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Abstract: The article presents results of research on the influence of changes in parameters of the
digitally recorded echo signals on the uncertainty of pulsed Time-of-Flight (p-ToF) laser distance
measurements. The main objective of the study was to evaluate the distance calculation method
developed by the authors. This method is based on the acquisition of the full-waveform of the echo
pulse signal and approximation of its shape by the second-degree polynomial (we called it SDPA
for short). To determine the pulse transit time and measure the distance, the position of the vertex
of this parabola is sought. This position represents the maximum intensity of the incoming echo
signal and is related to the round-trip propagation time of the laser pulse. In the presented work,
measurement uncertainty was evaluated using simulation tests for various parameters of the echo
pulse. All obtained results were used to formulate the general relationship between the measurement
uncertainty of the SDPA algorithm and the parameters of the received echo signals. This formula
extends the base knowledge in the domain of laser p-ToF distance measurements. It can be used to
estimate the measurement uncertainty of a FW LiDAR at an early design stage. This greatly improves
capabilities of analysis of expected performance of the device. It can also be implemented directly
into the rangefinder’s measurement algorithm to estimate the measurement uncertainty based on the
emission of a single pulse rather than a series of pulses.

Keywords: laser rangefinder; full-waveform LiDAR; precise distance measurements

1. Introduction

Advances in digital signal acquisition and processing, particularly the development
of high-speed analog-to-digital converters, have enabled their use in pulsed ToF laser
rangefinders [1,2]. This technique is referred to as full-waveform acquisition of signals
and is widely used in airborne and satellite LiDAR scanning of the Earth’s surface [3–7],
and in self-driving vehicles [8]. Such use of analog-to-digital converters calls for efficient
ways of extraction of echo signals and elimination of the discretization error introduced
by sampling [9,10]. These methods depend on the sampling frequency and can result
in the distance measurement error being as high as several meters, when low frequency
sampling is used. In order to eliminate this error, it is important to recreate continuity of the
time domain of received signals and derive its parametric formulation [11,12]. This can be
undertaken through approximation of the shape of a laser pulse echo with a chosen fitting
function. A similar approach was the basis for work presented in the article “Methods of
Precise Distance Measurements for Laser Rangefinders with Digital Acquisition of Signals”,
which led to the development of the “modified second−degree polynomial approximation”
algorithm (SDPA-M) for real time processing of lidar waveforms [13]. The aim of the work
presented in this article was to investigate the influence of changes in parameters of the
received echo signal pulses on the precision of distance measurements using the SDPA
algorithm. Since the algorithm is based on calculation of the position of the apex of a
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parabola fitted to the selected set of pulse samples, the parameters of the recorded pulse
affect the uncertainty of distance measurements. We selected the three main parameters that
characterize the digitally recorded signal, i.e., pulse full width at half maximum (FWHM),
signal-to-noise ratio (SNR), and sampling frequency (fsmp), and studied the influence of
their changes on the measurement precision. Through our work we were able to formulate
a general relationship linking the basic parameters of the echo pulse signal and receiver
to the uncertainty of distance measurements with full-waveform LiDARs, in which (in
order to improve measurement precision) an approximation of the sampled pulse with a
second-degree polynomial is used.

2. Assumptions

The algorithm of the distance calculation evaluated in the following simulations was
presented in detail in a previous article [13]. In this section, we briefly present the basic
assumptions regarding this algorithm. The SDPA algorithm is based on the least square
approximation of the shape of a digitally recorded echo of a light pulse by a second-
degree polynomial. The reason why the second-degree polynomial was chosen, instead
of more commonly used Gaussian function [14], is that it sufficiently models the shape
of a laser pulse and is less demanding in terms of computational effort and, therefore,
we assumed that it would result in a faster algorithm. The approximation is performed
on the selected subset of n recorded samples that is expected to contain the returning
echo of a probing pulse. In real-life applications this subset can be selected using one of
the threshold discrimination methods [15–18]. Function fitting is performed using the
least square method and returns coefficients of the quadratic function y(x) (parabola) that
represents a mathematical model of the received pulse.

y(x) = a2x2 + a1x + a0 (1)

where: y(x) is the approximating polynomial function; a0, a1, a2 are its coefficients; and
x ∈ R represents time.

Measurements of the distance to the target are based on determination of the xs time
coordinate of the peak of the function y(x):

xs =
−a1

2a2
(2)

The xs coordinate is directly proportional to the round-trip time of the flight of a laser
pulse to a target. The relationship between the calculated round-trip time of a pulse and
the distance to the target is given by the formula:

s =
cn

2
·xs (3)

where: s [m] is the calculated distance; xs [s] is the time of occurrence of the maximum of
approximated parabola; and cn [m/s] is the speed of light in the chosen medium (air in the
presented work).

A depiction of the basic principles of the SDPA is shown in Figure 1. The validity of
using the SDPA algorithms in distance measurements in full-waveform lidars was proven
in experiments described in a previous article [13]. The purpose of the work presented here
was to examine the influence of changes in parameters of the received pulse signal on the
measurement uncertainty σs of the SDPA algorithm.

In the presented work, we assumed that all simulated pulses have a constant position
(time of appearance) of the peak and that, in distance calculations, all available datapoints
will always be used. In order to analyze the behavior of the SDPA algorithm, we disre-
garded all the effects that influence measurement uncertainty that are present in real-life
applications, such as atmospheric turbulence and the shape of the target (topic discussed
in [19]).
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In real-life applications prior to the distance calculation, there is a need to locate and
extract echo pulses from the recorded waveform. This can be particularly challenging in
LiDAR forestry scanning applications and airborne and satellite altimetry where a single
laser pulse can encounter multiple targets and yield overlapping echo waveforms [6,7].
In such cases, methods of waveform segmentation and data point extraction such as
deconvolution [20] are needed, and advanced algorithms, such as Damped Gauss-Newton
Multi-echo Decomposition, have been proposed [14]. We have assumed that, for single
target measurements, simple threshold or constant-fraction discriminators are sufficient to
extract datapoints of the echo signal.

After segmentation of the signal and selection of datapoints, a set of n samples is
available to perform fitting of the parabola. In order to efficiently handle the set of samples,
it is useful to write Equation (1) in a matrix form, where each row of matrices X and Y
represents a single data point (xi, yi):

Y = X·A (4)

where:

X =


1 x1 x1

2

1 x2 x2
2

1 x3 x3
2

· · · · · · · · ·
1 xn xn

2

; A =

a0
a1
a2

; Y =


y1
y2

y3
· · ·
yn

.

Parabola coefficients a0, a1, a2 are calculated by solving a regression problem by
minimizing the least square error, that is, when all the partial derivatives of Equation (4) in
respect to a0, a1, a2 equal 0. This requirement can be presented in a matrix form as:(

XTX
)
·A− XTY = 0 (5)

The coefficients of the parabola are calculated using equation:

A =
(

XTX
)−1
·XTY (6)

Statistical analysis of measurement uncertainty is typically performed by conducting
a series of trials with mean and standard deviation calculations. In the presented work, we
aimed to examine the effect of changes in parameters of the pulse on distance measurements;
therefore, in a typical approach, to gain a statistically significant set of measurements, we
would need to perform a series of trials for each set of chosen parameters of the pulse.
However, it is possible to estimate the measurement uncertainty from a single simulation,
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which greatly increases the speed. To do so, the standard deviations σa1 and σa2 of the
coefficients a1 and a2 can be calculated using formulas:

σa1 =
√

Var(a1) = σy

√
n ∑n

i=1 xi
4 − (∑n

i=1 xi
2)

2

Det(XTX)
(7)

σa2 =
√

Var(a2) = σy

√
n ∑n

i=1 xi
2 − (∑n

i=1 xi)
2

Det(XTX)
(8)

where:
σy is the standard deviation of signal’s noise,

Det
(

XT X
)
= n

n

∑
i=1

xi
2

n

∑
i=1

xi
4 + 2

n

∑
i=1

xi

n

∑
i=1

xi
2

n

∑
i=1

xi
3 −

(
n

∑
i=1

xi
2

)3

− n

(
n

∑
i=1

xi
3

)2

−
(

n

∑
i=1

xi

)2 n

∑
i=1

xi
4

Finally, the uncertainty of distance measurements can be calculated using:

σs =
cµ

2
·

√√√√(−1
2a2

σa1

)2
+

(
a1

2(a2)
2 σa2

)2

(9)

By using Equation (9) to estimate uncertainty during the presented simulations, we
have significantly reduced the number of trials needed to correctly assess the impact of
changes in the recorded echo signal on the final measurement uncertainty.

3. Methodology of Experiments

There are three main parameters of the digitally recorded echo signals that describe
the pulse signal and the electro-optical receiver and affect the precision of p-ToF distance
measurements. These parameters are the signal-to-noise ratio, the duration of the probing
pulse measured as its full width at half maximum, and the sampling frequency of the
used analog-to-digital converter [21]. The signal-to-noise ratio in a laser rangefinder is
affected by the peak power of the returning echo signal (influenced by the distance to the
target, its reflectivity and shape, and atmospheric conditions) and the ability of a receiver
to collect as much energy of the returning signal as possible with the lowest possible self-
introduced noise [18,19]. Echo pulse width, in combination with sampling frequency, affects
the number of signal samples available for use by the SDPA algorithm. In the presented
work, the effect of changes in those parameters on the uncertainty of measurements using
the SDPA algorithm was investigated in simulation experiments. We calculated the σs
uncertainty as a function of:

• Signal-to-noise ratio—σs(SNR), where SNR = A/σy,
• Sampling frequency—σs

(
fsmp

)
,

• Echo pulse FWHM—σs(τ).

Values of samples of the simulated echo pulse were calculated using a function:

f (xi) = A· cos2
( π

2·τ ·xi

)
+ ξ(xi) (10)

where: xi = j·T is a discrete time of acquisition of the ith sample, i ∈ Z0+, T is the sampling
period, j = (i− (n/2)) and n = b2·τ/Tc is the required number of samples of generated
signal; bc is the round down (floor) operator; A is the peak value of the generated pulse; and
ξ(xi) is a random, normally distributed noise N(0, σy

2) with mean value 0 and variance σy
2.

Depending on the relationship between the required width of the pulse and sampling
frequency, the n number of signal samples can be even or odd. In both cases, a symmetrical
distribution of samples is maintained around time zero, which is the expected position of
the peak of simulated pulse. Figure 2 presents an example of two sets of samples generated
when n is an even (n = 10) and odd (n = 25) number. It is worth noting that in both cases the
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actual peak of the signal remains at xs = 0 [s]. By changing input parameters in Formula (10),
we directly change the width of the generated pulse and the sampling frequency. The SNR
can be varied either by changing the peak value A of a signal or the standard deviation σy
of the noise. The minimal number of samples needed for the SDPA algorithm is n = 3.
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Figure 2. Example of the pulse signal functions f (x) and sample sets f (xi) used in the simulations.
The plot was drawn for (a) even (A = 1, τ = 50 ns, fs = 50 MHz, noise ξ(xi) ∈ N(0, 0.1)) and (b) odd
(A = 1, τ = 50 ns, fs = 250 MHz, noise ξ(xi) ∈ N(0, 0.1)) numbers of samples.

Simulation experiments were carried out on the personal computer using the MATLAB
tool. The algorithm of the simulation process is shown in Figure 3. Simulations were started
with a set of initial parameters used to generate a set of signal samples with the desired
signal-to-noise ratio. That set was used as input data for the SDPA algorithm and calculation
of the distance and predictions of its uncertainty was performed. Three blocks of trials were
conducted. In each block, the influence of changes in a single, chosen parameter on the
measurement uncertainty was examined in several trials. For each trial, the remaining two
parameters were set as constant. In the following sections, results of each block of trials
are presented. Figure 3 illustrates the procedure taken in each trial within a single block
of measurements.
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4. Results

In this section, the results of each block of trials are presented as plots of functions
σs(τ), σs

(
fsmp

)
and σs(SNR).
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4.1. Examination of the Influence of Changes in Signal-to-Noise Ratio on the Measurement
Uncertainty σs(SNR)

In this set of trials, the influence of changes in the signal-to-noise ratio on the uncer-
tainty of distance measurements was examined. Two blocks of trials were performed, each
consisting of four series of simulation runs. In block 1, during each series of simulations
the sampling frequency was fixed, and pulse width was set to four different values, one for
each series. In block 2, we fixed the pulse width and changed the sampling frequency for
each series. In both cases, the SNR was changed continuously between 10 and 100 with
0.1 resolution. Table 1 describes parameters of the test signals generated during trials.

Table 1. Parameters of pulses generated during trials.

Block Number SNR τ [ns] fsmp [MHz]

1 10–100 25, 50, 75, 100 250
2 10–100 50 250, 500, 750, 1000

The results of the conducted simulations are shown in Figures 4 and 5. They show
characteristics of the relationship between measurement uncertainty of the SDPA algorithm
and the signal-to-noise ratio (SNR). As expected, the uncertainty decreases with increasing
SNR and the relationship is non-linear. We evaluated that the uncertainty of measurements
of the distance with SDPA algorithm is inversely proportional to the signal-to-noise ratio.
This dependency can be written as:

σs ∼
1

SNR
(11)
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Plots in Figures 4 and 5 show that the uncertainty σs also depends on the sampling
frequency fsmp and width τ of a pulse. Precision of measurements increases with increasing
sampling frequency and narrowing of the pulse. In the following sections, we determine
the characteristics of these changes.

4.2. Examination of the Influence of Changes in Sampling Frequency fsmp on the Measurement
Uncertainty σs

(
fsmp

)
In this block of trials, the influence of changes in the sampling frequency fsmp on the

uncertainty of distance measurements was examined. Two blocks of trials were performed,
each consisting of four series of simulation runs. In block 3, during each series of simu-
lations, the signal-to-noise ratio was fixed, and the pulse width was set to four different
values, one for each series. In block 4, we fixed the pulse width and for each series set a
different SNR. In both cases the sampling frequency was changed continuously between
100 and 1000 MHz with 1 Hz resolution. Table 2 describes parameters of the test signals
generated during the trials.

Table 2. Parameters of pulses generated during trials.

Block Number SNR τ [ns] fsmp [MHz]

3 100 25, 50, 75, 100 100–1000
4 25, 50, 75, 100 50 100–1000

The results of the conducted simulations are shown in Figures 6 and 7. They show
characteristics of the relationship between measurement uncertainty of the SDPA algorithm
and sampling frequency (fsmp). Uncertainty decreases with increasing sampling frequency
(decreasing sampling period). The relationship σs

(
fsmp

)
is non-linear. We evaluated that the

uncertainty of measurements of the distance with SDPA algorithm is directly proportional
to the square root of the sampling period or reciprocal of the sampling frequency. These
dependencies can be written as:

σs ∼
√

1
fsmp

and σs ∼
√

T (12)
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Similar to the results of simulations shown in Section 4.1, the plots in Figures 6 and 7
also show that the uncertainty σs depends on the width τ of a pulse and confirm the SNR
dependency of relationship (11). In the following section, the dependency of the uncertainty
of measurements from the pulse width (FWHM) are examined.

4.3. Examination of the Influence of Changes in Pulse Width on the Measurement Uncertainty σs(τ)

In this block of trials, the influence of changes in the pulse width (measured as full
width at half maximum (FWHM)) on the uncertainty of distance measurements using the
SDPA algorithm was examined. Two blocks of trials where performed, each consisting of
four series of simulation runs. In block 5, during each series of simulations the signal-to-
noise ratio was fixed, and the sampling frequency was set to four different values, one for
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each series. In block 6, we locked the sampling frequency and set a different SNR for each
series. In both cases the width of generated pulses was changed continuously between 5 ns
and 100 ns with 0.1 ns resolution. Table 3 describes parameters of the test signals generated
during the trials.

Table 3. Parameters of pulses generated during trials.

Block Number SNR τ [ns] fsmp [MHz]

5 100 5–100 250, 500, 750, 1000
6 25, 50, 75, 100 5–100 1000

The results of conducted simulations are shown in Figures 8 and 9. They show that
the relationship σs(τ) between measurement uncertainty of the SDPA algorithm and width
t of generated pulses is non-linear. Uncertainty increases with increasing FWHM of a pulse.
We evaluated that the uncertainty of measurements is directly proportional to the square
root of the width of a pulse. This dependency can be written as:

σs ∼
√

τ (13)

Results of simulations also confirm the relationships of Equations (11) and (12), as
discussed in Sections 4.1 and 4.2.

All of the presented results show basic relations between parameters of the echo signal
and distance measurements performed using the SDPA algorithm. In the following section,
the synthesis of Equations (11)–(13) that leads to the general formula for measurement
uncertainty σs

(
τ, fsmp, SNR

)
is presented.
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5. Discussion

Based on the simulation results, we determined the relationships between the uncer-
tainty of distance measurements using the SDPA algorithm and the parameters of echo
signals and acquisition system. Combining the relations of Equations (11)–(13) leads to the
following relation:

σs ∼
1

SNR
·
√

τ

fsmp
or σs ∼

1
SNR

·
√

τ·T (14)

It follows from the above relationships that if, in a digital signal processing system, the
uncertainty of determining the sample acquisition time is negligibly small relative to the
uncertainty of determining its value (the clock jitter of the ADC is negligibly small), then the
uncertainty of determining the distance using the SDPA algorithm is directly proportional
to the root of the quotient of the pulse width and sampling frequency, and inversely
proportional to the signal-to-noise ratio. The relationship of Equation (14) is directly
related to the measurement of the time-of-flight and its unit is the second. Analogous
to Equation (3), we relate the uncertainty of the time measurement from the relation of
Equation (14) to the uncertainty of the distance measurement by multiplying it by the value
of the speed of light in the selected media. This leads to the relationship:

σs ∼
cµ

2

(
1

SNR
·
√

τ

fsmp

)
(15)

In order to transform the relationship of Equation (15) into an equation that allows for
prediction of distance measurement uncertainty of the SDPA algorithm, we introduced the
coefficient k:

σs =
k·cµ

2·SNR
·
√

τ

fsmp
(16)

The value of the coefficient k was estimated by fitting (using the least squares method)
the curves determined by Equation (16) to the data collected during simulation. In the
case of the presented results, the value of k was equal to 0.536. We determined that the
uncertainty of the SDPA algorithm also depends on the number of samples extracted from
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the waveform by a threshold selection. The most commonly used method—the constant
fraction discrimination—sets the threshold value at 50% of the peak value of the pulse,
resulting in the 50% point extraction ratio. We determined that, in this case, the value of
the k-factor must be increased and should be equal to k = 1.0.

In Figures 10–12, plots of changes in the uncertainty of distance measurements are
presented. Each plot is a result of multiple calculations of standard deviation σs using
Equation (16) with various input parameters that are described in Table 4.

Table 4. Parameters of signals assumed during calculations using Equation (16) for k = 0.536.

Figure Number SNR τ [ns] fsmp [MHz]

10 10–100 25, 50, 75, 100 250
11 25, 50, 75, 100 50 100–1000
12 100 5–100 250, 500, 750, 1000
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The comparison of the graphs from Figures 10–12 with the graphs presenting the
simulation data (Figures 4–9) shows that estimations performed using Equation (16) are
sufficiently accurate and reassemble the behavior of the SDPA algorithm. The derived
relationship of Equation (15) and Equation (16) represent the novel contribution to the
field. Using Equation (16), it is possible to estimate the precision of distance measurements
using a full-waveform LiDAR, with the echo pulse signal expressed as a second-degree
polynomial, based only on the parameters of the echo pulse and the receiver. In order
to verify whether Equation (16) can be applied to real-life measurements, we attempted
to predict the uncertainty of measurements presented in [13,14] using Formula (16). In
the work presented in the article [13], in order to evaluate the precision of the SDPA
algorithm, we have performed five trials with different sets of parameters of generated
pulses and different SNR ratios. We used the constant fraction discrimination method to
extract pulse datapoints from the waveform. Each trial consisted of L = 1000 simulated
measurements of distance. In Table 5 we present results of those simulation trials and
results of standard deviation estimations undertaken with the help of Equation (16). The
value of k = 1.0 was chosen because of the 50% point extraction ratio caused by the constant
fraction discrimination method. Both values of the standard deviation that were determined
experimentally and analytically are close to each other in all five scenarios, confirming the
effectiveness of the proposed formula.

Equation (16) can also be used to compare the precision of other algorithms used in
FW-LiDARs with the expected precision of the SDPA algorithm. In a recently published
article [14], the authors present a full waveform LiDAR system and propose the Damped
Gauss–Newton Decomposition algorithm to efficiently extract datapoints from overlapping
waveforms and measure distance in a muti-target environment and low SNR conditions.
To evaluate the proposed Equation (16), we chose one result among those presented in
the article and attempted to predict and compare the uncertainty of the SDPA algorithm
under the same signal conditions. The authors of [14] showed that the standard deviation
of the distance measurement achieved by their FW-LiDAR system was equal to σs = 6.8 cm
under the following conditions:

- no overlapping of the echo signals, 3 m spacing between targets;
- SNR = 20 dB (which in our case represents SNR = 10);
- sampling frequency fsmp = 1 GSa/s;
- pulse width at half maximum τ = 10 ns.
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By substituting these values into Equation (16), we obtain the value of the expected
measurement precision of the SDPA algorithm used in the same system. Assuming the
use of the constant fraction discrimination method, we set the value of k = 1.0. All this
resulted in the expected standard deviation of measurements σs = 4.7 cm. This value can
be viewed as the best achievable standard deviation of measurements in the situation when
no additional sources of measurement error are present, beside normally distributed noise.
We also assume that the system corrects for any mean (bias) errors.

Table 5. Comparison of the results of simulation trials presented in article [13] with uncertainty
estimated using Equation (16).

Trial Number 1 2 3 4 5

Sampling frequency
fpr (MHZ) 333

FWHM τ [ns] 39 78 156 39 156

SNR 181 631

Standard deviation of
the trial-data analysis,

σs (cm)
1.05 1.17 1.70 0.27 0.46

Calculated standard
deviation σs (cm),

k = 1.0
0.89 1.27 1.79 0.26 0.51

The ability to predict the expected standard uncertainty of a device can be helpful in
assessing the magnitude of the influence of other sources of uncertainty on the total mea-
surement error. When properly calibrated with the designed LiDAR system, Equation (16)
can be used to estimate the uncertainty of distance measurements performed by the emis-
sion of a single laser pulse. This feature may be desirable in all systems where there is no
possibility of multiple measurements.

6. Conclusions

In the presented work, the influence of changes in parameters of pulse echo signals on
the measurement precision of the SDPA algorithm was analyzed via computer simulations.
Simulations were performed to examine the influence of the three most important param-
eters of the echo signal, i.e., signal-to-noise ratio, sampling frequency, and pulse width.
A general equation (Equation (16)) that binds measurement precision with parameters of
the echo pulse signal was proposed. This formula allows the estimation of the precision
of measurements of the FW-LiDAR at an early design stage, such as during the selection
of components. It clearly shows that achieving high measurement precision requires an
effort to design systems with high signal and low-noise, using narrow laser pulses and
ADCs with a high sampling rate. All of this can be a challenging task but, using the
presented formula, the system designer is able to make the right choices when shaping the
design requirements. In the authors’ opinion, this is a unique feature that extends the base
knowledge in the domain of p-ToF measurements of distance. Authors have benefited from
the presented equation and the SPDA algorithm in the works described in articles [22–25].
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