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Abstract: With the increasing demand for privacy protection in the blockchain, the universal zero-
knowledge proof protocol has been developed and widely used. Because hash function is an
important cryptographic primitive in a blockchain, the zero-knowledge proof of hash preimage has a
wide range of application scenarios. However, it is hard to implement it due to the transformation of
efficiency and execution complexity. Currently, there are only zero-knowledge proof circuits of some
widely used hash functions that have been implemented, such as SHA256. SM3 is a Chinese hash
function standard published by the Chinese Commercial Cryptography Administration Office for the
use of electronic authentication service systems, and hence might be used in several cryptographic
applications in China. As the national cryptographic hash function standard, the zero-knowledge
proof circuit of SM3 (Chinese Commercial Cryptography) has not been implemented. Therefore,
this paper analyzed the SM3 algorithm process, designed a new layered circuit structure, and
implemented the SM3 hash preimage zero-knowledge proof circuit with a circuit size reduced by half
compared to the automatic generator. Moreover, we proposed several extended practical protocols
based on the SM3 zero-knowledge proof circuit, which is widely used in blockchain.

Keywords: SM3; zero-knowledge proof; arithmetic circuit; privacy preserving

1. Introduction

With the gradual maturity of emerging technologies such as blockchain and cloud
computing, people’s new demands for sensitive data protection and the development of
privacy protection technologies promote each other. Admittedly, zero-knowledge proof
technology is one of the most concerned academia and industry areas of research in
recent years. As an important cryptographic primitive, hash function has a wide range of
application scenarios combined with zero-knowledge proof.

Zero-knowledge proof is an efficient protocol based on probabilistic verification, which
enables the prover to prove to the verifier that the prover knows a secret value without
revealing any information about the value . As early as 1987, it was proved that any
NP (non-deterministic polynomial) problem has a zero-knowledge proof [1]. The general
solution for converting NP problems into zero-knowledge proofs is to split the problem into
an intermediate form expressed by arithmetic gates or logic gates as the basic operation,
and then extract the intermediate form into a circuit description matrix; finally, the proof is
generated based on the back-end program of a specific zero-knowledge proof protocol.

However, using a unified automatic zero-knowledge proof circuit generator for differ-
ent algorithms cannot meet the current high efficiency requirements. The zero-knowledge
proof of hash function is increasing in practical application scenarios of blockchain, and more
efficient algorithms are required for circuit conversion. At present, the zero-knowledge
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proof circuit based on SM3 has not yet been implemented. It needs an efficient circuit
implementation method as a crucial zero-knowledge proof algorithm.

The main research content of this paper is the design and implementation of a zero-
knowledge proof circuit based on the typical hash function SM3. At the current stage of
zero-knowledge proof development, the main implementation difficulty lies in converting
the computational process of the problem to be proved into an arithmetic circuit, which is a
tedious and low-fault-tolerant task. Starting from the corresponding relationship between
the calculation steps of SM3 and the circuit modules, we designed a circuit-layered structure.
Each layer contains multiple zero-knowledge proof sub-circuits, and is composed of lower-
level sub-circuits. With the rational design of the circuit structure and the normalization of
the circuit generation paradigm, we implement a secure and efficient SM3 zero-knowledge
proof circuit and extend a variety of zero-knowledge proof protocols on this basis. The main
contributions of this paper are as follows.

1. A layered structure of SM3 circuit is proposed, which realizes circuit decoupling and
multiplexing, and the lower-layer circuit is transparent to the upper-layer circuit.
The circuits designed through this architecture have low coupling, and each packaged
sub-circuit has a specific logical meaning, which is convenient for later expansion of
larger circuits.

2. We implemented the SM3 zero-knowledge proof circuit and performed functional and
performance tests on the physical machine. Full conversion details and paradigms
are given for each subcomputing step of SM3 to the R1CS circuit-constrained form.
The realized SM3 hash preimage zero-knowledge proof circuit has high efficiency,
and its complexity is reduced by half compared with the general zero-knowledge
proof circuit generator. The realization effect is comparable to the current optimal
implementation of SHA256.

3. Based on the realized SM3 zero-knowledge proof circuit, various zero-knowledge
proof protocols are extended and implemented. We designed and implemented zero-
knowledge proof circuits for an elliptic curve discrete logarithm and SM3 preimage
equality, hash chain proof, and finally tested the implementation results.

This paper is organized as follows. In Section 2, preliminary knowledge related to the
SM3 zero-knowledge proof circuit in this article is introduced. We give the architecture
design of the zero-knowledge proof circuit based on SM3 and analyze how the SM3 zero-
knowledge proof circuit is generated in Section 3. Then, in Section 4, we study a detailed
circuit conversion generation scheme and the dependencies between the circuits. Addition-
ally, a specific SM3-based zero-knowledge proof circuit conversion generation paradigm is
introduced. In Section 5, we implement the results of functional and performance tests and
analyze the test results. In Section 6, we propose several concrete implementations extend
practical protocols based on SM3 zero-knowledge proof circuit, which are widely used in
blockchain. Finally, we conclude this paper in Section 7.

2. Related Work

In 2016, Groth et al. [2] proposed a concise, non-interactive, zero-knowledge proof
scheme based on bilinear pairings, which is called Groth16. The most significant advantage
of this scheme is that it uses asymmetric pairing, so that the proof only contains three
group elements; as a result, the new system cannot surpass it in proof size in recent years.
However, Groth16 requires a trusted setup and re-runs the initialization phase with different
parameters in the face of other circuits, which causes specific difficulties for its practical use.
Based on the inner product proof technique proposed by Bootle et al. [3], Bünz et al. [4]
proposed the Bulletproofs zero-knowledge proof system in 2017. Bulletproofs supports
logarithmic-sized aggregate proofs and does not require trusted initiation. Sasson et al. [5]
proposed zk-STARKs in 2018, a quantum-attack-resistant zero-knowledge proof system
without trusted guidance. Maller et al. [6] continued to optimize the globally updatable
CRS in 2019, reducing the size of the CRS from the square level of the circuit size to a
linear level.
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Admittedly, the most cumbersome part of the general zero-knowledge proof scheme
is expressing the problem in the form of an arithmetic circuit or a Boolean circuit. In 2010,
Meiklejohn et al. [7] implemented a zero-knowledge proof description language system,
which has an interpreter that can convert the input program into a special cryptographic
language. After that, such zero-knowledge proof circuit representation tools began to
develop. For example, Sasson et al. [8] proposed a virtual machine called TinyRAM in
2011, which can receive NP problems described in C language and execute the proof and
verification process in the virtual machine. In 2013, Parno et al. [9] provided a compiler that
can convert C language program into quadratic arithmetic and quadratic span programs.
The team continued to improve TinyRAM, and proposed new models vnTinyRAM and
scalable TinyRAM. The scalable TinyRAM refers to the idea of recursive proof generation
by Valiant et al. [10] and Bitansky et al. [11], and realizes recursive proof generation through
elliptic curve technology.

The toolchain Pinocchio provides zero-knowledge proof system a near-practical stan-
dardized solution, and is still in use today. In addition, there is also another typical
zero-knowledge proof circuit generator Pentry proposed by Braun et al. [12]. Pentry en-
ables computational processes to be stored on untrusted memory, mainly by the prover
generating a digest for each computational process. Given the efficiency of automatic circuit
generation, Kosba et al. [13] developed a new compiler xJsnark which optimizes short
and extended integer types and supports programming through JAVA. Dimitris et al. [14]
present Zilch, a framework that accelerates and simplifies the deployment of VC and ZKPK
for any application transparently, i.e., without the need of trusted setup. Although the
current zero-knowledge proof arithmetic circuit generation tools can automatically perform
the conversion from calculation to circuit, the conversion efficiency is low, which is also its
future optimization direction.

3. The Preliminaries
3.1. Related Cryptography Technology
3.1.1. Hash Function

The hash function H takes a variable-length data block M as input, and generates
a fixed-length hash value h = H(M). The hash function [15] can guarantee the integrity
of the message, and any change in the data block M will greatly change its hash value.
Informally, a cryptographic hash function has to fulfill the following security requirements:

1. Collision resistance: it is practically infeasible to find two messages M and M∗,
with M 6= M∗, such that H(M) = H(M∗);

2. Second preimage resistance: for a given message M, it is practically infeasible to find
a second message M 6= M∗ such that H(M) = H(M∗);

3. Preimage resistance: for a given hash value h, it is practically infeasible to find a
message M such that H(M) = h.

The hash function can be divided into two parts, namely the iterative structure and
the compression function. The iterative structure can split the input message into multiple
message blocks and compress them separately, so that the hash function can process the
message if it is arbitrarily long. The compression function compresses the current message
block into a seemingly random value of fixed length through diffusion and obfuscation.

At present, the iterative structure of hash function can be mainly divided into two types:
Merkle–Damgård structure and sponge structure. The Merkle–Damgård structure [16] has
a suitable property; if its compression function is collision resistant, then the hash function
with this structure is also collision resistant. Early hash functions such as MD5, SHA-1,
and SHA256 adopted this design. The Merkle–Damgård structure is shown in Figure 1.
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Figure 1. The basic construction of Merkle–Damgård structure in hash function.

Sponge structure [17] has been a flexible and efficient hash function construction
method in recent years. Hash functions such as SHA-3 and Poseidon are designed based
on this structure. It divides the processing of data into two parts: absorbing and squeezing.
The absorbing part inputs the message in chunks; then outputs the hash result in the
squeezing step. The sponge structure is shown in Figure 2.

Figure 2. The basic construction of Sponge structure in hash function.

3.1.2. Discrete Logarithmic Cryptosystem

For public-key cryptography, it can be divided into three categories: a public-key
encryption RSA cryptosystem, discrete logarithm cryptosystem, and an elliptic curve cryp-
tosystem. Among them, RSA encryption is based on a large integer factorization problem,
and the latter two are based on a discrete logarithm problem. A discrete logarithmic cryp-
tosystem will depend on the following condition; that is, there exists some abstract prime
p-order multiplicative group G, and the primitive root of p is g, satisfying:

1. It has an efficient and achievable fast modular exponentiation algorithm; that is, it can
quickly calculate gn mod p;

2. It is difficult to calculate logg gn mod p, and no polynomial time algorithm has been
found to solve it.

3.1.3. Hash Chain

Hash chain is a crucial application based on hash function implementation in cryptog-
raphy, which can be used to generate one-time keys or to force serial calculation scenarios.
For the hash function h and the input message x, a hash chain with a length of n means that
the calculation result of h(x) is used as the following input message, and it is recursively
calculated n times, usually denoted as hn(x) . Hash chains have two characteristics:

1. If the hash function h is one-way, then the hash chain is also one-way;
2. The calculation of the hash chain is serialized, and it is impossible to calculate multiple

hash functions in parallel, nor to start the calculation from the non-head position of
the hash chain.
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Based on unidirectionality, Park et al. [18] proposed using hash chains to generate one-
time keys in weakly secure environments. When the server needs to provide authentication
services, it does not directly use the plaintext of the password, but uses a hash chain
for verification to prevent the password from being stolen and used directly during the
transmission process.

3.1.4. Merkle Tree

Merkle tree was proposed by Merkle et al. [19] in 1987. It is also known as hash
tree, and can efficiently verify the integrity of a particular datum in a set of data. Merkle
tree is usually implemented based on binary tree, and can also be implemented based on
multi-fork tree. The value of each non-leaf node is the hash value of the value of the direct
child node of the node, and the value of its root node is the root hash. Merkle tree has been
widely used in many peer-to-peer applications, including the interplanetary file system
IPFS [20], Zeronet [21], version control system Git [22] and so on.

For a Merkle binary tree of depth D, it can hold 2(D−1) leaf nodes. When verifying the
data integrity of a data block, only 2D− 1 hash values need to be provided, and the hash
value is calculated D times. Therefore, the verification complexity of a Merkle tree is only
O(log N) compared to the O(N) time complexity of verifying the hash list, where N is the
number of data blocks.

3.2. Zero-Knowledge Proof Circuit

The zero-knowledge proof circuit is an important concept, and a key step of the general
zero-knowledge proof protocol. The general zero-knowledge proof protocol [23] is based
on circuit satisfiability, which can transform any NP problem into a zero-knowledge proof.
Zk-SNARKs [24] is the most widely used class of general-purpose zero-knowledge proof
protocols, and its letters mean:

1. zk: Zero-knowledge—the prover does not reveal any information about the secret;
2. S: Succinct—the length of the proof is less than the length of the evidence, and the

evidence information cannot be extracted through the proof;
3. N: Non-interactive—the proof process is non-interactive, there is no need for mul-

tiple interactions between the prover and the verifier, and only one proof can be
publicly verified;

4. ARK: Argument of Knowledge—the proof is computationally unforgettable.

For any calculation, there are input values and output values. When the prover
knows an input value that makes the calculation result in a specific output value, he must
know any intermediate value of the calculation process. To facilitate computer processing,
the calculation process can be converted into a unified representation form of a Boolean
circuit or an arithmetic circuit. The two input values and one output value corresponding
to each circuit gate need to satisfy corresponding constraints. All gate constraints of
the converted circuit can be described in the form of R1CS matrix. Through this matrix,
the corresponding proof polynomial can be generated, and zk-SNARKs can be proved and
verified according to the properties of probabilistic polynomial verification.

The part that needs to be implemented manually in zero-knowledge proofs is con-
verting the computation into the circuit constraints expressed in matrix form. This paper
improves the circuit conversion process of the SM3 algorithm, reduces the number of
intermediate variables and circuit gates manually, and improves the conversion efficiency
of the algorithm to the zero-knowledge proof circuit. Taking the function y = x2 + x as
an example, according to the priority of the operation symbol, the calculation process of
the function is divided into multiple additions or multiplication operations in sequence,
and the result of each binary operation is stored in a new intermediate variable:

v0 = x · x
y = v0 + x

(1)
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v0 represents the intermediate variable of the calculation process, and each binary
operation can be instantiated as an addition or multiplication circuit gate. The variables
correspond to two input pins and one output pin of the circuit gate.

The microscopic significance of zero-knowledge proof is to prove that the equality
sign of each intermediate operation is established, so these variables need to be constrained
according to the corresponding circuit gates. This step is called R1CS constraint, which
uniformly constrains the input and output of all the addition and multiplication operation
gates of the calculation circuit, and uses three matrices to represent all constraint parameters,
to make good use of the matrix calculation capability of the computer.

3.3. Hash Preimage Zero-Knowledge Proof

The hash preimage zero-knowledge proof is defined as ZK{x|y = H(x)}. For the
publicly available hash function H and hash value y, the prover proves that it knows
the input message x, such that y = H(x). The equation holds without revealing other
information about the message preimage x. A cryptographically secure hash function has
good one-way and collision resistance, so its preimage cannot be deduced from the hash
value of a cryptographically secure hash function. Since a hash value can be generated
from an input message of arbitrary length, in some application scenarios, proving that
the preimage of a specific hash value is known is proof that the corresponding message is
possessed. In many application scenarios of blockchain and cloud computing, it is necessary
to generate proofs without revealing the message preimage, so the zero-knowledge proof
of the hash preimage is of great significance. At present, some computing frameworks
in the blockchain field, such as Zokrates [25] and ZkBoo [26], provide implementation of
preimage proof for specific hash functions.

Since the hash function does not have an excellent algebraic structure, it can only
be calculated in a general zero-knowledge proof method, and the calculation process is
converted into a circuit constraint form. The size and depth of the circuit will determine
the size and speed of the proof. As the most widely used hash function in cryptography,
SHA256 has multiple versions of hash preimage zero-knowledge proof implementations.
Multiple cryptocurrencies use SHA256 to verify transactions and for proof of work [27] or
proof of stake [28]. However, its circuit size is large, and the proof efficiency is low. To this
end, many SNARK-friendly hash functions have been invented and implemented, such as
MiMC [29] and Poseidon [30]. At present, there is no implementation of hash preimage
zero-knowledge proof based on SM3. This paper solves the vacancy of the SM3 algorithm,
manually optimizes the circuit conversion of the algorithm, and dramatically improves the
efficiency of hash preimage zero-knowledge proof based on SM3.

3.4. Typical Hash Function
3.4.1. SM3

The National Secret SM3 hash function is one of the commercial cryptographic systems
released by the State Cryptography Administration [31] in December 2010. SM3, whose
security is comparable to SHA256 [32], is mainly used for digital signature and verification,
message authentication code generation and verification, random number generation, etc.
Compared with SHA256 [33], the complexity of SM3 is relatively higher, and each round of
compression function introduces two message words.

For a message m whose length is less than 512 bits, the SM3 hash algorithm is padded
and iteratively compressed to generate a hash value with a length of 256 bits, as shown in
Figure 3. The specific process includes the following four steps.

1. Message padding: In this step, we pad the message length to an integer multiple of
512 so that the input message can be processed by the compression function in units
of 512 bits;

2. Initialization buffer: The buffer is used to save the intermediate and final results
of the SM3 function, which is represented by eight 32-bit registers: A, B, C, D, E, F,
G, and H. These registers are initialized to the 32-bit message words: A = 7380166f,
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B = 4914b2b9, C = 172442d7, D = da8a0600, E = a96f30bc, F = 163138aa, G = e38dee4d,
H = b0fb0e4e;

3. Message iterative compression: This step is its core part, compressing the input register
variable and 512-bit message block into a 256-bit random output through Boolean
and algebraic operations. For the compression function CF, there is V(i + 1) =
CF(V(i), B(i)), where V represents the register value and B represents the message
block. CF contains 64 steps of iterative operations. Each step takes registers A, B,
C, D, E, F, G, and H as inputs and updates itself through calculation. Each iteration
uses the 32-bit long Wj and W

′
j , which are iteratively generated by the message packet

B(i) according to the message expansion rules. The main operations involved in the
compression function include:

SS1← ((A� 12) + E + (Tj � J))� 7 (2)

SS2← SS1
⊕

(A� 12) (3)

TT1← FFj(A, B, C) + D + SS2 + Wj
′ (4)

TT2← GGj(E, F, G) + H + SS1 + Wj (5)

Among them, FFj(·) and GGj(·) are two Boolean function operations, and Tj is a
constant. At the same time, to improve the diffusion rate, the P0/P1 replacement
function is introduced, which achieves the advantages of fast diffusion speed and
good diffusion effect;

4. Hash value output: After all 512-bit packets are processed, the output of the last
512-bit packet is the message digest value.
The message expansion and compression functions are the most computationally
intensive part of the SM3 execution process, and are also the most critical part of de-
signing the circuit structure, which determines the generation efficiency of the circuit.

Figure 3. The calculation process of SM3.

3.4.2. Poseidon

With the development of zero-knowledge proof technology, more and more zero-
knowledge-proof-related applications based on hash functions have been proposed. In or-
der to reduce the size of the corresponding circuit of the hash function and improve the
efficiency of zero-knowledge proof, a class of hash functions called SNARK-friendly hash
was created. Poseidon is the most recently designed and most efficient SNARK-friendly
hash function. It uses a sponge structure to process arbitrarily long message blocks and can
output arbitrarily long digests as needed. Its most significant advantage is that it adopts an
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efficient S-box design, such as using x3 or x5, which reduces the circuit size by two orders
of magnitude with the same security parameters as SHA256.

Based on the high efficiency and easy implementation of Poseidon, many blockchain
projects have adopted this hash algorithm, such as Filecoin’s [34] Merkle tree proof,
Loopring’s private transaction on the second layer of Ethereum, etc.

4. Circuit Hierarchical Architecture Design Based on SM3

This section mainly introduces the design ideas of the entire SM3 circuit architecture.
First, we determine the zero-knowledge proof framework after implementing the circuit
program. Then, the specific program function modules in the circuit implementation
are introduced from the horizontal level. Finally, we divide the circuit scale and calling
relationship into layers, showing the circuit architecture design at the vertical level.

4.1. Frame Selection

The generation process of zero-knowledge proof is similar to the principle of the
compiler. It can be divided into two parts: front-end and back-end. The front-end is
responsible for converting the problem that needs to be proved into a form that can be
accepted by the zero-knowledge proof protocol, such as arithmetic circuits, etc., while the
back-end of zero-knowledge proof generation is responsible for generating zero-knowledge
proofs for this specific intermediate form, and indicators such as generation efficiency and
security will depend on which zero-knowledge proof protocol the back-end adopts.

Zero-knowledge proof circuit generation is the process of zero-knowledge proof front-
end generating an intermediate form of zero-knowledge proof. The general solution to this
process is to use circuit generation tools such as Pinocchio, which is similar to the front-
end of a compiler. It automatically converts each intermediate variable during statement
execution into pin variables of an arithmetic circuit by analyzing the syntax of high-level
language statements, and finally generates a complete circuit. However, this automated
tool creates a lot of circuit redundancy and reduces the proof efficiency. By manually
generating the SM3 circuit, we rationally design the circuit conversion structure, improve
the reusability of the sub-circuit structure, and ultimately improve the conversion efficiency
and ensure the correctness of the circuit.

A more suitable back-end framework can be selected by analyzing the efficiency
of several zero-knowledge proof protocols based on arithmetic circuits. Table 1 shows
that in terms of proof generation time, in addition to zk-STARKs requiring complexity
of O(npoly log n), the time complexity of several other zero-knowledge proof schemes is
better, which is O(n log n). Moreover, Groth16, Sonic, and Plonk can achieve a constant
level in proof size, but the proof size of Bulletproofs and zk-STARKs will increase with the
logarithmic or logarithmic square speed with the circuit size.

Table 1. This table shows the relevant data of the proof efficiency of several zero-knowledge proof
protocols, where n refers to the circuit size and l refers to the number of variables.

Proof Protocol Proof Time Verification Time Proof Size

Groth16 [2] O(n log n) O(l) O(1)
Bulletproofs [4] O(n log n) O(n log n) O(log n)
zk-STARKs [5] O(npoly log n) O(poly log n) O((log n)2)

Sonic [6] O(n log n) O(l + log n) O(1)
Plonk [35] O(n log n) O(l) O(1)

Compared with range proof, membership proof, etc., SM3 preimage proof has multiple
rounds of round-robin operation and a larger number of bits of operation data, resulting in
enormous circuit size. Therefore, zero-knowledge proof schemes such as Groth16, Plonk,
etc., whose proof efficiency has relatively low asymptotic complexity relative to circuit size,
will be considered first.
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At the same time, it is also necessary to consider the development ecosystem of
specific zero-knowledge proof circuits. The libsnark library based on Groth16 is currently
the most widely used zero-knowledge proof library, which has a rich built-in circuit
library. Developing in C++ makes it a good ecosystem, and it is easy to combine with
others’ open-source circuit codes. The purpose of this implementation of SM3-based hash
preimage zero-knowledge proof is to allow more application scenarios for state secrets
in zero-knowledge proof, so the follow-up application research and development based
on this circuit is essential. Therefore, the ecology and ease of use of libsnark give it a
great advantage.

4.2. Functional Module Design

From the horizontal level, the architecture of this paper can be divided into the
following functional modules.

The variable assignment module assigns each variable of the SM3 algorithm to the
zero-knowledge proof circuit carrier object of libsnark, where the variables can be divided
into public and private variables. The public variable refers to the public input in the proof,
such as the image in the SM3 known preimage proof, while the private variable refers to
the secret input in the proof and the intermediate value generated in the calculation process.
In addition, the operation process is divided into modulo operation and bit operation.
The bit operation needs to split the variable into multiple bits for allocation. When a
variable is used numerous times in the calculation, it should not be assigned multiple
times, which will cause redundancy of variables and repeated constraints between the
same variables.

The variable constraint module generates R1CS constraints from the circuit variables
assigned by the previous module, i.e., the values represented by each circuit gate’s input
and output pins. Multiple related R1CS constraints can be combined linearly, and the
variables generate constraints of the form (A, X) ∗ (B, X) = (C, X). This is also the most
critical step; namely, a complete arithmetic circuit structure is generated. A, B and C are the
matrices that fully represent the constraint coefficients of the circuit, and X represents the
vector formed by the variables in the circuit. Only the correct X can make this equation hold.

The evidence generation module computes and assigns the X vectors in the constraints
generated by the previous module. The assignment of X as a variable that makes the
equation true is called the witness in zero-knowledge proofs. The module first assigns each
input variable, and then disassembles each calculation step of the entire calculation circuit.
It assigns values to intermediate variables step by step, and finally generates complete
evidence that can satisfy the circuit constraints.

4.3. Circuit Hierarchy Design

The architecture design of the vertical layer of the SM3 zero-knowledge proof circuit
is divided into layers based on circuit scale and calling relationship. After the low-level
circuit modules are encapsulated, low-level modules can be directly contacted by high-level
modules, and the lower layer is transparent to the upper layer. Its four-layer structure is
divided from bottom to top into:

1. The auxiliary operation layer: This layer provides the minimum unit circuit required
for this design and can realize basic arithmetic circuits such as bit operation and
format conversion. All upper-layer circuits are constructed based on these auxiliary
circuits;

2. The core operation layer: This layer provides the most core Boolean function and
the arithmetic circuit of the permutation function in the SM3 compression function.
The compression function of SM3 involves multiple rounds of iterative operations,
and each round of iterative operations involves a large number of Boolean functions
and permutation functions in this layer. Therefore, the efficiency of circuit conversion
in this layer will significantly affect the final circuit size;
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3. The iterative compression layer: This layer implements the complete circuit of the
SM3 compression function to compress a single message block, which can be divided
into the message expansion circuit and the argument circuit. This layer implements
the basic computing unit of SM3;

4. Merkle–Damgård layer: This layer connects the circuits of the iterative compression
layer in series, thereby realizing the calculation of the SM3 hash value for any length
of message input and generating circuit constraints.

The vertical layer design of the circuit is shown in Figure 4, and each layer of circuit is
composed of several sub-circuit modules.

Figure 4. The four-layer structure of SM3 from bottom to top.

4.3.1. Auxiliary Operation Layer

• Three-digit XOR Module

This XOR3 module generates a two-bit or three-bit XOR circuit.

• Message word splitting and merging module

When there are two forms of a single message word and a bit operation variable in
the variable operation, this packing module is used to constrain a single message word
variable and 32-bit variables. It is applied in Scenarios in which bit operations and modulo
232 addition operations are alternately performed, such as the computation of TT1 and
TT2 variables in a compression function.

• Mod Reduce Module

The function of the circuit constraint generated by the modulo operation is to ensure
that the non-modulo variable and the modulo variable are consistent in the useful bits.
The function of the circuit constraint generated by the modulo operation is to ensure that the
non-modulo variable and the modulo variable are consistent in the useful bits. Therefore, it
is necessary to use the message word splitting circuit above to establish constraints on the
non-modulus variables and multiple bit variables, and then use the message word merging
circuit to establish constraints on the lower 32-bit bit variables and the modulo variables,
and thus establish constraints before and after the mold.

• Circular shift Module

This circular shift module cyclically shifts the array of bit variables to the left without
changing the content represented by a single bit variable, and consequently, it does not
affect other bit operations.
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4.3.2. Core Operation Layer

• FF Module

The following Boolean function FF is used in the compression function of SM3.

FFj(A, B, C) =

{
X

⊕
Y
⊕

Z, 0 ≤ j ≤ 15,

(X ∧Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ j ≤ 63.
(6)

• GG Module

The following Boolean function GG is used in the compression function of SM3.

GGj(A, B, C) =

{
X

⊕
Y
⊕

Z, 0 ≤ j ≤ 15,

(X ∧Y) ∨ (¬X ∧ Z), 16 ≤ j ≤ 63.
(7)

• Permutation function module

After two cyclic shifts, the permutation function performs a 32-bit XOR operation on a
message word and its value. SM3 uses the following two permutation functions.

P0(X) = X
⊕

(X � 9)
⊕

(X � 17) (8)

P1(X) = X
⊕

(X � 15)
⊕

(X � 23) (9)

4.3.3. Iterative Compression Layer

• Message Schedule Module

Message expansion refers to expanding the 16 words divided by the message group
into 132 words through two rounds of circulation.

W1, . . . , W67 is generated as follows.

Wj = P1(Wj−16
⊕

Wj−9
⊕

(Wj−3 � 15))
⊕

(Wj−13 � 7)
⊕

Wj−6 (10)

W1
′, . . . , W67

′ is generated as follows.

Wj
′ = Wj

⊕
Wj+4 (11)

• Round Function Module

The input of SM3 compression function is the output of the previous round of com-
pression function and the message word after the block expansion of the current message.
This module performs 64 rounds of iterative operations on these two data, uses A, B, C,
D, E, F, G, and H registers to store intermediate variables, and finally obtains the 256-bit
output of the current compression function. The complete calculation process is as follows,
shown in Algorithm 1.

4.3.4. Merkle–Damgård Layer

This layer groups the message input instantiates multiple iterative compression circuit
modules according to the grouping situation, and connects them in series. As the private
input of the proof, the hash preimage is passed into the message input part of each iterative
compression circuit. Correspondingly, as the public input, the hash value is assigned to the
output circuit pin of the last iterative compression circuit.
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Algorithm 1 SM3 round function algorithm

Input A, B, C, D, E, F, G, H register initial value
Output A, B, C, D, E, F, G, H register update value

1: function ROUNDFUCTION(A, B, C, D, E, F, G, H)
2: i← 0
3: while i < 64 do
4: SS1← ((A� 12) + E + (Tj � J))� 7
5: SS2← SS1

⊕
(A� 12)

6: TT1← FFj(A, B, C) + D + SS2 + Wj
′

7: TT2← GGj(E, F, G) + H + SS1 + Wj
8: D ← C
9: C ← B� 9

10: B← A
11: A← TT1
12: H ← G
13: G ← F � 19
14: F ← E
15: E← P0(TT2)
16: i← i + 1
17: end while
18: return A, B, C, D, E, F, G, H
19: end function

4.4. Security Analysis

For the zero-knowledge proof protocol, its security consists of three parts: complete-
ness, soundness, and zero knowledge. Here, we combine its completeness and soundness
as correctness and analyze it separately from zero-knowledge.

Verifying zero-knowledge proof requires a probabilistic algorithm, which essentially
challenges all circuit gate constraints of the zero-knowledge proof circuit. Only if all R1CS
constraints for the computational transformation are correct can it be guaranteed that all
intermediate variables will satisfy the constraints when the input evidence is valid.

The circuit hierarchy design in this paper performs the conversion of all calculation
steps according to the SM3 standard algorithm. These conversions can be divided into
Boolean operation conversion, algebraic operation conversion, and mixed operation con-
version. Therefore, the design ensures the correctness of constraint generation from two
dimensions of the calculation process and the calculation form.

Zero-knowledge should guarantee that the circuit-generated proofs contain infor-
mation independent of the circuit’s secret inputs. This property depends on the zero-
knowledge proof back-end protocol. Since the Groth16 based on the libsnark framework
selected in this design is statistical zero-knowledge, this property can be satisfied.

As described, this circuit is secure in theoretical design, and its correctness can be
further verified in the functional test in Section 4.

5. Implementation and Optimization of SM3 Preimage Zero-Knowledge Proof Circuit
5.1. Circuit Conversion

This section converts the specific operations of each step of SM3 into addition gates
and multiplication gates and generates the R1CS constraint relationship.

5.1.1. Auxiliary Operation Circuit

• Message word splitting and merging circuit

The compression function of SM3 includes not only algebraic operations, such as
modulo 232 addition, but also various Boolean operations, such as FF and GG Boolean
functions. Algebraic operations use a 32-bit message word as the basic operation unit, while
Boolean operations operate on a per-bit basis. Therefore, for mixed operations involving
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algebraic and Boolean operations, the 32-bit message word needs to be continuously
converted between a single digit and a 32-bit existence. For example, for message word X,
its binary representation is xnxn−1 . . . x0. Its algebraic form and the equation relationship
between each bit based on addition and multiplication are:

X = 2nxn + 2n−1xn−1 + · · ·+ x0 (12)

Furthermore, the three variable terms of its R1CS constraint are:

A = 2nxn + 2n−1xn−1 + · · ·+ x0 (13)

B = 1 (14)

C = X (15)

In addition to the constraint between a single bit and a complete message word, there
is an implicit constraint. Since there is no data type for variables in the circuit, additional
constraints need to be placed on the variables representing a single bit to ensure its ’bit
character’; namely, any bit x after the expansion of the message word should satisfy:

x(x− 1) = 0 (16)

The RICS constraint is:
A = x (17)

B = x (18)

C = x (19)

• Three-digit XOR circuit

The circuit is implemented based on the combination of three single-bit numbers.
For the single-bit Boolean operation result = x

⊕
y
⊕

z, it can be divided into two steps,
where result is the calculation result, and aux is the calculated intermediate value:

aux = x
⊕

y (20)

result = aux
⊕

z (21)

Convert XOR operation to addition and multiplication:

aux = x + y− 2xy (22)

result = x + y− 2xy + z− 2(x + y− 2xy)z (23)

The RICS constraint is:
A = 2 · aux (24)

B = z (25)

C = result− aux− z (26)

Further, for the XOR operation X
⊕

Y
⊕

Z of three 32-bit message words, it is only
necessary to use the message word-splitting circuit to split and constrain each message
word and generate the circuit for the message bits at the corresponding position. Finally,
the calculated message bits are combined into a single message word output through the
message word combining circuit.

• Modulo operation circuit

When calculating the intermediate variables SS1, TT1 and TT2, the compression
function of SM3 performs a modulo 232 addition operation, which leads to the establishment
of a constraint relationship between the effective bits before and after the modulo. For the
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modulo operation in the modulo circuit, the message word splitting operation is used to
convert it into message bits, and then the valid bits are constrained to be equal.

For instance, given the message word X′ = xn+i
′ . . . xn

′ . . . x0
′ and X = xnxn−1 . . . x0:

X = X′ mod 2n (27)

Convert modulo operation to addition and multiplication:

X′ = 2nxn+i
′ + · · ·+ 2nxn

′ + · · ·+ x0
′ (28)

X = 2nxn + 2n−1xn−1 + · · ·+ x0 (29)

xn
′ = xn, xn−1

′ = xn−1, . . . , x0
′ = x0 (30)

• Circular shift circuit

The cyclic shift operation used in the SM3 calculation process is to cyclically shift the
message word to the right; namely, cyclically shift the original message word X = xnxn−1 . . . x0
to the right i times to obtain new message word X′:

X′ = X � i (31)

Convert shift operation to addition and multiplication:

xk
′ = x(k+i) mod n (32)

The RICS constraint is:
A = xk

′ (33)

B = 1 (34)

C = x(k+i) mod n (35)

5.1.2. Core Operation Circuit

• Boolean function FF circuit

The Boolean function FF is a piecewise function, which corresponds to the 64-round
function of SM3. Its X

⊕
Y
⊕

Z part uses the three-digit XOR circuit in the auxiliary
operation circuit described above for conversion; and for the operation (X ∧ Y) ∨ (X ∧
Z)∨ (Y ∧ Z), it is converted into the bit form x, y, z by message word splitting and merging
module in the auxiliary arithmetic circuit. For the single-bit form, the Boolean-converted
form is:

result = x ∗ y + (1− x) ∗ z (36)

The RICS constraint is:
A = x (37)

B = y− z (38)

C = result− z (39)

Finally, the individual message bits are combined into a complete message word using
the Message word merging module in the auxiliary arithmetic circuit.

• Boolean function GG circuit

Similarly, the Boolean function GG is the piecewise function, which corresponds to the
64-round function of SM3. Its X

⊕
Y
⊕

Z uses the three-digit XOR circuit in the auxiliary
operation circuit described above for conversion. For the operation(X ∧Y) ∨ (¬X ∧ Z), it
is converted into the bit form x, y, z by message word splitting and merging module in the
auxiliary arithmetic circuit. For the single-bit form, the Boolean-converted form is:

aux = x + y + z− 2 ∗ result (40)
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aux ∗ (1− aux) = 0 (41)

The RICS constraint is:

A = x + y + z− 2 ∗ result (42)

B = 1− (x + y + z− 2 ∗ result) (43)

C = 0 (44)

Likewise, the individual message bits are combined into a complete message word
using the Message word merging module in the auxiliary arithmetic circuit.

• Permutation function circuit

The permutation function equations used by SM3 involve two operations of cyclic
shift and three-digit XOR. Thus, the corresponding permutation function circuit and R1CS
constraint can be generated only by combining the circular shift circuit and the three-digit
XOR circuit in the auxiliary operation circuit.

5.1.3. Iterative Compression Circuit

• Message expansion circuit

The message expansion calculation includes two iterative forms to expand the message
word to 132. For the message expansion calculation Wj = P1(Wj−16

⊕
Wj−9

⊕
(Wj−3 �

15))
⊕
(Wj−13 � 7)

⊕
Wj−6, which can pass from the inside to the outside through the

cyclic shift circuit for the three-digit XOR circuit and the permutation function circuit P1
of the lower circuit nested combination. For the message expansion calculation Wj

′ =
Wj

⊕
Wj+4, a three-number XOR circuit can be used, inputting the first two message words

and setting the third number to the constant zero.

• Round function circuit

Since each round function performs multiple calculations, each calculation can realize
the conversion of the addition and multiplication circuits by multiplexing the underlying
circuit. The multiplexing relationship between each calculation expression of the SM3
round function and the sub-circuit modules is shown in Table 2.

Table 2. This table shows the multiplexing relationship between the SM3 round function calculation
expression and the sub-circuit modules.

Calculation Formula Sub-Circuit Relationship

SS1← ((A� 12) + E + (Tj � J))� 7 Circular shift circuit, Modulo operation circuit

SS2← SS1
⊕
(A� 12) Permutation function circuit,

Circular shift circuit

TT1← FFj(A, B, C) + D + SS2 + Wj
′ Modulo operation circuit,

Boolean function FF circuit

TT2← GGj(E, F, G) + H + SS1 + Wj
Modulo operation circuit,

Boolean function GG circuit
C ← B� 9,G ← F � 19 Circular shift circuit

E← P0(TT2) Permutation function circuit

5.1.4. Merkle–Damgård Circuit

This circuit is at the top of the circuit layered architecture of this design, and is also
the input and output circuit for the SM3 hash preimage zero-knowledge proof. The input
variable of this circuit is the SM3 preimage x, the output variable is the hash value y, and the
constraint relationship to be proved is SM3(x) = y. Next, the constraint relationship
will be built using the lower-level circuit module to construct a multi-message block
computing circuit.

When SM3 preprocesses the message, it will pad the message to make the message
length an integer multiple of 512. This step will generate a large number of intermediate
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variables and constraints between variables, resulting in redundant circuit size, especially
when the length to be padded is long.

Since the 64-bit bit string at the end of the padded message is the binary representation
of the length of the original message, the original message can be directly restored through
the padded message. Due to the fact that this process is not part of a one-way function,
implementing message stuffing outside the circuit without including this process into the
zero-knowledge proof circuit does not compromise security.

After the message padding preprocessing is completed, the message is divided
into blocks B0, B1 . . . Bn according to the size of 512 bits. For the SM3 calculation us-
ing the Merkle–Damgård structure, the corresponding constraint for each message block is
Vi+1 = CF(Vi, Bi). Based on this basic calculation unit, the constraint relation SM3(x) = y
can be transformed into the constraints of the image and preimage of n compression
functions CF:

V1 =CF(V0, B0)

V2 =CF(V1, B1)

. . .

y =CF(Vn, Bn)

(45)

Where CF is the compression function and V0 is the initial value of registers A ∼ H.
Finally, for the constraint of a single compression function, it contains 116 rounds of

message expansion and 64 rounds of round functions, which can be realized by splicing
the message expansion circuit and the round function circuit in the iterative operation
circuit layer.

5.2. Circuit Implementation Paradigm

Regarding the realization of specific circuits, there are two types of general-purpose
circuit generator implementations and dedicated implementations. The former only need
to output a C program with formatted input and output description arguments to a circuit
generator to automatically generate a circuit in the form of R1CS, such as the circuit
generator Pinocchio. In contract, after designing the circuit structure manually, we realized
the sub-circuit modules one by one from the bottom up.

The code implementation of this paper is based on the libsnark framework. The lib-
snark code library provides various circuit base classes, and each base class module im-
plements the member methods of circuit instantiation, arithmetic constraint binding and
internal state calculation. Therefore, all circuit modules in this paper will inherit these base
classes for implementation.

Each circuit type inherits from the circuit module base class. Its member variables
include sub-circuit objects and intermediate variable objects. Sub-circuit objects refer to all
sub-circuits that can be reused by the current circuit type. Intermediate variable objects refer
to all intermediate variables not included in the sub-circuit in the current circuit calculation
process. Its member methods are circuit constructor, constraint generation function and
state calculation function; corresponding to the circuit generation paradigms are circuit
instantiation, arithmetic constraint binding, and internal state calculation.

5.2.1. Circuit Instantiation

Circuit instantiation refers to generating circuit instances for each intermediate variable
of a computational process. For each zk-SNARKs proof, libsnark will initialize a blank
circuit board object. The intermediate variables corresponding to each circuit line in the
circuit board belong to the specified finite field, and each intermediate variable has a unique
label on the circuit board.

The circuit instantiation step is carried out in the constructor of the circuit object,
which takes the input and output variables of the current circuit as function parameters
to construct the variables inside the circuit and creates unique variables for these internal
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variables on the entire proof board label. Starting from the input variable of the circuit,
after each round of calculation, the newly generated intermediate value of the calculation
needs to be allocated a unique variable in the circuit board. If the variable requires message
word splitting operation, the corresponding bit variable needs to be allocated additionally.

5.2.2. Arithmetic Constraint Binding

After the circuit is instantiated, all intermediate variables of the current zero-knowledge
proof calculation are bound to the corresponding wires in the circuit with unique labels,
and these wires are independent of each other. The arithmetic constraint binding step is
to constrain these wires to each other through the multiplication gate and the addition
gate. This step only needs to input the allocated circuit variables according to the R1CS
constraint form given in Section 3 into the add constraint interface provided by libsnark,
which can bind these variables to specified constraints.

Add R1CS constraint form steps as:

(1) According to the previous conversion results, extract the three parts (A, B, and C) of
the R1CS constraint form, such as Equations (13) to (15);

(2) A, B, and C contain the addition and multiplication of one or more variables, called
linear combinations of circuit variables. In the implementation process, these vari-
ables are formed into corresponding linear combination objects through the interface
provided by libsnark;

(3) Input the linear combination objects ALC, BLC, and CLC as the parameters of the R1CS
constraint interface added in libsnark to generate corresponding constraint object.

5.2.3. Internal State Calculation

Only if the prover has the correct input message can all intermediate variables in the
SM3 execution process be calculated correctly. Thus, all the R1CS constraints generated by
the arithmetic constraint binding process are satisfied, and a correct proof is provided.

Any sub-circuit only exposes the circuit input and output but hides the internal
variables. The internal state calculation process is to assign the input variable of the circuit
and then calculate the value of the internal variable step by step according to the calculation
process of the circuit. Then, we assign it to the internal variable set in the previous step
until the entire calculation process is completed.

There are two points to note. First, the internal state calculation method only depends
on the calculation itself. If the calculation itself is a mixed operation, it can be directly
implemented by the corresponding operator without considering the conversion to addition
and multiplication. Second, attention should be paid to the form in which the internal
variables exist. If the input is an integer on a finite field, and the circuit variables exist in
the form of bits, the corresponding conversions should be performed.

5.3. Circuit Implementation Optimization

Under the premise that the circuit conversion process is correct, it is necessary to
optimize the circuit implementation further, reduce circuit redundancy, and improve
the proof efficiency. Hence, three main optimizations have been made in the specific
implementation process.

5.3.1. Avoid Complex Control Flow

The SM3 algorithm is an arithmetic-based algorithm that does not involve complex
control flow or memory access. If the Pinocchio circuit generator automatically analyzes
the C program and generates the circuit, it will generate a large number of redundant vari-
ables on some control flow statements. A constraint circuit will be generated between the
redundant variables, resulting in the circuit being too large. Consequently, the implemen-
tation process of this paper actively avoids the characteristics of high-level programming
language control flow and memory access, as a result of which the coding process is mainly
based on assignment, loop, and conventional operations.
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5.3.2. Reuse Temporary Variables

In different life cycles of program execution, the same intermediate calculation value
may be assigned to different temporary variables. Multiple circuit variables will be assigned
to the circuit after analysis by the general zero-knowledge proof circuit generation tool.
The paper binds these temporary variables that represent the same intermediate value in
different life cycles to the libsnark circuit board as a globally unique circuit variable, which
realizes the reuse of temporary variables.

5.3.3. Preprocess Message Padding

In this paper, the message padding step is carried out outside the zero-knowledge
proof circuit to avoid a large amount of circuit redundancy due to the variable-length
variable allocation and constraint operation of message padding. In the implementation
process, a program unrelated to the zero-knowledge proof circuit will be used to pad
the input message according to the SM3 padding rule to generate a message block with
multiple 512 bits, which will be used as the fixed-length input of the SM3 zero-knowledge
proof circuit.

6. Test and Analysis
6.1. Test Environment

This paper tests the implemented SM3 zero-knowledge proof circuit from two per-
spectives of functional and performance. The test uses the Ubantu operating system
and the libsnark zero-knowledge proof framework regarding the physical machine test
environment. Moreover, we use Pinocchio as a contrast circuit generator.

The specific physical machine test environment is shown in Table 3.

Table 3. The specific physical machine test environment.

Operating System Ubuntu 20.04 focal

Translater gcc 9.3.0

Zero-knowledge Proof Framework libsnark @2af4402

Circuit Generator Pinocchio v0.5.3

6.2. Functional Test

The functional test is used to test whether the SM3 zero-knowledge proof circuit is
implemented correctly, and it is also the most basic test. Likewise, the correctness of the
zero-knowledge proof is an essential part of its security; hence, this functional test also
verifies the security of the SM3 zero-knowledge proof circuit implementation from the
perspective of correctness.

Typically, y is the public input of the zero-knowledge proof system, and x is the secret
input. We randomly select the input message x, and calculate the SM3 value y = SM3(x).
The prover holds the message x′, generates about y = SM3(x′) through the interface imple-
mented in this paper, and completes the zero-knowledge proof x′ = x. The verifier inputs
the zero-knowledge proof obtained from the prover and the public input y to be verified
through the interface. The verification program is run to obtain the verification result.

The correctness of the SM3 zero-knowledge proof circuit is verified by changing
the secret input in the test. Table 4 selects six sets of test cases from 1000 tests for display.
Figures 5 and 6 show the test cases of test number 1 and test number 2 in Table 4, respectively,
and the two are used as a set of test comparisons. Eventually, the 1000 sets of tests prove to
be 100% correct.



Sensors 2022, 22, 5951 19 of 26

Table 4. The inputs and results of 6 sets from 1000 test cases.

Secret Input Input Size Public Input Verification
Result

abc 3 bytes 66c7f0f4 62eeedd9 d1f2d46b dc10e4e2
4167c487 5cf2f7a2 297da02b 8f4ba8e0 True

abcd 4 bytes 66c7f0f4 62eeedd9 d1f2d46b dc10e4e2
4167c487 5cf2f7a2 297da02b 8f4ba8e0 Fause

cyperspace 10 bytes 428a7309 6fe62d08 59a42c09 75e659eb
c5adce1d de9af1dc 3e0fa80d fd054170 True

securityspace 13 bytes 428a7309 6fe62d08 59a42c09 75e659eb
c5adce1d de9af1dc 3e0fa80d fd054170 Fause

teeth 5 bytes afb4d865 380cfb6a 207a65e7 12cb9bb9
93058d51 02a44269 c2d6a41e dfe973fb True

tooth 5 bytes afb4d865 380cfb6a 207a65e7 12cb9bb9
93058d51 02a44269 c2d6a41e dfe973fb Fause

Figure 5. The program output of test case 1.

Figure 6. The program output of test case 2.

6.3. Performance Test

This article provides performance tests in both longitudinal and horizontal dimen-
sions. The longitudinal test is used to compare the circuit size gap between the efficient
implementation of the SM3 zero-knowledge proof circuit and the general zero-knowledge
proof circuit generation tool Pinocchio, which reflects the performance difference between
the designed circuit structure and the automatically generated circuit structure. The perfor-
mance of our SM3 scheme is reflected by comparing the efficiency of manual generation of
the SHA256 hash function circuit. The horizontal test is used to compare the circuit size
gap between this implementation and the most efficient implementation of the SHA256
zero-knowledge proof circuit. The horizontal test compares the circuit design efficiency
based on the calculation process of the hash function itself.

The performance test results are shown in Figure 7. A total of four sets of data are
tested, representing the optimal manual generation and the automatic generation of the
circuit size by Pinocchio of SM3 and SHA256.
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Figure 7. The comparison results of the SM3 circuit performance test

It can be seen from the longitudinal test results that the size of the circuit implemented
in this paper is about half of the size of the SM3 circuit generated by the general-purpose
zero-knowledge proof circuit generation tool Pinocchio. Analyzed in principle, Pinocchio
will generate too many repeated intermediate variables during the conversion process,
and constraining these repeated intermediate variables will cause a lot of redundancy [36].
The manual circuit generation process reduces repetitive variables and improves circuit
generation efficiency.

According to current results from industry, the optimal practice of the SHA256 zero-
knowledge proof circuit generates 27,904 circuit gates, while the number of circuit gates
generated by the automatic circuit generation tool reaches 58,160 [37]. Both the implementa-
tion of SM3 in this paper and the rest of the research SHA256 is achieved via manual circuit
generation to reduce intermediate variable redundancy and reduce circuit size. Taking
SHA256 as the comparison object, it can be seen from the horizontal test results that the
optimal practice of SHA256 reduces the circuit size by half, which is comparable to the
optimization efficiency of this paper.

SM3 and SHA256 have certain similarities in iterative structure and some logical
functions. The reason why SM3 is larger than SHA256 circuit is that, on the one hand,
SM3 generates more than 132 message words than SHA256 through message expansion to
increase the complexity; on the other hand, the iterative compression step of SM3 involves
more mixed operations, requiring frequent message word splitting and merging operations.

Moreover, Poseidon is a hash function specially designed for zero-knowledge proof
calculations. As can be seen from Table 5, although the size of SM3 is reduced to nearly
30,000 in this paper, the size of the final circuit generated by Poseidon is only a few hundred
gates due to the use of a simple Substitution box (S-box). However, a SNARK-friendly
hash function such as Poseidon cannot reach the strength of SM3 and SHA256 in terms of
security; as aresult, this SM3 zero-knowledge proof circuit implementation is irreplaceable
for scenarios with high security requirements.

Table 5. The gate count of the typical hash function Poseidon with different inputs and outputs.

Output Length S-Box Input
Length (Bits) Elliptic Curve Circuit

Size (Gates)

Poseidon-80 x5 510 BLS/BN/Ed 171
Poseidon-128 x5 1020 BLS/BN/Ed 300
Poseidon-256 x5 1020 BLS/BN/Ed 504
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Correspondingly, we also test the generation and verification time of the zero-knowledge
proof circuit. This paper mainly focuses on designing and implementing the zero-knowledge
proof circuit based on SM3 and completes the zero-knowledge proof process through a
fixed back-end library. The current industrial zero-knowledge proof generation time is in
the order of seconds, while the verification time is in the order of milliseconds. According to
Figures 5 and 6 above, when the hash input is short, the zero-knowledge proof verification
time of SM3 circuit designed in this paper is about 14 ms, which is in line with the industry
average. Since this paper focuses on testing the SM3 circuit, the implementation is prefilled,
and there is no CRS trusted setup and other links. Therefore, the generation time of SM3
circuit in the zero-knowledge proof generation is 103 ms in this paper with high efficiency.

Further, after multiple tests, we show that the circuit size and zero-knowledge proof
time increase linearly with the input message’s length in Figure 8. The SM3 algorithm
requires that the input message be padded to a multiple of 512 bits. Only one message
block is needed when the hash input is a short message and the input message is less than
512 bits. At this time, the SM3 circuit size is 32,836. As the input message’s length grows,
the message needs to be padded into multiple message blocks. In the implementation,
multiple SM3 circuits are connected in series, multiplying the total circuit size, generation
and verification time.

Figure 8. The Performance of circuit size, generation time and verification time under different sizes
of hash input messages in tests.

To summarize, this SM3 zero-knowledge proof circuit reduces the circuit size by half
compared to the automatic circuit generation tool. In comparison, half of the performance
improvement is equivalent to the best practice efficiency of the SHA256 zero-knowledge
proof circuit, which proves the excellent performance of the scheme from the side. When
the proof time complexity of the zero-knowledge proof back-end protocol is O(n log n),
the circuit optimization effect will further reduce the zero-knowledge proof time by more
than half.

7. Application Design and Implementation of Zero-Knowledge Proof Based on SM3

Cryptography is one of the cornerstones of blockchain, and cryptography concepts
are widely used in blockchain. This section introduces several zero-knowledge proof
protocols that combine elliptic curve discrete logarithms and hash chains. These efficient
zero-knowledge proof protocols based on SM3 can improve the overall operating efficiency
and security of the system in the blockchain. Both these protocols use the libsnark library
for programming based on the realized SM3 zero-knowledge proof circuit, and follow the
above circuit generation paradigm for programming.

7.1. Proof of Equivalence between SM3 and Elliptic Curve Discrete Logarithm

Since the elliptic curve discrete logarithm cryptosystem can provide more robust
security under the same key length, many cryptographic algorithms based on the elliptic
curve discrete logarithm problem have a wide range of practical applications. For instance,
the electronic signature algorithms are implemented by elliptic curve ECDSA and EdDSA,
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the ElGamal Encryption Algorithm, and the Hybrid Encryption Scheme based on Elliptic
Curve and Pedersen commitments in the form of elliptic curves, etc. The elliptic curve
signature algorithm accounts for an important proportion in the blockchain, and ECDSA
appears in many famous blockchain projects, such as Bitcoin and Ethereum.

These algorithms all use elliptic curves (secp256k1, curve25519, or p521) for calculation,
their private key is an integer, and the public key is the corresponding point on the elliptic
curve. Combining elliptic curve discrete logarithms with SM3 can construct more practical
privacy-preserving protocols.

7.1.1. Protocol Design

As mentioned above, the protocol is programmed with the libsnark library, and its
steps are as follows.

(1) The prover selects an integer from 0 ∼ p− 1 as the secret number x to be proved;
(2) The prover multiplies the secret number x by the base point of the elliptic curve

Ep(a, b) to calculate the point yE on the elliptic curve;
(3) The prover calculates the SM3 hash value ySM3 = SM3(x) of the secret number x;
(4) The prover adopts a general zero-knowledge proof scheme, taking x as the secret

input, yE and ySM3 as the public input.

Then, the prover generates the proof Proo f = ZK{x | yE = xB ∩ ySM3 = SM3(x)}.
The verifier runs the polynomial time verification algorithm of the zero-knowledge

proof scheme to verify the proof’s correctness.

7.1.2. Protocol Implementation

The protocol implementation steps are as follows.

(1) Implement the message padding algorithm of SM3 outside the circuit, i.e., convert
the private input into bit form, and allocate additional bit variables to 512-bit integer
multiples on this basis;

(2) Use the padded bit sequence as the input of the SM3 circuit;
(3) Use the unfilled original bit sequence as the input of the elliptic curve calculation;
(4) In the elliptic curve calculation circuit, a message word merging circuit is used to com-

bine the input bit sequence into an elliptic curve calculation unit, and an appropriate
elliptic curve is selected to calculate the points on the elliptic curve;

(5) Take the SM3 value to be proved and the elliptic curve point as the output value of
the two circuits, respectively;

(6) Constraints and intermediate variable values are generated for the complete circuit
according to the circuit generation paradigm, and a zero-knowledge proof is obtained.

This paper finally selects the 256-bit elliptic curve sm2p256v1 in the prime number field
in the SM2 national secret elliptic curve encryption [38] as the standard, and its parameters
are: p = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000
FFFFFFFF FFFFFFFF, a = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF 00000000 FFFFFFFF FFFFFFFC, b = 28E9FA9E 9D9F5E34 4D5A9E4B
CF6509A7 F39789F5 15AB8F92 DDBCBD41 4D940E93.

7.1.3. Test and Analysis

We carry out the functional test of implementing the SM3 zero-knowledge proof
circuit. The results show that the verification fails when any of the elliptic curve num-
ber multiplication relationships and the SM3 calculation relationship between the secret
number input in the test case and the public input are not satisfied. Thus, the protocol is
correctly implemented.

Likewise, we carry out the performance test of implementing the SM3 zero-knowledge
proof circuit. When the secret number padding length is 512 bits, the circuit size is 33,796.
It can be seen from the protocol design that the circuit complexity mainly depends on
the SM3 circuit. The part of the elliptic curve discrete logarithm proof is relatively small,
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and the generation and verification time are also close to the SM3 circuit. After analysis,
the generation time is about 700 ms, and the verification time is about 17 ms. Therefore,
this paper’s optimization of the SM3 circuit will significantly improve the efficiency of this
type of protocol implementation.

7.2. Hash Chain Proof Based on SM3

Hash chains have a wide range of applications in key generation and blockchain.
For instance, the hash chain uses the one-way characteristic of the hash function to generate
a one-time key. The user and the server are verified by the adjacent output of the hash
chain. After the verification, the key is updated to the last output on the hash chain.
In addition, according to the seriality of the hash chain calculation process, it can be used as
a weakly verifiable delay function [39], which can be applied to time-constrained blockchain
scenarios such as space–time proofs.

7.2.1. Protocol Design

For a hash chain with a hash function of SM3 and a length of n, the prover needs
to prove that it holds the input message x so that a specific public value y = SM3n(x) is
established, and other information about x is not leaked.

Similar to the hash preimage proof, this hash chain proof only contains one private
input and one public input, which are the message x and the public value y, respectively.
The prover executes the general zero-knowledge proof algorithm to prove Proo f = ZK{x |
y = SM3n(x)}. The verifier runs the polynomial time verification algorithm of the zero-
knowledge proof scheme to verify the proof’s correctness.

7.2.2. Protocol Implementation

Since the topology of the hash chain is chain-like, its programming implementation is
relatively simple, and the protocol can be implemented only by connecting the SM3 circuits
above in series.

7.2.3. Test and Analysis

We perform multiple sets of tests on this circuit implementation. When the input
message’s length is 512 bits, the length of the hash chain is adjusted for comparison. When
the hash chain length is one, the circuit degenerates into an SM3 preimage proof circuit with
a size of 32,836; when the hash chain length increases to n, the circuit size is 32,836n, which is
consistent with the theoretical analysis size. The performance of the circuit mainly depends
on the performance of the SM3 circuit, and both the proof generation and verification time
are proportional to the SM3 according to the hash chain length.

8. Conclusions

This paper summarizes the current usage scenarios and implementation challenges of
SM3 hash preimage zero-knowledge proof, studying the general zero-knowledge proof
protocol and the generation technology of a zero-knowledge proof circuit. Moreover, we
analyze the basic process and primary consideration factor for implementation of SM3 zero-
knowledge proof circuit. On this basis, a four-layer SM3 layered circuit structure is designed,
and an elaborate scheme is given for the conversion process of the sub-circuits in each
layer. After that, based on the libsnark framework, we implement all sub-circuit modules
recursively from top to bottom in accordance with the designed circuit implementation
paradigm. Accordingly, we entirely realize the SM3 zero-knowledge proof circuit, which
successfully passes the functional and performance tests. In addition, we extract several
standard privacy protection requirements in the blockchain field and design an extended
zero-knowledge proof protocol combined with SM3.

Although the current research on zero-knowledge proof mainly focuses on the back-
end protocol’s efficiency and security, it is always a tedious task to convert the problem
to be proved into a zero-knowledge proof circuit. Admittedly, it is impossible for users of
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zero-knowledge proof technology to manually implement corresponding zero-knowledge
proof circuits for all NP problems. Therefore, it is hoped that in the future development
of this field, researchers will further investigate automatic conversion tools with high
conversion efficiency to reduce circuit redundancy and bring the circuit size close to the
theoretical limit.
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