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Abstract: Gesture recognition based on wearable devices is one of the vital components of human–
computer interaction systems. Compared with skeleton-based recognition in computer vision, gesture
recognition using wearable sensors has attracted wide attention for its robustness and convenience.
Recently, many studies have proposed deep learning methods based on surface electromyography
(sEMG) signals for gesture classification; however, most of the existing datasets are built for surface
EMG signals, and there is a lack of datasets for multi-category gestures. Due to model limitations and
inadequate classification data, the recognition accuracy of these methods cannot satisfy multi-gesture
interaction scenarios. In this paper, a multi-category dataset containing 20 gestures is recorded
with the help of a wearable device that can acquire surface electromyographic and inertial (IMU)
signals. Various two-stream deep learning models are established and improved further. The basic
convolutional neural network (CNN), recurrent neural network (RNN), and Transformer models are
experimented on with our dataset as the classifier. The CNN and the RNN models’ test accuracy
is over 95%; however, the Transformer model has a lower test accuracy of 71.68%. After further
improvements, the CNN model is introduced into the residual network and augmented to the CNN-
Res model, achieving 98.24% accuracy; moreover, it has the shortest training and testing time. Then,
after combining the RNN model and the CNN-Res model, the long short term memory (LSTM)-Res
model and gate recurrent unit (GRU)-Res model achieve the highest classification accuracy of 99.67%
and 99.49%, respectively. Finally, the fusion of the Transformer model and the CNN model enables the
Transformer-CNN model to be constructed. Such improvement dramatically boosts the performance
of the Transformer module, increasing the recognition accuracy from 71.86% to 98.96%.

Keywords: sEMG; IMU; hand gesture recognition; convolutional neural network; recurrent neural
network; transformer; residual networks

1. Introduction

Human–computer interaction (HCI) is the study of information exchange and the
mutual influence of technology between humans and computers. The Gesture Recognition
System is one of the crucial components of the HCI system. Many wearable devices with
human–computer interaction functions have been released in recent years. For example,
Thalmic Lab’s Myo armband is a wearable device that can collect surface electromyography
(sEMG) and Inertial Measurement Unit (IMU) and wirelessly transmits the two kinds of
data to a server via Bluetooth signals. Since gesture recognition data are generated through
sensors attached to the skin, the recognition results are not susceptible to light changes and
object occlusions in the environment when using the Myo armband. Compared to gesture
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recognition in computer vision, the Myo-based gesture recognition method has become a
hot topic of research in the field of HCI.

Many studies have proposed machine learning or deep learning algorithms to im-
plement Myo-based gesture recognition tasks. Among them, support vector machine
(SVM) [1–4], k-nearest neighbor (KNN) [5–9], decision tree (DT) [10], convolutional neural
network (CNN) [11–17], recurrent neural network (RNN) [18–24], and artificial neural
networks (ANN) [25–30] are the most popular algorithms with good recognition accuracy;
however, there are still some challenges in this field of research. First, most studies build
their datasets for specific application scenarios; these datasets involve mostly less than
10 gesture actions, and there is a lack of publicly available datasets for more classification
tasks. Second, most existing studies only identify the sEMG signal during hand motion,
and very little related research applies both sEMG and IMU to gesture action recognition.
In addition, none of these studies evaluate the application of the Transformer model [31] to
gesture recognition. Finally, for multi-gesture recognition tasks, there is still potential for
research on building deep learning models with high accuracy and low time consumption
for classification. The multi-gesture recognition should consider both dynamic and static
arm and finger gestures. Hence, to meet the demands of the multi-gesture interaction scene,
multiple deep learning models or their combinations are adopted to establish models for
multi-gesture recognition with high accuracy and less time-consuming.

In this paper, the CNN-based, RNN-based, and Transformer-based two-stream gesture
recognition models are proposed, respectively. Our self-built 20-category gesture dataset,
including sEMG and IMU signals, far exceeds the normal 5-category and 6-category gesture
datasets. According to the difference in characteristics between sEMG and IMU data for
sampling frequency and data length, two-stream architecture is adopted to build basic
CNN, RNN, and Transformer models. All of them aim to classify these 20 gestures at
the same time, including both static and dynamic gestures. Afterward, the CNN-Res
model, RNN-Res model, and Transformer-CNN model are established based on those
three basic models. All of the improved models yielded exciting experimental results.
By comparing the built models according to the experimental results, this paper selects
the most suitable models to cope with different application scenarios for the best gesture
recognition performance.

2. Related Work

The task of gesture recognition is to build a robust gesture recognition model with
the acquired gestures data to obtain the ideal recognition results; it aims to contribute to
the application in various human–computer interaction scenarios. After manufacturing
a customizable wearable 3D-printed bionic arm that can be applied to amputees, Said
S [1] successfully used the SVM to control the artificial bionic hand. In ref. [21], Nasri
N took the Conv-GRU model as the classifier and created an sEMG-Controlled 3D game
for rehabilitation therapies; moreover, the random forest (RF) model was also utilized by
Mendes [32] to recognize Brazilian Sign Language in Sign Language recognition systems.

As mentioned in the introduction, most deep learning methods are based on the sEMG
signals. The mainstream methods can be classified into three categories: CNN models [11–17],
RNN models [18–24], and ANN models [25–28]. The single-layer CNN proposed by Zia
ur Rehman M accomplished the classification task of 7 gestures [12], which pioneered the
application of CNN models to gesture recognition. Ulysse Côté-Allard further optimized
the basic CNN model and proposed a CNN model based on transfer learning in [13],
resulting in the enhancement of the classifier’s performance in the recognition task of 7
gestures with higher accuracy. Similarly, the five-layer CNN model in [13] achieved good
classification results based on sEMG signals.

Since the sEMG is a temporal signal, RNN classification models can also play a
significant role in the classification based on sEMG. The RNN models applied to gesture
recognition include the long short term memory (LSTM) and the gate recurrent unit (GRU).
Nadia Nasri first introduced the GRU model to the 6-classification task of sEMG signals
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in [18], showing the feasibility of using recurrent neural networks to classify the data
collected by the Myo armband. Zhen built a 21-classification sEMG dataset [20] and
made it publicly available, which is a rare dataset for gesture recognition with more than
20 classifications in existing research. In [20], Zhen proposed a two-layer GRU model
connected with fully connected layers. Although the average classification accuracy of
the model is only 89.6%, Zhen strongly promotes the progress of GRU model application
in multi-classification tasks. Additionally, some researchers have applied the recurrent-
convolution neural network (RCNN) model proposed by Lai S for text classification [33] to
classify sEMG signals. For example, Nadia Nasri [21] improved the former GRU model
by adding a convolutional layer and improved the accuracy in a 7-classification task of
sEMG signals, which implies that the combination of CNN models with RNN models can
further extract the features of sEMG signals and strengthen the training efficiency of deep
learning models. Currently, the Transformer model [31] has not been used in any research
on gesture recognition.

With increasing categories in gesture recognition, the rising similarity between each
gesture makes the classification more difficult. Capturing sEMG signals alone to recognize
gestures seems not enough. Ulysse Côté-Allard, for instance, applied the CNN model to
the task of a dataset with 11 classifications [16] but obtained test accuracies that were clearly
lower than his previous results in 7 categories [13]; thus, naturally, some researchers are
attracted to another signal captured by the Myo armband, the IMU signal. The IMU signal
contains motion information and reflects the position variation characteristics during the
execution. For illustration, Chiu [34] provided a thresholding method to determine the
active signal segment of the motion. In his work, the IMU data were fed into a Long Short-
Term Memory (LSTM) network for classification, demonstrating that there are possibilities
existing in research for gesture recognition training through IMU signals.

Some scholars have begun to pay attention to combining sEMG and IMU signals
for gesture recognition by machine learning algorithms [2,4,34,35] or deep learning algo-
rithms [23,24]. Xiaoliang [24] imposed the LSTM model to solve the gesture recognition
problem based on the combination of sEMG and IMU signals. Although Xiaoliang achieved
to complete the classification task of 10 gestures, the accuracy remains to be uplifted.
Williams [24] also proposed the RCNN model to settle the 5-class task with these two
signals, reaching an accuracy of 99%. Both Xiaoliang and Williams took several wearable
devices to obtain more adequate data, such as Smart Glove or several Myo armbands. The
usage of more devices in the data acquisition was reasonable but inconvenient and limited
the number of practical applications.

In conclusion, most studies on gesture recognition based on bioelectrical signals
only built datasets of sEMG signals. When facing multiple gesture classification tasks,
existing deep learning approaches with high gesture recognition accuracy are still not
powerful enough to meet the practical needs of complex interaction situations. How to
build a dataset with more variety of gestures and how to build a deep learning model that
achieves multi-gesture classification with great precision is the target of future work in
most related studies.

Inspired by the relevant work, a 20-class gesture dataset is constructed to meet the
demands of multi-classification gesture recognition. For high accuracy and efficiency, the
CNN-Res, RNN-Res, and Transformer-CNN models are proposed.

3. Methods

This Section describes how our gesture dataset and deep learning models are con-
structed. First of all, Section 3.1 describes the construction progress of the dataset. Then,
Section 3.2 describes the establishment of the basic models. Finally, Section 3.3 describes
how to optimize and combine the basic models to build the improved models.
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3.1. Construction of Dataset
3.1.1. Acquisition Tool

The data resource was a wearable acquisition tool, the Myo armband. The data
collected were recorded by a workstation, and a large light-emitting diode (LED) screen
was used to display the gesture instruction video.

The Myo armband has eight electrode sensors that can capture sEMG signals from
the skin surface. There is also an inertial measurement unit with a three-axis gyroscope,
three-axis accelerometer, and three-axis magnetometer. Data captured is sent wirelessly to
the workstation via built-in Bluetooth.

The position of sEMG’s electrode sensors and IMU is shown in Figure 1.
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Figure 1. Outlook of Myo armband.

3.1.2. Acquisition Process

We collected sEMG and IMU signals generated during gesture execution and designed
20 gestures, including translation in 6 directions, rotation in 3 directions, making a fist, and
numbers 0~9. As shown in Figure 2, the former nine movements are dynamic, and the
last 11 movements are static. Dynamic gestures contain an activation gesture. During the
execution of dynamic gestures, the activation gesture is maintained all the time.
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Fifty volunteers were recruited to participate in the experiment, all healthy undergrad-
uate or graduate students. Among them, 14 were male, and 36 were female. All volunteers
wore the Myo armband in the same position presented in Figure 3. The IMU was located
on the medial side of the arm.
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The volunteers were asked to make gestures following the recorded video of gesture
instructions. Each gesture was performed once and took 5 s, and the interval between
each gesture was 5 s. Following instructions on the video, the volunteers were prepared to
carry out the gestures at the appropriate rhythm. The experiment started after ensuring
that the volunteers were familiar with the gestures. To avoid muscle fatigue caused by the
long-time performing the movements, the experiment was divided into two groups. The
first group collected ten gestures and the second group collected another ten gestures, with
a 5–10 min rest break in both groups. During the experiments, we checked the quality of
completed gestures and the recorded data. The volunteers would be asked to re-capture
the data after the experiment when there were unqualified movements and abnormal data.

The actual time to complete the translational and rotational movements for dynamic
gestures was within 2 s and 4 s, respectively. For static movements, all movements were
kept within 5 s. Therefore, we only kept the valid length of each type of gesture to guarantee
that all the gestures could be correctly classified. At last, we got 400 actions per volunteer,
for a total of 20,000 actions. After eliminating the data of 271 incorrectly executed actions,
the data of 19,729 gestures were stored in our dataset.

The sEMG data acquired is 8-channel with a sampling frequency of 200 Hz, while the
IMU data obtained is 6-channel with a sampling frequency of 50 Hz. All data are sent by
Bluetooth to the server and saved in the Myo Data Capture tool.

3.1.3. Data Labeling

We take the Plotly Express extension library in Python to visualize the waveforms of
the collected data and manually label the data. Before labeling, we need to get a clear wave-
form to distinguish a gesture’s start and end points to define the signal’s active segment.

First, we do full-wave rectification on the sEMG signal so that the data takes absolute
values. That makes the negative half axis data roll over to the positive half axis. Then, we
sum the data of all the channels (n = 8) and find the arithmetic square root of the sum as
the new channel, as shown in function (1); these two operations are intended to display the
8-channel sEMG signal in one waveform plot and reduce the dispersion of the amplitude of
it; this new waveform is then smoothed with a moving average algorithm. Each data point
is replaced by the average of M/2 points before and after (including the point itself), as
shown in function (2). Smoothing is applied to obtain a more intuitive waveform diagram,
which is convenient for our subsequent labeling.

xsum =
√

∑
∣∣x(k)∣∣, k = 1, 2, 3, . . . , n (1)
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xnew(i) =
∑

i+ M
2

i−M
2

xsum(i)

M + 1
, i = 1, 2, 3, . . . , m (2)

where n is the number of channels, m is the number of data points in the merged channel,
x(k) is the data of each original channel, xsum is the data after merging channels. xsum(i) is
each data point of the merged channel, M + 1 is the number of data points used in each
smoothing process, and xnew(i) is the value after smoothing.

After our verification, the waveform is observed when M is taken as 50. As shown in
Figure 4a, the blue line represents the value of the signal, and the orange box is the active
segment of a signal which is also the data segment we need to label. The corresponding
amount of data is taken to label the segments according to the sEMG data length for the
different gestures. Labels of the gesture category are 1–20.
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For the signals measured by IMU, their six channels are processed by the moving
average algorithm in function (2), respectively. Furthermore, it turns out that the data of the
y-channel of the gyroscope is relatively easy to identify, as shown in Figure 4b. Therefore,
there is no need to merge channels, and the data of the y-channel can be directly regarded
as the labeling basis of the signal activity segment. Depending on the length of IMU data
for different gestures, the corresponding amount of data is taken. Labels of the gesture
category are 1–20, the same as for the sEMG data.

3.1.4. Data Segmentation

The gesture movements are continuous. To meet the real-time requirements of gesture
interaction, the active segment data should be segmented with a sliding window.

According to Mendes [32], the sliding window length is selected as 1 s (containing
200 points for sEMG and 50 points for IMU) with a sliding step of 100 ms to segment the
sEMG and IMU signals. Eventually, 601,489 sEMG samples of size 200 × 8 and 601,489
IMU samples of size 50 × 6 are generated.

Before inputting data into the model, we conducted the normalization operation. Since
the sEMG signal and IMU signal differ in values and the IMU signals contain two types of
data: accelerometer and gyroscope, we normalized the sEMG and IMU between (−1, 1)
with function (3), respectively.

x′(j) = 2× x(j)− xmin
xmax − xmin

− 1, j = 1, 2, 3, . . . N (3)

where N refers to the number of data points in the sEMG or IMU signal. xmin refers to the
minimum value of sEMG or IMU signal. xmax refers to the maximum value of the sEMG or
IMU signal. x(j) refers to the value of each data point. x′(j) refers to the value of each data
point after normalization.
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3.2. Basic Models

CNN and RNN are the most common models in gesture recognition research; however,
the Transformer has not been introduced in any associated research so far. In this Section, a
two-stream CNN model, a two-stream RNN model, and a two-stream Transformer model
are built to classify the dataset to test the feasibility of these basic models for the sEMG and
IMU-based gesture recognition missions.

3.2.1. Two-Stream CNN Model

The basic CNN consists of a convolutional layer, a pooling layer, and a fully connected layer.
To transform the data into a form suitable for a 2D convolutional kernel, dimensional

change should be performed on each data. First, the channel dimension is retained, and
only the first 196 data points of the sEMG and the first 49 data points of the IMU are
reserved. Then, we reshape these points into data of size 14 × 14 and 7 × 7, respectively.
After that, the size of sEMG data is changed to 14 × 14 × 8, and the size of IMU data is
transformed to 7 × 7 × 6.

As shown in Figure 5, the sEMG and IMU data are divided into two streams. In
turn, there is a convolutional layer, a maximum pooling layer, and a convolutional layer
in the first stream. A Relu layer follows each convolutional layer. The first and second
convolutional layer contains 24 and 48 filters of size 3 × 3, respectively. The maximum
pooling layer has a window size of 2× 2, which can compress the data size while preserving
the key features. The second stream has a convolutional layer and a maximum pooling
layer. The convolutional layer also consists of 24 filters of size 3 × 3, connected to a Relu
layer. The pooling layer also has a window of size 2 × 2. The outputs of two streams are
expanded into a single column and are concatenated together after passing through the
maximum pooling layer. The output of the last fully connected layer is the classification
result corresponding to the input data.
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3.2. Basic Models 
CNN and RNN are the most common models in gesture recognition research; how-

ever, the Transformer has not been introduced in any associated research so far. In this 
Section, a two-stream CNN model, a two-stream RNN model, and a two-stream Trans-
former model are built to classify the dataset to test the feasibility of these basic models 
for the sEMG and IMU-based gesture recognition missions. 
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nected layer. 
To transform the data into a form suitable for a 2D convolutional kernel, dimensional 

change should be performed on each data. First, the channel dimension is retained, and 
only the first 196 data points of the sEMG and the first 49 data points of the IMU are 
reserved. Then, we reshape these points into data of size 14 × 14 and 7 × 7, respectively. 
After that, the size of sEMG data is changed to 14 × 14 × 8, and the size of IMU data is 
transformed to 7 × 7 × 6. 

As shown in Figure 5, the sEMG and IMU data are divided into two streams. In turn, 
there is a convolutional layer, a maximum pooling layer, and a convolutional layer in the 
first stream. A Relu layer follows each convolutional layer. The first and second convolu-
tional layer contains 24 and 48 filters of size 3 × 3, respectively. The maximum pooling 
layer has a window size of 2 × 2, which can compress the data size while preserving the 
key features. The second stream has a convolutional layer and a maximum pooling layer. 
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panded into a single column and are concatenated together after passing through the max-
imum pooling layer. The output of the last fully connected layer is the classification result 
corresponding to the input data. 
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Figure 5. The architecture of the two-stream CNN model.

3.2.2. Two-Stream RNN Model

The LSTM [36] and the GRU [37] models are the most frequent RNN models. For the
LSTM model, there are three ways of transferring information between neural units: the
long-term information of the previous moment, the output information of the previous
moment, and the input information of the current moment; these three information paths
are controlled by the forgetting gate, the input gate, and the output gate. The GRU
model [37] is a variation of the LSTM model. GRU optimizes the three gates of the LSTM
into an update gate and a reset gate, and these two gates control the hidden state of the
current moment and the post-selected hidden state, respectively. The GRU model has fewer
parameters and a faster training time than the LSTM model; moreover, in many kinds of
application cases, GRU can achieve comparable results to LSTM.
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We take the two-stream LSTM model as an example to introduce the RNN architecture.
As shown in Figure 6, the data are directly input to the two-stream LSTM model in two
streams. Each stream has two layers of LSTM network with 50 hidden units. The hidden
layer of the LSTM network can capture the state information of the data in the time
dimension. We take the information output from the last time node of the LSTM as
a vital feature for the classification. The features output from the two-stream network
are also expanded into a column and then concatenated together. The fully connected
layer has 20 neurons and can be utilized to output classification results depending on the
training dataset.

The two-stream GRU model is formed by replacing the LSTM layer in the two-stream
LSTM model with the GRU layer. The structure and parameter settings of the model are
the same as those of the two-stream LSTM model.
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3.2.3. Two-Stream Transformer Model

Transformer is a very innovative network proposed by Google Brain in [31], which
abandons the circular structure and employs a more interpretable self-attention mechanism
to extract the relationships between data. The self-attention mechanism involves three
quantities: Query, Key, and Value; they aim to compute the relationship between input
data X.

Query represents the query vector, Key represents the vector of the relevance of the
queried information to other information, and Value represents the queried information
vector. The specific calculation is shown in function (4).

Q = XWQ

K = XWK

V = XWV
(4)

where Q refers to Query. K refers to Key. V refers to Value. X refers to the input data. WQ,
WK, and WV are the weight matrices, updated with the training, corresponding to these
three quantities.

After the values of the three vectors Query, Key and Value are calculated, the self-
attention mechanism computes the eigenvalues of the output of the attention layer with
function (5).

Attention (Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

where dk refers to the dimension of the vector K.
For more connections among the input data, the Transformer extracts features of the

input data through a multi-headed attention mechanism. The multi-head attention mecha-
nism consists of multiple self-attention layers, and each self-attention layer is computed in
parallel. Then, the output of each head is spliced and multiplied by the weight matrix. The
specific calculation is shown in function (6) and function (7).

MultiHead(Q, K, V) = Concat(head1 , . . . , headh)WO (6)
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where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(7)

The Encoder module in the Transformer model is applied in our model to extract the
features of the sEMG and IMU signals. The input is first positional encoded so that it has
the sequential position information; it subsequently enters a multi-headed attention layer
to compute the correlation features and an Add&Norm layer consisting of a residual layer
such as ResNet [38] and a normalization layer. Then it proceeds to the Feed Forward layer
with two linear units. The Feed Forward layer strengthens the expressiveness of the model,
and the output has the exact dimensions as the input. The next is the same Add&Norm
layer as the previous one. In the Encoder Layer, the number of heads in the multi-attention
mechanism and the number of hidden neural units (d_model) of the FF layer are parameters
that can be defined. The complete model is shown in Figure 7.
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As presented in Figure 7, the sEMG data pass through 4 layers of Encoder Layers to
retrieve features, followed by the average pooling layer. The average pooling layer is a 1D
pooling layer with a window length of 2. That means the features are compressed to half
of their original size. The IMU data also pass through 3 Encoder Layers. The features are
also squeezed to half the initial size by the same pooling layer. The outputs of these two
pooling layers are stitched together and fed to the three fully connected layers to output
the classification results.

3.3. Improved Models

At first, the two-stream CNN is regarded as the base model, and a residual network
is applied to build the CNN-Res model. Next, the two-stream RNN model is combined
with the CNN-Res model to construct the two-stream LSTM-Res model and the two-stream
GRU-Res model. Finally, the two-stream Transformer model is fused with the CNN model,
forming the two-stream Transformer-CNN model.
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3.3.1. Two-Stream CNN-Res Model

In the basic CNN model, only one or two convolutional layers are extracting features
of sEMG and IMU data; it is prone to insufficient extraction of features when the number
of convolutional layers is small. More layers are a necessity for retrieving more features
of significance.

Providing the network is deeper, there is an exposure of gradient disappearance or
gradient explosion. At the same time, the deeper network may also trigger the problem of
network degradation. Therefore, the residual network [38] is introduced into our network
to prevent degradation. A standard residual unit is shown in Figure 8.
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The layer-hopping connection in the residual network allows the input signal to
propagate directly from any lower layer to a higher layer; it enables the network to converge
faster during training. Deepening the network layers often comes at the cost of increased
training time. Thus, the introduction of residual networks compensates for the drawback
of a longer training time for deeper networks to some extent.

Motivated by the above analysis, a two-stream CNN-Res model is proposed, and its
specific architecture is shown in Figure 9. The data are also input to the network after the
dimensional change mentioned in Section 3.2. The first stream network is fed with the
sEMG signal and the second stream with the IMU signal.
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The parameter settings in the architecture were obtained through tweaking, where we
wanted to find a model with high recognition accuracy and relatively low complexity. For
the number of network layers, we chose a range from two to six and found that when it
was four for the first stream and two for the second stream, the complexity and accuracy
of the model reached a balanced state. Two strategies were tried out for the number of
channels, namely keeping it constant in all layers or doubling it when going from one layer
to the next deeper one; it turned out that the recognition accuracy of the latter was better
than the former; thus, after having fixed this strategy, the only choice we had to make
was determining the number of filters in the first convolutional layer. Considering the
differences in input channel numbers of the two streams, they had better be selected in
different ranges. Therefore, we chose them from 4 to 24 and 8 to 48, respectively. Within
these ranges, taking 16 for the first and 24 for the second was the optimal choice. For
convolution kernel size, 2 × 2 and 3 × 3 were tried, and 3 × 3 was chosen.

The mainstay of the first stream network is composed of 4 convolutional layers and an
adaptive averaging pooling layer. Each convolutional layer contains a different number of
filters of 3 × 3, but all of them have a Relu layer and a batch normalization (bn) layer. The
filters of these four convolutional layers are 16D, 32D, 64D, and 128D, respectively. The
second stream backbone encompasses two convolutional layers with the same content as
the first stream network. The number of filters in these two convolutional layers is 24 and
48, respectively.

After every two convolutional layers, a residual unit is added. To ensure the number
of channels between the data at the residual cells matches well, we equip a convolutional
layer with a 1 × 1 convolution kernel to change the number of channels of the previous
input. Padding operation is also applied in every layer of convolution. The objective is to
prevent the data size from changing with the convolution operation so that the data size
has consistency. At the output of the two feature streams, they are squeezed by the adaptive
average pooling layer to size 128 × 4 × 4 and 48 × 3 × 3, respectively. The maximum
pooling layer is not applied here. The rationality is that the average pooling layer can retain
more information compared to the maximum pooling layer. The squeezed features are
stretched into a column and then stitched together into four fully connected layers to get
the classification results.

3.3.2. Two-Stream RNN-Res Model

We built the two-stream RNN-Res model by combining the two-stream RNN model
with the two-stream CNN-Res model.

For sEMG and IMU signal data, the LSTM and the GRU are good at extracting long-
term dependence features that reflect the global significance of each data point. On the other
hand, CNN is a network adept at extracting local features of the data [12]; thus, the CNN
network is placed behind the RNN, allowing for further extracting the local features of these
long-term dependence features. The combination of long-term dependence features and
local features improves the model’s characterization ability. Features output by the LSTM
and GRU models have already reflected the data’s features in the temporal dimension; thus,
the 2D convolutional layer in the CNN model does not lose the location information in the
original data.

The 2D convolutional layer cannot directly operate on the RNN model output form.
Therefore, there is a dimensional transformation operation in front of the CNN model. A
dimension of size one is inserted before the temporal dimension of the output features; this
action not only preserves original features’ content and order but also makes it extracted
in the correct form by the CNN-Res network. Furthermore, to increase the depth of the
model while reducing the time required for convergence during training, we equally add a
residual network to the CNN. The specific network structure is shown in Figure 10.
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The LSTM module has the same structure as Section 3.3.1; however, considering that
the LSTM-Res model is complicated, we make the following improvements to reduce the
complexity of the network:

(a) Hidden units in the first stream reduce from 60 to 40 and in the second stream from
60 to 10.

(b) Inter-layer maximum pooling layers to the CNN model for down-sampling are
added. Their window sizes of the first stream are set to 10 × 2 and 2 × 2 after the second
and fourth convolutional layers, respectively. Similarly, a maximum pooling layer of size
5 × 1 is placed after the second convolutional layer in the second stream; these pooling
layers squeeze the size of data transmitted.

The rest of the structure in the CNN block is almost consistent with the CNN-Res
model. The parameter tweaking was also conducted according to the parameter tweaking
process of the CNN-Res model; however, the data’s channel numbers of the two streams
are both one after the dimensional change, so the number of initial convolution kernels
at their starts are chosen to be the same. After tweaking, we choose the combination of
“4D, 16D, 32D, 64D” for filters in the first stream and “4D, 16D” in the second stream. After
the same adaptive pooling layer, the two streams are concatenated together, and then the
classification results are output by the fully connected layers.

As for the GRU-Res model, its architecture is the same as the LSTM-Res model, except
for the different RNN network types.

3.3.3. Two-Stream Transformer-CNN Model

In the Transformer, matrix computation eliminates the need for step-by-step compu-
tation to obtain features for long-distance data; however, this feature extraction method
ignores local details, making the Transformer less capable of capturing local features. In
contrast to text information, the sEMG and IMU signals are continuous data generated
during action execution. Therefore, ignoring local details can lead to inadequate extraction
of features in the temporal dimension of the data.

To enhance the model’s ability to extract local features, we improve the Transformer
model as follows:

(a) A 1D convolutional layer is added between each encoder layer; these convolutional
layers not only extract local features but also increase the number of channels of features.
Each convolutional layer doubles the number of channels.
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(b) The values of heads and d_model in each encoder layer are changed with the
deepening of the network. The increase of parameters allows the model to extract deeper
global information as the number of network layers deepens.

The above modifications strengthen the model’s ability to extract local features as well
as increase the information contained in the global features. Given that the convolutional
layer’s outbound features must be operated by Encoder Layers, temporal messages of the
data cannot be destroyed. That is why we take the 1D convolution to obtain local features
instead of the 2D convolution. The convolutional layer also contains a padding operation
to keep the data length from changing with convolution. To avoid corrupting the location
information of the features, we also use an average pooling layer instead of a maximum
pooling layer. The amount of information on the features is kept to the maximum extent.
The sEMG and IMU data are also input as two streams, and the specific network structure
is shown in Figure 11.
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The parameter tweaking of the Transformer-CNN model mainly included: the value
of heads and d_model in Encoder Layers and the numbers of filters in 1D convolutional
layers. The value of heads must be divisible by the input channel numbers and should
not be too large. The choices contained 2, 4, and 8 for the first stream and 3 and 6 for the
second stream. After our experiments, when the values of the heads were set to “4, 4, 8, 8”
and “3, 3, 6”, the accuracy was the highest, and the complexity of the model was relatively
low. The parameter settings of 1D convolutional layers were similar to the model defined
in Section 3.3.1. We also decided to double the number of channels when signals passed
through convolutional layers. The number of filters for the first convolutional layer was
selected from 4 to 24 for the first stream and 8 to 48 for the second stream. According to our
test results, the best choice is to take 16 for the first and 12 for the second; the tweaking of
d_model was identical to them.
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The average pooling layer of the first stream has a sliding window length of 10, and
the average pooling layer of the second stream has a sliding window length of 5. After
the pooling operation, the length of the sEMG data is compressed to 20. The length of the
IMU data is shortened to 10. The features of these data are concatenated and input to a
four-layer fully connected network to get the classification outcome.

4. Experiments and Results

This Section introduces our experiments and the results of our models. Not only
was the experiment of simultaneous classification of 20-category gestures carried out, but
also the sEMG signal and IMU signal were applied to identify arm movements and finger
movements, respectively. To begin, Section 4.1 states our experimental conditions. Then,
Section 4.2 states 20-category experimental results of our basic models, and Section 4.3 states
20-category experimental results of our improved models. After that, Section 4.4 states
comparisons and analyses of results of basic models and improved models. Furthermore,
Section 4.5 states the results of 9 types of arm movements and 11 types of finger movements,
which were recognized separately by two signals.

4.1. Experimental Conditions

Classification experiments on our dataset are performed with the basic and improved
models defined in Section 3. As samples generated from the dataset after data segmentation
exceeded 600,000, the dataset was divided into training and test sets in the ratio of 49:1.
589,459 samples are in the training set, and 12,030 samples are in the test set.

All the models were trained with the training set and tested on the test set after training.
The training loss function was the cross-entropy loss function, and the stochastic gradient
descent method was the approach to update the model weights in all the experiments. The
batch_size was set to 32. The learning rate was set to 0.005 for the two-stream RNN model
and 0.001 for other models (including improved models). Additionally, all of the training
processes for the experiments were performed by a GeForce RTX 3090 GPU for 100 epochs;
it should be noted that the test set was not involved in updating the model parameters and
was only available for testing the model recognition accuracy.

4.2. Results of Basic Models

The experiments of the base models were carried out first, and the results are shown
in Table 1. Table 1 contains the training time, testing time, and testing accuracy of all the
base models in the experiments of this paper. As can be seen from the table, the two-stream
LSTM model and the two-stream GRU model have the highest test accuracy of 97.10% and
95.91%, respectively. The test accuracy of the two-stream CNN model reaches 95.43%. The
test accuracy of the two-stream Transformer is the lowest, at 71.68%.

Table 1. Performance results of basic models.

Model Training Time (h) Test Time (s) Test Accuracy (%)

CNN 2.0 0.25 95.43
LSTM 13.3 2.12 97.10
GRU 13.8 2.45 95.91

Transformer 12.5 1.47 71.68

It is evident that the two-stream CNN and RNN models complete the 20-classification
task on our dataset with high accuracy, but there is still room for further improvement.
Nevertheless, the basic Transformer model is far from satisfying our requirements for
recognition accuracy.
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4.3. Results of Improved Models

The experiments with improved models were then conducted, and the new results
were included in Table 2; it shows an overview of all models’ training time, testing time,
and accuracy. The ES refers to the experiment incorporating the Early Stopping mechanism
into the training process. Single test time means how long it requires to classify one
single sample.

As presented in Table 2, it is found that the test accuracy of the CNN-Res model
achieves 98.24%; the test accuracy of the LSTM-Res and GRU-Res models reach 99.67% and
99.49%, respectively. Surprisingly, the test accuracy of the Transformer-CNN model attains
98.69%. That is considered sufficiently accurate for gesture recognition. Compared with the
basic models, the improved models are significantly more excellent than the basic models.
The recognition precision has been enhanced to different degrees. Among the results, the
Transformer model has the most striking accuracy gain, about 27.28%.

Because of the improved models’ grown complexity, the training and test times natu-
rally become longer; however, the introduction of residual units allows the convergence
speed of model training to be significantly boosted, which means the Early Stopping can
be implemented to shorten the training time. Because of the Early Stopping, the actual
training time of CNN-Res, LSTM-Res, and GRU-Res is even shorter than the training time
of the basic models, which is 1.43 h, 8.6 h, 11.7 h, respectively; it turns out that the CNN-Res
model has the smallest training and test time among improved models. Therefore, it has
the highest training and testing efficiency among all the models. As for the single test time,
the Transformer-CNN has the shortest single test time, which means it holds the quickest
recognition response.

Table 2. Performance results of improved models.

Model Training Time (h) Test Time (s) Single Test Time (s) Test Accuracy (%)

CNN 2.0 0.25 0.0303 95.43
CNN-Res 4.33/1.43 (ES) 0.64 0.0343 98.24

LSTM 13.3 2.12 0.0115 97.10
LSTM-Res 18.7/8.6 (ES) 3.22 0.0312 99.67

GRU 13.8 2.45 0.0120 95.91
GRU-Res 18.9/11.7 (ES) 2.82 0.0318 99.49

Transformer 12.5 1.47 0.0126 71.68
Transformer-CNN 14.1 2.45 0.0149 98.96

4.4. Comparison and Analysis

The experimental performance of the improved and basic models will be compared
by the variation of the models’ loss and test accuracy during the training process. Their test
confusion matrixes are also drawn to analyze the details of each gesture recognition result.

4.4.1. CNN vs. CNN-Res

As shown in Figures 12 and 13, the CNN model maintains the test accuracy of around
94% after stabilization, and the loss value stays within 0.004. In contrast, the accuracy
of the CNN-Res model is significantly raised and can be maintained above 98.13% after
stabilization; moreover, the Loss value also decreases significantly after stabilization and
always stays within 0.001. Finally, at the 97th epoch, its test accuracy reaches the highest
value of 98.25%.
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The test accuracy graph indicates that the CNN-Res model’s training process converges
at the 33rd epoch, which takes only about 1/3 of the entire training time. Thus, it can
be seen that one primary advantage of the introduction of the residual network is that
the CNN-Res model significantly improves the convergence speed of training when the
network becomes deeper; its training efficiency is strengthened a lot.

According to Figure 14, the recognition accuracy of various gestures is not uniform to
the CNN model. The identification accuracy of ‘Number 0′, ‘Number 2′, and ‘Number 4′

is 87%, 89%, and 78%, respectively; this deficiency could be attributed to the similarity of
these three static actions, which brings about more difficulties in recognition. As for the
recognition results of the CNN-Res model as shown in Figure 15, the recognition accuracy
of ‘Number 0′, ‘Number 2′, and ‘Number 4′ is enhanced to 99%, 98%, and 96%, respectively.
Furthermore, the recognition accuracies of the other 17 actions are also promoted.

After expanding the layers and introducing residuals, the CNN-Res model achieves
better feature extraction with a higher convergence speed.
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4.4.2. RNN vs. RNN-Res

We take the comparison of the LSTM model and LSTM-Res model as an example.
As illustrated in Figure 16, the LSTM model keeps the test accuracy above 96% after
stabilization, with the highest classification accuracy of 97.10%. Also, the Loss value is
held within 0.003. The result suggests that the LSTM model already possesses a good
classification effect. To our excitement in Figure 17, however, the test accuracy of the
LSTM-Res model reaches up to 99.67% after being stabilized; moreover, the Loss value is
almost 0 at a steady state.
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What is more, the training of the LSTM-Res model is fully converged at the 46th epoch,
accounting for only about 1/2 of the whole training time; it shows that after combining the
CNN-Res model, the LSTM-Res model not only benefits the precision but also doubles the
training convergence speed based on the LSTM model.

Due to the high test accuracy of LSTM-Res, we keep the values of the test confusion
matrix of LSTM-Res with three decimal places.

Among the recognition results of the LSTM model in Figure 18, there are 19 gestures
whose recognition accuracy has attained more than 95%; however, the recognition accuracy
of the ‘Number 4’ is relatively low, which is 90%; it reveals that the LSTM model has
achieved high accuracy in gesture recognition. Still, the accuracy of individual gestures is
not high enough. Nevertheless, as exhibited in Figure 19, apart from “Push up”, the other
19 actions are classified with an accuracy of over 99%.
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The performance improvement of the LSTM-Res model is credited to the CNN-Res
model. The LSTM-Res model can accomplish the 20-classification task with outstanding
accuracy and less training time by further extracting the local features with the CNN.

4.4.3. Transformer vs. Transformer-CNN

Figure 20 manifests that the Transformer model does not perform well in classification.
Even after undergoing 100 epochs of training, the test accuracy is still only 71.68%; it
indicates that the basic Transformer model for gesture recognition is far from sufficient
in gesture recognition; however, with the CNN model’s fusion, the Transformer-CNN
model’s accuracy is extensively promoted. As shown in Figure 21, the test accuracy of the
Transformer-CNN model stabilized as high as 98.96%, but the convergence time did not
change obviously.
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As shown in Figure 22, almost half of the gesture recognition accuracies are under
75%., not to mention that the recognition accuracy of ‘Number 1′, ‘Number 4′ and ‘Number
5′ is only about 50%, which means half of them are incorrectly recognized; however, the
Transformer-CNN model’s confusion matrix is much higher quality. Figure 23 shows that
the classification accuracy of almost all gestures is around 99%. Remarkably, three gestures
are correctly identified with 100% accuracy. The lowest accuracy comes from ‘Number 4′,
which is still 97%.

The above comparisons substantiate that the incorporation of the 1D convolutional
module ameliorates the performance of the Transformer. As a result, it is apparent that
the Transformer-CNN model behaves better than the Transformer model in the task of
20-gesture classification.
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In summary, the LSTM-Res/GRU-Res model is preferable if the system’s objective is
to achieve the highest recognition accuracy because they have the best precision; however,
the CNN-Res model is the best choice if the system requires a high training efficiency and
less testing time, not with a highly demanding requirement for accuracy; it has the least
time for training and testing, and its recognition accuracy is up to 98.24%. On top of that, if
the system needs high accuracy and the most rapid real-time response to a single gesture,
the Transformer-CNN model is the ideal option because of the highest recognition speed
and test accuracy of 98.96%.

4.5. Separate Recognition

Our self-built dataset of 20 categories contains nine arm movements and eleven
gesture movements; they can be divided into a 9-category sub-dataset and an 11-category
sub-dataset.

To further explore the effect of sEMG and IMU signals on the recognition of arm and fin-
ger movements, we also split sEMG and IMU signals to identify arm and finger movements,
respectively. The improved CNN-Res model, RNN-Res model, and Transformer-CNN
model in Section 4.4 have been implemented in three groups of experiments. Each group
includes using the sEMG signal to recognize arm and finger movements and the IMU signal
to recognize arm and finger movements. The separated experimental results are shown in
Table 3, where ‘Together’ represents the result of simultaneous recognition in Section 4.4.

Table 3. Accuracy results from the separate recognition.

Gestures

Models CNN-Res RNN-Res Transformer-CNN

sEMG IMU sEMG IMU sEMG IMU

Arm 90.16% 95.52% 98.13% 96.55% 98.13% 96.39%

Finger 95.48% 41.80% 99.12% 42.89% 98.33% 18.21%

Together 98.24% 99.67% 98.96%

Table 3 reveals that the three models can recognize arm movements with more than 90%
accuracy when using sEMG or IMU signals independently; however, for finger movements,
although the recognition accuracy of the three models can reach over 95% with sEMG
signals, the accuracy with IMU signals is too low. Only using IMU signals can’t successfully
recognize finger movements. In addition, our proposed models’ recognition accuracy
of arm and finger movements with one signal alone is lower than that of identifying all
20 categories of movements with the two signals together.

Thus, if the target is to recognize only arm movement, using the sEMG signal or IMU
signal alone can achieve good recognition results. If the target is to recognize only finger
movements, applying sEMG signals alone is also reachable to high accuracy, but applying
IMU signals alone to recognition is not feasible. If the gesture recognition system aims to
recognize 20-category gestures simultaneously, the two signals are recommended to be
combined. The combination of sEMG and IMU signals enables the system to recognize
more gestures and accomplishes better precision.

5. Conclusions

This work conducts a gesture recognition modeling study based on the sEMG and
IMU signals.

The conclusions drawn in the paper are as follows:

(1) A dataset containing sEMG signals and IMU signals is built through the Myo armband.
The dataset includes 20 different hand gestures with a total of nearly 20,000 actions;
these actions involve dynamic movements dominated by arms and static movements
dominated by fingers.
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(2) Based on the baseline gesture recognition models, including the two-stream CNN
model, RNN model, and Transformer model, the two-stream CNN-Res model, RNN-
Res model, and Transformer-CNN model are proposed, respectively. The CNN-Res
model introduces the residual units and has more profound network layers; it achieves
a test accuracy of 98.24% and the shortest training and test time. The RNN-Res
model combines the RNN model and the CNN-Res model to enhance the degree of
extracting local features, accomplishing the highest recognition accuracy. The LSTM-
Res model and the GRU-Res model test accuracy are 99.67% and 99.46%, respectively.
The Transformer model is incorporated with the CNN model to enhance its ability
to capture local information. The modified Transformer-CNN model improves its
accuracy from 71.86% to 98.96%; moreover, its shortest recognition response time of
0.0149 s for a single sample makes it highly applicable in real-time recognition and
interaction systems.

(3) Through the separate recognition of arm and finger movements, the effectiveness of
the combination of sEMG signals and IMU signals in the multi-category mission of
this paper is proved; it turns out that simultaneously adopting two signals allows us
to recognize 20 gestures and achieves the highest recognition accuracy.

Future work needs to concentrate on optimizing the parameter settings of the model.
Although our proposed models achieve a high recognition precision, their training time is
at the level of hours. Therefore, more research is required to establish more efficient models.
In addition, deploying models in embedded systems such as real-time interfaces will also
be the focus of our future research. After sorting out our dataset, we will make it publicly
available on GitHub soon.
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