalent circuit model of CSRR and ELC resonant unit.

Table 1. Chipless RFID tag size design (unit: mm).

Parameter L1 L2 L3 W1 W2 W3

Value 9.6 7.5938 10 7.2 7.5938 7.5

Parameter d1 d2 d3 C1 C3 Wc1

Value 0.6 0.255 0.625 1.2 1.25 2.826

Parameter Lc1 dg1 dg2 Wf Width Length

Value 6 0.1 0.1 2.4 40 50

Figure 3a shows the scattering characteristic curve of a single CSRR and the coupling
structure when the distance dg1 of the microstrip transmission line is 0.1 mm. When the
length L1 of CSRR is 9.6 mm, one of the better bandstop resonance curves is formed at
2.95 GHz, the transmission coefficient S21 is about −21 dB and the reflection coefficient S11
is about 0 dB. Figure 3b shows the S11 and S21 parameter response curves of a single CSRR
and a single ELC coupled with the main microstrip transmission line at the same time,
where the resonant frequency generated by CSRR is about 3.26 GHz, and that generated by
ELC is about 3.95 GHz. The resonant bandwidth of CSRR is about 5 MHz, which is less
than the 9 MHz bandwidth of ELC, so the notch curve is more compact. Moreover, CSRR
has lower resonant frequency and higher return loss than the ELC resonator when the size
difference between the two is not much.
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Figure 4 compares the surface electric field distribution of the ELC resonator and CSRR
resonator at operating frequencies. Figure 4a shows the surface voltage distribution at a
single CSRR operating frequency. In the CSRR structure, due to the setup of the multiple
split ring and each division characteristic of the microstrip ring stopping the current through
the loop, both sides inside the CSRR resonant unit can create two equal capacitors. Figure 4b
shows the surface electric field distribution at their respective operating frequencies when
the CSRR resonant element and ELC resonant element are coupled with a microstrip line
at the same time. It can be seen from the electric field distribution that the electric field of
the ELC is mainly concentrated in the capacitor plate accessories, while the electric field of
CSRR is mainly concentrated among multiple capacitor plates inside the resonator.
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Figure 4. Electric field distribution of chipless RFID tags at resonance peak frequencies: (a) proposed
CSRR resonator (2.95 GHz); (b) ELC resonator (3.95 GHz) and proposed CSRR resonator (3.26 GHz).

Smart polymer materials are very sensitive to physical parameters in the environment;
thus, selecting appropriate smart polymer materials combined with the frequency-shifting
properties of the chipless RFID sensors can be used to analyze the behavior of the physical
parameter changes in various environments. Figure 5 simulates the shift in the resonant
frequency of the sensor that may be caused by changes in temperature and humidity in
the environment when the resonator surface is coated with a sensitive polymer material,
the analysis shows that the proposed ELC resonator has more obvious advantages over
the sensitive shift characteristic of the CSRR resonator, but the size of the microstrip line
of the ELC resonator is smaller and the resulting resonance frequency is higher. However,
the CSRR resonator can achieve a larger size microstrip line in the same physical area than
the ELC resonator, so it can generate a lower resonant frequency, and because the CSRR
resonator has higher Q values and narrower impedance bandwidth, so more resonant fre-
quencies can be set on the same frequency band, which effectively improves the utilization
rate of the corresponding working frequency band. Therefore, combined with the respec-
tive advantages of the ELC and CSRR resonators, this paper designs a hybrid resonator
RFID tag based on microstrip coupling, which can realize multiple sensing functions in a
compact bandwidth.
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2.3. 6-Bit Chipless RFID Tag Design

CSRR structure is a common structure used to characterize the characteristics of
parameter sensing. However, the research on the application of the CSRR resonator based
on microstrip coupling in temperature and humidity sensing is not sufficient at present, and
the analysis of its sensitive characteristics and the design of multi-functional integration
are very few. Therefore, this paper proposes a 6-bit chipless RFID multi-parameter sensor.
The sensor is based on the CSRR resonator and microstrip line coupling layout. To achieve
multiple functions in a compact bandwidth, multiple CSRR resonators are set in the tag,
and the existing ELC resonator is set as a reference and comparison. As shown in Figure 6,
the tag structure and main parameter dimensions are designed in this paper, in which
the metal thin layer is used as the radiation sheet and the metal layer on the surface is
attached to the dielectric substrate. In addition, Rogers 5880 (relative permittivity εr = 2.2,
h = 0.79 mm, tan δ = 0.0009), which has a low dielectric constant, was used as the substrate
in the design of the resonator to improve the effect of the sensitive coating.
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Figure 6. The 6-bit chipless RFID tag design.

Figure 7 shows the S21 resonance response curve obtained by optimizing the design
of a multi-parameter sensor in the RF simulation software HFSS, and the main parameter
dimensions of the optimized tag structure are provided in Table 2. The sensor generates a
total of six resonant frequencies in a small frequency band, among which five lower resonant
frequencies are generated by the CSRR resonant unit, which are 3.03 GHz, 3.14 GHz,
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3.28 GHz, 3.41 GHz and 3.61 GHz, respectively, and the ELC resonant unit is set at the
highest 3.96 GHz. The working bandwidth of more than 110 MHz is reserved between
each resonant unit. The CSRR resonator with the lowest resonance frequency placed in the
reverse position is selected as the temperature and humidity sensor, and the remaining four
CSRR resonant units are used for the information coding of the tag. Each CSRR bandstop
resonator corresponds to a resonant frequency in the spectrum, and the resonant frequency
corresponds to a logical “1” state of the encoding bit. When there is no bandstop filtering
in the corresponding frequency band, the encoding bit logic turns to “0” state, so the tag
can generate 4-bit binary coding and 16 kinds of identity information. Figure 8 shows the
actual image of the proposed tag antenna fabricated on the Rogers 5880 dielectric substrate
using thermal transfer technology under laboratory conditions, and the tag S21 response
curve measured by a vector network analyzer (SYSJOINT SV4401A) is shown in Figure 8.
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Table 2. The 6-bit chipless RFID tag design size value (unit: mm).

Parameter L4 L5 L6 L7 L8 W4 W5 W6 W7

Value 8.019 10.08 10.72 11.04 11.68 8.019 7.56 8.04 8.28

Parameter W8 C5 C6 C7 C8 d4 d5 d6 d7

Value 8.76 1.26 1.34 1.38 1.46 0.27 0.63 0.67 0.69

Parameter d8 Lc2 Wc2 dg3 h Wf Length Width

Value 0.73 6.336 2.98 0.2 0.79 2.4 50 50
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3. Experimental Testing and Analysis of Sensor Behavior
3.1. Relative Humidity Experiment

The selection of humidity-sensitive materials as substrates can reflect the changes
in relative humidity in the environment to a certain extent; however, at present, few
pressure-resistant materials in the field of structural health monitoring (SHM) have good
sensitivity to changes in relative humidity at the same time. In this experiment, the
aim is to explore a multi-parameter sensor design that is easy to integrate and has good
compression performance.

It is a feasible solution to monitor the relative humidity in the environment by affecting
the frequency shift of the resonator by attaching the PVA coating of the humidity-sensitive
material on the sensor surface. Moisture is absorbed by the material coating, and then
mapped to the corresponding resonant frequency of the sensor. With the change in the
relative humidity in the environment, the relative permittivity of the PVA coating will also
change, thereby affecting the peak value of the sensor’s resonant frequency, resulting in
certain frequency shift effects.

In order to analyze the humidity sensitivity of the tag, this work used the PVA colloidal
film and transferred it to the resonance unit of the sensor with a small amount of adhesive,
and simulated the change in environmental relative humidity in the closed climate box as
shown in Figure 9a. The tag is connected to the vector network analyzer (VNA) through
two low-loss RF cables running through the box, and an adjustable humidifier is placed in
the airtight box. In order to ensure the uniform change in humidity, a plate of anhydrous
CaCl2 hygroscopic agent is also installed in the box to balance the rising trend of humidity,
and a high-precision probe-type electronic temperature and humidity instrument is used
to monitor the change in humidity in the box in real time. Figure 9b shows the actual
humidity test scenario, the gap of the box was completely closed with tape (3M) and tissues,
the initial temperature is 24.6 ◦C and the initial humidity is 27%. Considering that the
relative humidity in the actual environment generally ranges from 30% to 90%, the relative
humidity test starts from 30%, and the prepared PVA film is pasted on the ELC and CSRR
resonant units, respectively.
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Figure 9. Tag humidity test scenarios: (a) Three-dimensional modeling experiment scene simulation;
(b) Experimental testing of humidity in a laboratory environment.

Figure 10 shows the frequency shift of the ELC resonant unit with the increasing
relative humidity in the environment. The resonant frequency corresponding to the ELC
resonant unit without PVA film on the surface is 3.96 GHz. When the PVA gel film is
covered, the initial frequency will have a certain deviation. Since it is hard to measure
the moisture on the surface of the PVA film, it is first air-dried for 2 days and then placed
in a sealed box with a relative humidity of about 30% for 2 days to perform a certain
dehydration treatment [28].
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The shifts of all resonant frequencies can be observed as a whole from Figure 10a, and
the shifts of the ELC resonant units are partially enlarged in Figure 10b, from the initial
3.8814 GHz to 3.7714 GHz, the resonant frequency is reduced by about 110 MHz, and
the change in the resonance curve is more obvious in the high humidity range where the
relative humidity is greater than 70%. As shown in Figure 10c, the humidity sensitivity of
the ELC resonator is about 2.18 MHz/RH by linearly normalizing the humidity sensing
characteristics of the ELC resonator, and the experiments show the best linearity in the range
of 30–60%RH, so the optimum resonant frequency range corresponding to the humidity
sensitivity is about 3.817–3.881 GHz.
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Figure 11 shows the frequency shift of the CSRR resonant unit with the increasing
relative humidity in the environment. After placing PVA gel film on the surface of the
CSRR resonator, it is also put into the sealed box and put in a static position for two days.
From Figure 11a, we can observe the overall shift of all resonant frequencies. In Figure 11b,
the resonance frequency shift effect is partially amplified and the selected frequency band
is quantified as the humidity sensing region, which is shifted from the initial 2.69 GHz
to the 2.615 GHz and the frequency reduced by 75 MHz. When the humidity increases,
the increase in water accumulation on the surface of the tag will have a certain impact on
the coupled resonant unit. It can be seen from the analysis that the resonant frequency
shift is relatively uniform with the increase in humidity, but the resonance effect of the
bandstop characteristic in the high humidity area is obviously reduced. When the PVA film
absorbs enough water, the penetration depth and shift effect of the resonant frequency will
increase, and the notch depth will become significantly shallower under high humidity,
which is no longer easy to capture. The reason is that as the relative humidity of the
environment increases, the relative permittivity of the coating changes and the transfer
efficiency increases. Secondly, the thickness of the coating will increase to a certain extent
when it absorbs water in a humid environment, which is also related to the thickness of the
film preparation.

It is worth noting that although the measurement results of the experiment are af-
fected by multiple factors in the environment, the overall change trend is consistent [29].
According to the trend of the actual measurement result, with the increase in the am-
bient humidity, the absorption efficiency of the coating on the water molecules in the
air increases in the high humidity area. This results in a faster increase in coating thick-
ness. As shown in Figure 11c, the humidity sensitivity of the CSRR resonator is about
1.43 MHz/RH by linearly normalizing the humidity sensing characteristics of the CSRR
resonator unit. The CSRR resonator is less sensitive to humidity than the ELC resonator, so
adding a high-humidity-sensitive ELC resonator unit is a feasible solution to improve the
sensor performance.
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The feature of this chipless RFID humidity sensor is that it is reversible. When the
PVA coating moisture is air-dried, the tag can be basically restored to the initial state and
the use of a drying oven can quickly shorten the recovery time of the tag. Experiments
have shown that the electrical properties of the tag are temporary with humidity changes
and the tag will not be permanently damaged and can be reused. It should be noted that
the response time of the sensor is affected by the thickness of the PVA film. The increase in
the thickness will slow down the response time of the tag. At the same time, the expansion
of the PVA polymer matrix in the high humidity range will also have a certain impact on
the response time of the tag.

3.2. Temperature Experiment

The thermal expansion coefficient of the pressure-resistant substrate of the chipless
RFID sensor currently used in the stress field is not high, so sensitivity to temperature in the
environment is low. Once the temperature threshold is exceeded, it will cause irreversible
changes in the electrical characteristics of the tag sensor.

Considering the above factors, this experiment adopts the method of spreading the
temperature-sensitive polymer film on the surface of the microstrip resonator unit to carry
out the experiment and conducts the experimental test through the process shown in
Figure 12, where Figure 12a is the 3D simulation of the temperature-sensitive experimental
test of the tag modeling of the experimental scene and Figure 12b shows the actual tag
temperature-sensitive experimental test process. In this experiment, the water bath heating
method is used to replace the traditional high-temperature climate box. Compared with
the high-temperature climate box, the heat conduction method of the water bath heating
method is more uniform and the temperature is controllable.

In order to more accurately simulate the temperature changes in the actual environ-
ment, this experiment places an intrusive heater in the high-temperature-resistant water
tank, and the heating temperature of the heater’s water bath can be adjusted intelligently.
Wrap a layer of aluminum foil with good thermal conductivity on the surface of the water
tank, fix the tag on the aluminum foil with high-temperature-resistant tape (3M company,
Saint Paul, MN, United States) and make the surface fully fit. The thickness of the alu-
minum foil is 9 µm and the two ports of the tag are wired to measure through an RF cable
to reduce external interference.

In order to reduce the influence of heat loss during heat transfer, a patch temperature
sensor is installed on the tag surface and an industry standard water temperature tester
is inserted into the water tank to record the change in tag temperature in real time. The
temperature experimental measurement can reach up to about 80 ◦C, but the temperature is
higher than 75 ◦C and the region is unstable, so the measurement range is selected between
25 ◦C and 75 ◦C.



Sensors 2022, 22, 6027 12 of 18Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

  
(a) (b) 

Figure 12. Tag temperature sensing characteristic test: (a) Tag temperature sensitivity test, 3D sim-
ulation experiment scene modeling; (b) Tag temperature sensitivity characteristic test in the labora-
tory. 

In order to more accurately simulate the temperature changes in the actual environ-
ment, this experiment places an intrusive heater in the high-temperature-resistant water 
tank, and the heating temperature of the heater’s water bath can be adjusted intelligently. 
Wrap a layer of aluminum foil with good thermal conductivity on the surface of the water 
tank, fix the tag on the aluminum foil with high-temperature-resistant tape (3M company, 
Saint Paul, MN, United States) and make the surface fully fit. The thickness of the alumi-
num foil is 9 um and the two ports of the tag are wired to measure through an RF cable to 
reduce external interference. 

In order to reduce the influence of heat loss during heat transfer, a patch temperature 
sensor is installed on the tag surface and an industry standard water temperature tester is 
inserted into the water tank to record the change in tag temperature in real time. The tem-
perature experimental measurement can reach up to about 80 °C, but the temperature is 
higher than 75 °C and the region is unstable, so the measurement range is selected be-
tween 25 °C and 75 °C. 

In this paper, the purchased rGO solution prepared by the thermal reduction method 
and PVA solution were mixed in a ratio of 1:5 and placed in a glass container and evapo-
rated naturally at room temperature to obtain a layer of rGO and PVA composite film, 
which has good temperature sensitivity. In the range of 46.85 °C to 126.85 °C, the dielectric 
constant increases with the increase in temperature [30]. The free space method is one of 
the effective analytical methods for measuring the dielectric constant. The loss tangent of 
the composite film with temperature changes can be expressed by the following Equation 
(6): 

' ''
''tan
'

jε ε ε
εδ
ε

= −

 =

 (6)

where ε is relative to complex permittivity, ε′ is relative to real permittivity, ε″ is relative 
to virtual permittivity and tan δ is the loss tangent. 

Figure 13 shows the relationship between the frequency response of the CSRR tem-
perature sensing resonance unit S21 and the temperature change when the water bath is 
heated. The composite film of rGO and PVA was attached to the surface gap of the CSRR 
resonator by a small amount of adhesive, the tag was completely attached to the thermally 
conductive aluminum foil and both ends of the tag were connected to a vector network 
analyzer (SYSJOINT SV4401A). The water bath temperature was increased from room 

Figure 12. Tag temperature sensing characteristic test: (a) Tag temperature sensitivity test, 3D simula-
tion experiment scene modeling; (b) Tag temperature sensitivity characteristic test in the laboratory.

In this paper, the purchased rGO solution prepared by the thermal reduction method
and PVA solution were mixed in a ratio of 1:5 and placed in a glass container and evaporated
naturally at room temperature to obtain a layer of rGO and PVA composite film, which has
good temperature sensitivity. In the range of 46.85 ◦C to 126.85 ◦C, the dielectric constant
increases with the increase in temperature [30]. The free space method is one of the effective
analytical methods for measuring the dielectric constant. The loss tangent of the composite
film with temperature changes can be expressed by the following Equation (6):{

ε = ε′ − jε′′

tan δ = ε′′
ε′

(6)

where ε is relative to complex permittivity, ε′ is relative to real permittivity, ε′′ is relative to
virtual permittivity and tan δ is the loss tangent.

Figure 13 shows the relationship between the frequency response of the CSRR tem-
perature sensing resonance unit S21 and the temperature change when the water bath is
heated. The composite film of rGO and PVA was attached to the surface gap of the CSRR
resonator by a small amount of adhesive, the tag was completely attached to the thermally
conductive aluminum foil and both ends of the tag were connected to a vector network
analyzer (SYSJOINT SV4401A). The water bath temperature was increased from room tem-
perature 24.6 ◦C to 65 ◦C in 10 ◦C increments and from 65 ◦C to 75 ◦C in 5 ◦C increments,
and the water bath temperature was held at each temperature for approximately 1–2 h with
each temperature increment, a certain settling time is reserved for the tag on the aluminum
foil to reach equilibrium with the temperature of the water bath, and the VNA records
the data. From Figure 13a, we can observe the shift of all the resonant frequencies of the
tag under the temperature change. In Figure 13b, the frequency shift effect of CSRR is
partially magnified. The resonance frequency of S21 is about 3.03 GHz before the polymer
film is not covered, and 3.017 GHz at room temperature after covering, which is reduced
by 23 MHz. As the temperature increases, the resonant frequency shifts from the initial
3.017 GHz to 2.97 GHz, and the frequency shift reaches 47 MHz. The analysis shows
that with the increase in temperature, the resonant frequency gradually decreases, and
the return loss of the temperature sensor S21 also decreases continuously. As shown in
Figure 14, through the linear normalization fitting of the sensing characteristics of the CSRR
resonator unit in the temperature range of 24.6 ◦C to 75 ◦C, Figure 14a shows that the
sensitivity of the resonant frequency of the CSRR resonator with temperature change is
about 898.63 KHz/◦C and Figure 14b shows that the sensitivity of the resonant frequency
amplitude of the CSRR resonator with temperature change is about 0.10273 dB/◦C. When
the CSRR resonant unit is used for temperature sensing, the frequency shift characteristics
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of the resonance and the change in the depth of peak resonance have a good linearity
in the measured range. Therefore, the change in temperature can be reflected from two
dimensions, and the experiments show that it has the best linearity in the range of 30–45 ◦C,
so the optimum resonant frequency range corresponding to the temperature sensitivity is
about 3.003–3.016 GHz.
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Figure 13. CSRR temperature sensing unit resonance response: (a) S21 resonance response curve
change of tag sensor; (b) Partial amplification CSRR resonance unit S21 curve change.
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Figure 13. CSRR temperature sensing unit resonance response: (a) S21 resonance response curve 
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(a) (b) 

Figure 14. Linear normalized fitting of CSRR resonator temperature sensitivity: (a) CSRR res-
onant frequency changes with temperature; (b) CSRR resonant frequency peak depth changes
with temperature.

For a more intuitive comparison, this paper summarizes some reported research works
of chipless RFID multi-parameter sensors in recent years, as shown in Table 3. This tag
has the advantage of sensing multiple parameters at the same time. By combining the
respective advantages of CSRR and ELC resonators, it realizes the partition setting of
different sensing function working frequency bands, improves the utilization of spectrum
and has good frequency shift characteristics in the measurement range, which can better
monitor the changes in temperature and humidity in the environment.
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Table 3. Comparison of the proposed tag with other chipless multi-parameter sensors in the literature.

Resonator Type Size (mm2)
Smart

Materials
Sensing

Parameter Range Sensitivity Reference

Split box resonator 14.38 × 156 None Crack and
moisture NA NA [1]

ELC and U-shaped
slots resonators 6.8 × 15 PVA and

Kapton
Humidity and

encoding
35–85%RH,

6-bit NA [8]

Etched circular
slots resonator 7.4 × 7.4 × π

MWCNT and
Kapton® HN

substrate

Humidity
and gas 40–70%RH NA [11]

ELC and U-shaped
slots resonator 8 × 25 PVA and

Phenanthrene

Humidity
threshold

temperature
and encoding

35–85% RH,
65–95 ◦C,

3-bit
NA [16]

Complementary
split ring

resonator (CSRR)
8 × 9 GO@PI and

HTCC substrate

Humidity,
temperature
and pressure

20–90% RH,
25–300 ◦C,
10–300 kPa

389 kHz/% RH,
1.52 MHz/%

RH(60–90%RH),
133 kHz/◦C,

107.78 kHz/kPa

[19]

Asymmetric
circular four split

ring resonator
(ACiSRR)

25 × 25 GO, rGO and
Chitosan

Humidity,
temperature

and pH
NA NA [24]

Split ring resonator
(SRR) 18.5 × 46 SWCNT Temperature

and gas
30–60 ◦C,

500–20,000 ppm

36.9% (RCS) for
30 ◦C,12.2%

(RCS) for
20,000 ppm

[31]

U-shaped resonator
and L-shaped

resonators
15 × 35

Rogers
6010.2LM
substrate

Crack and
temperature

0.1–0.5 mm,
25–65 ◦C NA [32]

Multistate-coupled
line resonators NA Stanyl and

Kapton
Humidity and
temperature 35–85% RH NA [33]

Split ring resonator
(SRR) NA

Ag@MoS2 and
polyimide (PI)

substrate

Humidity
and gas

0–60% RH,
0–100 ppm 0.097% ppm−1 [34]

CSRR and ELC
resonators 50 × 50 PVA and

PVA-rGO

Humidity,
temperature

and encoding

30–85% RH,
24.6–75 ◦C,

4-bit

2.18 MHz/RH,
898.63 KHz/◦C,
0.10273 dB/◦C

This work

3.3. Real-Time Monitoring and Wireless Transmission of Sensing Data

In this paper, a new method of tag spectrum detection and data extraction is pro-
posed and the feasibility of implementing chipless RFID reader mobile detection on fixed
sensor tags in the future is proposed from the perspective of engineering application.
Figure 15 shows a lightweight dynamic spectrum detection and data wireless transmission
architecture proposed in this paper, which mainly includes a lightweight low-cost VNA, mi-
crocontroller unit (MCU) with universal serial bus on-the-go interface (USB OTG) function,
Bluetooth receiver and transmitter and passive RFID tag. In the application scenario for
this experiment, the tag spectrum detection acquisition method rather than the traditional
detection method is more flexible and convenient. Through the MCU controller intelligent
interaction with the vector network analyzer, the Bluetooth module can support the smooth
transfer data and instructions and expand the scope of the sensor, which has some potential
engineering application prospects. This system is based on the Keil uVision5 software
development platform and uses C language to compile programs. Using C language
as a program development language, it can complete most of the functions of assembly
language, with high compatibility and portability.
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In Figure 16, a simple dynamic tag spectrum detection experiment scenario is set up, in
which passive RFID tags are connected to VNA through RF cable, MCU communicates with
low-cost VNA as the master controller and tag-scattering parameters in VNA are collected
by personal computer (PC) instructions. The interaction between the MCU and the small
VNA can be realized through the USB protocol. In this work, the USB OTG interface is
used to connect the master and slave devices. The USB OTG interface standard allows a
device to act as both a host and a slave, thus enabling bidirectional data transfer between
devices. When the MCU is used as the main control device, it can realize the real-time
collection of the communication device class (CDC) data of the VNA in the form of a virtual
serial port and can realize the data reading of the digital electronic sensor through the
inter-integrated circuit (I2C) bus. The scattering parameters are transmitted to PC in the
plural form by MCU onboard Bluetooth communication module (HC-05). At the same
time, MCU has multiple input/output (IO) interfaces and can be connected to a variety of
digital sensors. The MCU in Figure 16 is connected with a highly sensitive temperature and
humidity electronic sensor (DHT11) probe. The electronic sensor probe can be deployed
in an airtight box to monitor temperature and humidity changes in the box in real time,
which is convenient for comparison with tag test data. All data can be sent to PC for data
processing and dynamic display through the Bluetooth module, and the users can select
the different devices to collect the data by issuing instructions from the PC. In addition,
by setting the clock module, the data can be collected regularly, which reduces the power
consumption of the detection devices.
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The amplitude A (in dB) and phase (in degrees) measured by a vector network an-
alyzer at each resonant frequency can be expressed using the scattering parameter S in
Equation (7) [35]:

S = 10A/20eiϕπ/180
◦

(7)

Therefore, the MCU controller can extract the scattering parameters in the RFID tag
and obtain the amplitude information of the S parameter by collecting the complex form of
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the S parameter. The S21 response parameter of the two-port tag antenna sensor can be
extracted using Equation (8).S(2,1) =

√
re2S(2,1) + im2S(2,1)

S(2,1)(dB) = 20lgS(2,1)

(8)

As shown in Figure 16, there is still room for optimization in the passive RFID spectrum
dynamic detection and wireless transmission system. By matching appropriate transceiver
antennas at both ends of the two-port microstrip antenna, the wireless layout of tags and de-
tection equipment can be realized based on retransmission, and the measurement distance
of wireless detection based on retransmission in this work is about 3 cm. The lightweight
chipless RFID tag detection equipment is integrated and placed on automated instruments
such as drones and robots, which can realize a mobile chipless RFID detection system and
can realize real-time data collection and intelligence in combination with software such as
databases on the PC side processing to form a complete intelligent networked solution that
can be practically applied.

4. Conclusions

In this article, a 6-bit chipless RFID temperature and humidity sensor based on a
frequency domain is designed. The proposed CSRR resonator is arranged in the form
of coupling with the microstrip line, and an ELC resonator is added as the humidity
sensing unit. In this work, the humidity sensitivity of the ELC resonator and the CSRR
resonator is compared and analyzed, and the temperature sensitivity of the CSRR is
analyzed. The sensitivity of each sensing unit used in the tag was calculated by linear
normalization fitting. The three sensing functions of the proposed RFID multi-parameter
sensor are all quantified in their respective operating frequency bands, and there will
be no interference between the sensing resonant frequencies of different partitions, so a
flexible small-range frequency band detection can be used, which helps improve detection
capability. In addition, this paper proposes a lightweight RFID tag spectrum dynamic
detection and data wireless transmission architecture, which is more convenient and flexible
and conducive to the development of experiments and intelligent data collection. The
proposed concept provides a feasible idea to realize the possibility of chipless RFID tag
detection equipment in mobile detection.

The limitation of this paper is that the experiments are carried out under a single
variable condition and no further studies have been carried out on the simultaneous
changes in temperature and humidity. In this work, the proposed low-cost mobile detection
scheme is based on lightweight VNA, and further research needs to be carried out with
higher gain transceiver antennas. In the future, customized chipless RFID readers and
communication protocols will be developed and this work can greatly encourage the
large-scale deployment of chipless RFID tag sensors.
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