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Abstract: Understanding the nonlinear dynamic characteristics of engineering structures is challeng-
ing, especially for the systems that exhibit asymmetric nonlinear behavior. This paper compared
four parameter identification methods for asymmetric nonlinear systems incorporating quadratic
and cubic stiffness nonlinearities. Hilbert transform, zero-crossing, direct quadrature, and wavelet
transform were used to obtain the backbone, envelope, and restoring force curves from the free
vibration time history. A nonlinear curve-fitting method was then applied to estimate the stiffness
parameters of the asymmetric systems, and a linear least square fitting approach was utilized to
estimate the damping parameters of the asymmetric systems. We used the Helmholtz–Duffing
oscillator as a numerical example and a nonlinear vibration absorber with geometric imperfections
to verify the feasibility and accuracy of these methods. The advantages and disadvantages of these
methods and the deviations in estimated results are discussed.

Keywords: quadratic and cubic stiffness nonlinearity; nonlinear system identification; envelope;
instantaneous frequency; nonlinear vibration absorber

1. Introduction

Asymmetric nonlinear engineering structures, such as a mistuning quasi-zero-stiffness
vibration isolator [1,2], cables [3], and geometric imperfect plate-like designs [4–7], have
attracted widespread attention. The dynamic characteristics of these asymmetric systems
are more complicated to analyze than those of the symmetric systems. For example,
constant drift can occur in the response when there is little linear stiffness in the quasi-
zero-stiffness vibration isolator. The nonlinear isolation system exhibits a mixed softening
and hardening characteristic [1], which results in the multiple jump phenomena and
hysteretic behavior [2]. Multivaluedness of the response curves occurs with different
features depending on cables (or plates) and excitation force parameters [3–7]. To fully
understand the nonlinear aspect of asymmetric systems, nonlinear parameter identification
is one of the crucial procedures [8–10].

In recent years, backbone curves have been used to identify stiffness parameters of
asymmetric systems. The calculation methods of the backbone curves can be classified
into two types: analytical and numerical methods. Analytical methods include harmonic
balance, multi-scale [11], and normal form methods [12,13]. The comparison of these analyt-
ical methods can be referred to [14]. Some software packages have implemented numerical
algorithms based on a nonlinear normal mode framework [15–17]. Common experimental
methods for extracting backbone curves include the resonance decay method [18], the
control-based continuation method [19,20] and phase-locked loops [21]. For multi-degree-
of-freedom systems, the nonlinear normal modes of interest are usually isolated by the
force appropriation method [22–24]. The resonance decay method is then used to estimate
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the backbone curves. Breunung and Haller [25] recently studied the backbone curves of
the forced-damped nonlinear mechanical systems. Cenedese and Haller [26] summarized
approaches for constructing backbone curves of multi-degree-of-freedom systems. There
are many applications to identify parameters using backbone curves, such as base-excited
SDOF system [27], vibration absorber [28,29], beam-shaker system [30], aircraft wing struc-
ture [31], linear–arch composite beam piezoelectric energy harvester [32]. In addition to
traditional contact measurement methods, non-contact measurement methods, such as
video processing, can also be used to identify the backbone curves of an air wing proto-
type [33]. The restoring force curve is another useful tool that can be applied to estimate
stiffness parameters of asymmetric systems [34]. Because of the asymmetric characteristics,
the positive and negative parts of the asymmetric system were analyzed separately [35,36].
The bias term obtained by the signal decomposition method is the unique information in
the asymmetric signal.

Hilbert transform [37], zero-crossing method [27], direct quadrature method [38], and
wavelet transform [39] can be used to obtain the backbone curves and restoring force
curves from the free-decay measurements. The applications of these methods to a Duffing
system have been summarized [40,41]. However, these methods cannot be directly applied
to asymmetric systems with quadratic and cubic stiffness nonlinearities, and need to be
modified to analyze positive and negative time responses separately when obtaining the
restoring force curves. The backbone curves exhibit softening-hardening nonlinear behavior
and are complex to analyze. As far as the authors know, there is no relevant comparative
study. Therefore, several identification methods are summarized and compared, which can
better guide the understanding of the parameter identification of Helmholtz–Duffing type
asymmetric engineering structures.

This paper aims to investigate the parameter identification methods applied to asym-
metric systems with quadratic and cubic stiffness nonlinearities and illustrate these meth-
ods using a Helmholtz–Duffing numerical example and a vibration absorber experiment.
Section 2 introduces the Helmholtz–Duffing example and its theoretical solutions for restor-
ing force and backbone curves. In Section 3, detailed steps of the four methods to obtain dif-
ferent curves are introduced. Section 4 discusses the identification methods, identification
results, errors of the four methods, and the corresponding advantages and disadvantages.
The application in the vibration absorber experiment is described in Section 5. Finally, this
paper is concluded in Section 6.

2. Asymmetric Model: A Helmholtz–Duffing Oscillator

The asymmetric engineering structures can be simplified to a Helmholtz–Duffing
oscillator, and its equation of motion is given by

m
..
x + c

.
x + k1x + k2x2 + k3x3 = f (t) (1)

where m is the mass, c is the damping coefficient, f (t) is the excitation force, k1, k2, and
k3 are the linear, quadratic, and cubic nonlinear stiffness coefficients, respectively. If the
system vibrates freely with an initial displacement, f (t) = 0. Then, dividing both sides of
Equation (1) by the mass m yields

..
x + 2h

.
x + ω2

0(t)x = 0 (2)

where h = c/2m is the damping factor and ω0(t) =
√
(k1 + k2x + k3x2)/m is the instan-

taneous frequency. They have the units of 1/s. It can be seen that the analytical solution
for the viscous damping force per unit mass is written as fc(x) = 2h

.
x when the range of

velocity is given, and the analytical solution for the restoring force per unit mass is given by

fk(x) =
k1

m
x +

k2

m
x2 +

k3

m
x3 (3)

where the regime of displacement is determined.
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Backbone curves for the Helmholtz–Duffing oscillator are more complex than those
for the symmetric systems [42]. Using the harmonic balance method and substituting the
approximate harmonic solution x(t) = A0 + A1 cos(ωt + θ) into Equation (1) yield

ω2 =
k1

m
+

2k2

m
A0 +

3k3

m
A2

0 +
3k3

4m
A2

1 (4)

where A0 =

 f0
2k3

+

 f2
0

4k2
3
+

(
A2

1
2

+
β

3k3

)3
1/2


1/3

+

 f0
2k3
−

 f2
0

4k2
3
+

(
A2

1
2

+
β

3k3

)3
1/2


1/3

− k2

3k3
is the bias term, A2

1 = −
(
k3 A3

0 + k2 A2
0 + k1 A0

)
/(3k3 A0/2 + k2/2) is the first har-

monic term, β = k1 − k2
2/3k3, and f0 = k1k2/3k3 − 2k3

2/27k2
3. Adding more harmonic

terms to the approximate harmonic solution can yield a more accurate solution, but the
calculation of the backbone curve is complicated. Substituting the approximate harmonic
solution x(t) = A0 + A1 cos(ωt + θ) + A2 cos(2ωt + ϕ), where the second harmonic term
A2 is included, into Equation (1) for the lightly damped case, gives

ω2 ≈ k1

m
+

2k2

m
A0 +

3k3

m
A2

0 +
3k3

4m
A2

1 +
k2

m
A2 +

k3

m

(
3
2

A2
2 + 3A0 A2

)
(5)

which can be compared well with the numerical results of the backbone curves [42]. The
comparison between analytical solutions and the numerical results is shown in Section 3.

3. Identification Methods for the Characteristic Curves

This section introduces four methods for obtaining the characteristic curves of the
Helmholtz–Duffing oscillator, which are restoring force curves, damping force curves,
envelopes, and backbone curves. These curves are combined with the analytical solu-
tions given in Section 2 to estimate the stiffness and damping parameters of asymmetric
structures. The details are discussed in Sections 4 and 5. For the sake of simplicity, the
parameters for the oscillator are m = 0.1 kg, c = 0.4 Ns/m, k1 = 4000 N/m, k2 = −107 N/m2,
and k3 = 1010 N/m3. The initial displacement and velocity are x(0) = 0.0018 m and
.
x(0) = 0 m/s. The free-decay response is numerical integration calculated by using the
fourth-order Runge-Kutta method, and the sampling frequency is f s = 2000 Hz.

For the asymmetric system, when the free decay response is measured, the restoring
force curve is constructed separately from the positive and negative signal parts [35], which
is given by

fk(x) =

{
ω2

c (t)Ac(t) x > 0

ω2
c (t)Ac(t) x ≤ 0

(6)

where Ac and ωc included positive and negative congruent envelopes and congruent
natural frequency. The viscous damping force is approximately given by

fc(x) ≈
{

2h(t)A .
x(t)

.
x > 0

−2h(t)A .
x(t)

.
x < 0

(7)

where h(t) is the instantaneous damping factor and A .
x(t) is the congruent envelope of

velocity. The backbone curves can be obtained using the relationship between instantaneous
frequency and amplitude of each harmonic term.

3.1. Hilbert Transform

Hilbert transform (HT) has been widely used in the parameter identification and
signal decomposition of nonlinear systems. Feldman applied this method to identify
free and forced vibration systems, and further applied the nonparametric identification
method to the asymmetric systems [43–46]. The complex analytic form of a free-decay
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response is given by X(t) = x(t) + jx̃(t) = A(t)ejϕ(t), where x̃(t) is the Hilbert transform
of the signal x(t), the envelope A(t) =

√
x2(t) + x̃2(t), and the instantaneous phase

ϕ(t) = arctan[x̃(t)/x(t)]. The instantaneous undamped natural frequency is given by

ω2
0(t) = ω2 −

..
A
A

+
2

.
A

2

A2 +

.
A

.
ω

Aω
(8)

and the instantaneous damping factor is given by

h(t) = −
.
A
A
−

.
ω

2ω
(9)

where
.
A,

..
A and

.
ω are the first and second derivatives of envelope and frequency, respectively.

Hilbert vibration decomposition (HVD) is a time-varying vibration decomposition
method based on the Hilbert transform [45]. The main harmonic components of asymmetric
systems can be obtained by using the HVD. By weighted summing the decomposed har-
monic components, the congruent envelope, and the congruent frequency can be obtained.
The congruent envelope Ac is given by

Ac(t) =
N

∑
l=1

Al(t) cos φl(t) (10)

where Al is the envelope of the lth order component, and φl is the phase angle between
the primary component and lth order component. Instantaneous natural frequency ω0 can
be decomposed into a sum of high-order intrinsic components. The congruent natural
frequency ωc is given by

ωc(t) =
N

∑
l=1

ω0l(t) cos φωl(t) (11)

where ω0l is the envelope of the lth order instantaneous natural frequency, and φωl is the
phase angle between the primary component and lth order component.

The Hilbert transform method and the relevant Matlab programs [46] are used in
this paper. Free-decay response of the Helmholtz–Duffing oscillator and its envelopes are
shown in Figure 1a, where the positive and negative congruent envelopes are obtained by
Equation (10). The instantaneous natural frequency and their envelopes are obtained by
Equations (8) and (11), as shown in Figure 1b. Figure 1c shows the first fourth components
of the free vibration obtained by using HVD. In order to remove the end effect of the
Hilbert transform, only the analyzed results between 0.2 to 1.7 s are chosen. The restoring
force curves are shown in Figure 1d, where the analytical solution is given by Equation (3),
and the numerical results are obtained by Equation (6). The backbone curves of the first
harmonic term A1 and bias term A0 are plotted in Figure 1e–f, respectively, where the
analytical solutions are given by Equation (5), and the numerical results are obtained
by using HVD. The logarithmic form of the envelope, instantaneous damping factor
obtained by Equation (9), and damping force curve obtained by Equation (7) are shown
in Figure 1g–i, respectively. For a weakly nonlinear system, the analytical solution of the
logarithmic envelope is approximately given by −ct/2m + ln x(0), as shown in Figure 1g.
The damping factor is h = c/2m = 21/s and the analytical damping force is fc(x) = 2h

.
x,

which are plotted in Figure 1h,i, respectively.

3.2. Zero-Crossing

The zero-crossing (ZC) method is a simple method for estimating the instantaneous
frequency and amplitude of free decay signals [27,36]. Londoño et al. [27] combined the
zero-crossing and peak picking methods to obtain the backbone curves of symmetric
nonlinear systems. Ondra et al. [36] extended the zero-crossing method to obtain the
backbone and restoring force curves of asymmetric systems. This method is explained in
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detail in Figure 2. The ith zero-crossing point ti, the pth positive peak points Ap, and the
nth negative peak points An are first obtained using the zero and peak picking procedure.
The instantaneous frequency at the zero-crossing point ti is

ω(ti) =
2π

ti+1 − ti−1
(12)

The positive and negative envelopes at the zero-crossing points are then obtained by
linear interpolating the positive and negative peak points, respectively. The corresponding
instantaneous frequencies for positive and negative envelope points are ωp = π/Tp and
ωn = π/Tn, respectively.
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Figure 1. Hilbert transform. (a) Time domain response and envelopes, (b) frequencies, (c) HVD,
(d) restoring force curve, (e) backbone curve of first harmonic term A1, (f) backbone curve of bias
term A0, (g) logarithmic form of the envelope, (h) damping factor, (i) damping force curve. In (a,b),
thin solid lines, time domain response, and instantaneous natural frequency; dashed lines, congruent
envelope, and congruent modal frequency. In (d–i), solid lines, analytical solutions; lines with circles,
numerical results.
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The free decay response is given in Figure 3a again. Then, the zero-crossing points
and positive and negative peak points can be obtained and plotted in Figure 3a. The instan-
taneous frequencies for the positive and negative envelopes are shown in Figure 3b. Substi-
tuting the positive and negative envelopes and instantaneous frequencies in Equation (6)
yields the restoring force curves, as shown in Figure 3c. It should be noticed that the time
history response of asymmetric systems normally contains multiple harmonic components.
Unlike the HVD, the backbone curves in the zero-crossing method are calculated using
Equations (12) and (13), where the high order harmonic terms induce estimation errors,
especially for the bias term. Before calculating the instantaneous frequency and amplitudes,
the high-order harmonic terms should be filtered to make sure that the response can be
approximately written as x(t) ≈ A0 + A1 cos(ωt + θ). For the numerical example in this
section, the free decay signal is passed through a low-pass filter with a cut-off frequency
of 50 Hz. The backbone curves are shown in Figure 3d,e. It can be seen that the backbone
curves obtained from the filtered response are closer to the analytical backbone curves.
The logarithmic form of the envelope, instantaneous damping factor, and damping force
curve are shown in Figure 3f–h. Numerical results for the damping factor and damping
force are obtained by Equations (7) and (9), where the envelope of velocity is obtained by
the peak picking method. To unify several methods, the data used in the restoring force
curve, logarithmic envelope, and damping curve are also approximately taken from 0.2 to
1.7 s. The data used in backbone curves are relatively short because part of the response in
the large amplitude regime is filtered out. The analytical solutions shown in Figure 3 are
obtained using the similar approaches mentioned in Section 3.1.

3.3. Direct Quadrature

The direct quadrature (DQ) method was proposed by Huang et al. [38]. Firstly, because
the Hilbert transform of a product of functions is limited by the Bedrosian theorem [47], a
normalization scheme was proposed to separate amplitude modulation (AM) and frequency
modulation (FM) of the signal. Secondly, according to the Nuttall theorem [48], it is not
applicable for all signals to obtain their quadrature forms using the Hilbert transform.
Therefore, the direct quadrature method is used. The direct quadrature method has been
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applied to the symmetric signal. However, when it is applied to the asymmetric signal,
some modifications are required.
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The first step is to find the positive and negative peak points and use the cubic
spline function to obtain the positive and negative envelopes Ap and An. Then the
normalization process is carried out. The positive time-domain response is normal-
ized by yp(tp) = xp(tp)/Ap and the negative time-domain response is normalized by
yn(tn) = xn(tn)/An, where xp(tp) and xn(tn) are the positive and negative time-domain
responses, yp(tp) and yn(tn) are the normalized positive and negative responses. Repeat
the above steps until the normalized results are all in [−1,1]. The FM part of the signal is
F(t) = yl(t) =

[
yl

p(tp), yl
n(tn)

]
, where l is the number of iterations.



Sensors 2022, 22, 5854 8 of 18

After normalization, the AM part is given by

Ãp(tp) =
xp(tp)

yl
p(tp)

, Ãn(tn) =
xn(tn)

yl
n(tn)

(14)

Then using the cubic spline function, the positive envelope Ãp(t) and negative enve-
lope Ãn(t) in the entire time domain are obtained. The amplitudes of the first harmonic
and the bias terms are given by

A1 =
Ãp(t)− Ãn(t)

2
, A0 =

Ãp(t) + Ãn(t)
2

(15)

The time domain response and its positive and negative envelopes are shown in
Figure 4a. The FM part can be regarded as a sinusoid, so the instantaneous frequency is

ω(t) =
d
dt
[arccos(F(t))] (16)

The FM part whose absolute values are less than 0.9 is used to calculate the instanta-
neous frequency using Equation (16), and the rest of the instantaneous frequency points are
interpolated using a cubic spline. The result is shown in Figure 4b. The restoring force curve
obtained by Equation (6) is shown in Figure 4c. Similar to the zero-crossing method, the
amplitudes of the first harmonic and the bias terms are also sensitive to the high-frequency
components of the free decay response. Before calculating the backbone curves, the free
decay response is passed through a low-pass filter with a cut-off frequency of 50 Hz. The
estimated backbone curves of A1 and A0 are shown in Figure 4d,e, where amplitudes are
obtained by Equation (15), and the frequency is the filtered instantaneous frequency. The
logarithmic form of the envelope, instantaneous damping factor, and damping force curve
are shown in Figure 4f–h. The analytical solutions are also shown in Figure 4.

3.4. Wavelet Transform

Wavelet transform (WT) is a time-frequency analysis tool that can automatically adjust
the size of the analysis window with the change of frequency. With the development
in recent years, wavelet analysis has been widely applied in nonlinear system identifica-
tion [39,49–51].

For the free decay response of the Helmholtz–Duffing oscillator shown in Figure 5a,
the frequency spectrum can be obtained from the Matlab cwt function using the Morlet
wavelet and is shown in Figure 5b. From this figure, the envelope of the signal is given by

A(b) =
2|Wx(a(b), b)|√

a(b)
(17)

where a is the scale parameter, b is the translation parameter, |Wx(a(b), b)| = maxa|Wx(a, b)|
is the maximum value of wavelet coefficients at each time point. The instantaneous
frequency is obtained from the frequency points corresponding to the maximum value of
the wavelet coefficients at each time point. In order to obtain the smooth envelope and
instantaneous frequency, the results are passed through a low-pass filter with a cut-off
frequency of 20 Hz. The results are shown in Figure 5a,b. The backbone curve of A1
constructed by the instantaneous amplitude and frequency is shown in Figure 5c. The
bias term is obtained by the wavelet decomposition using the Matlab function wavedec,
as shown in Figure 5d. The logarithmic form of the envelope, instantaneous damping
factor, and damping force curve are shown in Figure 5e–g. It can be seen that the numerical
solutions can be reasonably compared well with the analytical solutions.
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Figure 4. Direct quadrature. (a) Time domain response and envelopes, (b) frequencies, (c) restoring
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circles, numerical results.
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Figure 5. Wavelet transform. (a) Time-domain response and envelope, (b) spectrogram, (c) backbone
curve of first harmonic term A1, (d) backbone curve of bias term A0, (e) logarithmic form of the
envelope, (f) damping factor, (g) damping force curve. Thin solid line, time domain response; dashed
line, envelope; dotted line, instantaneous frequency; thick solid lines, analytical solutions; lines with
circles, numerical results.

4. Parameter Estimation and Discussion

In this section, the stiffness and damping parameters of the asymmetric systems are
estimated from the characteristic curves of the Helmholtz–Duffing oscillator obtained
in Section 3. The stiffness parameters are obtained by polynomial fitting the restoring
force curve shown in Equation (3). The Matlab function polyfit computes the least square
polynomial. This method is called the restoring force curve method (RFCM). Although
the backbone curve of the first harmonic term obtained by using Equation (4) deviates
from the numerical result obtained by using HVD in the bending regime [42], which is the
curved part, we can also estimate the stiffness parameters from this curve. Matlab function
fminsearch is used here to find the optimal stiffness parameters. This identification method
is called the backbone curve method (BCM). The estimated stiffness parameters are shown
in Table 1.

The viscous damping can be estimated by linear fitting the damping force curve, called
the damping force curve method (DFCM). For a weakly nonlinear system, the envelope is
approximately given by ln A(t) = −ct/2m + ln A0. Therefore, the natural logarithm of the
envelope can also be used to estimate the damping [28], called the logarithmic envelope
method (LEM). Matlab function polyfit is utilized for computing the least square linear
coefficient. The estimated damping coefficients are shown in Table 2.
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Table 1. Estimated results and errors of the stiffness parameters.

k1 (N/m) k2 (N/m2) k3 (N/m3)

RFCM BCM RFCM BCM RFCM BCM

HT 3940.7
(1.48%)

4082.0
(2.05%)

−1.002 × 107

(0.20%)
−1.007 × 107

(0.73%)
9.998 × 109

(0.02%)
1.023 × 1010

(2.31%)

ZC 4051.5
(1.29%)

4050.6
(1.27%)

−8.381 × 106

(16.19%)
−9.873 × 106

(1.27%)
7.213 × 1010

(27.87%)
1.003 × 1010

(0.31%)

DQ 4052.5
(1.31%)

4066.5
(1.66%)

−8.273 × 106

(17.27%)
−9.923 × 106

(0.77%)
7.262 × 109

(27.38%)
1.008 × 1010

(0.76%)

WT 3989.1
(0.27%)

−9.977 × 106

(0.23%)
1.043 × 1010

(4.28%)
True
value 4000 −107 1010

Table 2. Estimated results and errors of the damping coefficient.

c (Ns/m) LEM DFCM

HT 0.381 (4.80%) 0.402 (0.37%)
ZC 0.377 (5.76%) 0.406 (1.58%)
DQ 0.381 (4.82%) 0.408 (2.02%)
WT 0.370 (7.60%) 0.405 (1.30%)

True value 0.4

The estimated stiffness parameters are obtained by using the four methods. The
Hilbert transform and Hilbert vibration decomposition combined with the low pass filter
can give accurate estimation results. This method can not only decompose the signal and
obtain the backbone curve of each harmonic term, but also combine harmonic terms to
construct the restoring force. However, the Hilbert transform method has an end effect.
The data at the beginning and end need to be removed. For zero-crossing with the peak
picking method, it is straightforward to implement. Even for the asymmetric signal, this
method can analyze the positive and negative time domain separately and construct
the corresponding restoring force. However, when this method is applied to the signal
contaminated with noise, the zero-crossing points and peak points are difficult to obtain
accurately. The signal should be properly filtered to solve this issue. Also, there are only
fewer points to extract for the short-time signal. In this case, the interpolation method
can be used in the whole time domain to obtain more points. For the direct quadrature
method, part of instantaneous frequency points are interpolated using a cubic spline, so
the obtained instantaneous frequency is not accurate enough, especially for the signal with
a low sampling rate or a large amount of normalized data is over 0.9. For the wavelet
transform, the wavelet function needs to be selected carefully and appropriately.

The nonlinear stiffness parameters estimated by the restoring force curve using the
zero-crossing and direct quadrature methods are not accurate. The estimated results of
the backbone curve method are all well. The backbone curve method estimates the entire
backbone curve, so the estimated stiffness parameters are comprehensively affected by the
deviation of each amplitude regime.

For the damping coefficient, the four methods seem to achieve similar results. The
estimated solutions of the logarithmic envelope method are all less than the actual value
because it uses the analytical solution of the linear system. But this method is simple and
easy to estimate for weakly damped systems. The error of the damping force curve method
is small. The derivatives of the envelope, instantaneous frequency, and displacement
should be obtained for the damping force curve method, so the result is disturbed by noise
easily. A proper filter can be used to deal with the influence of the noise, and the Bayesian
approach is a good way to measure the uncertainty of the identification results [29].
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5. Experiment
5.1. Experimental Description

The test rig is shown in Figure 6, where Figure 6a is the photo of the test rig, and
Figure 6b,c are the elevation and plan views of the nonlinear vibration absorber. The
vibration absorber consists of a 4.86 g mass attached to a thin circle brass plate of 0.15 mm
thickness. Figure 6c also shows the contour plot for the measured geometric imperfections
obtained by moving the laser sensor through the translation surface of the plate. It can be
seen that the plate is not flat, and has a certain initial deflection, as shown in Figure 6b.
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Figure 6. Test rig and schematic model of the vibration absorber. (a) Photo of the test rig, (b) elevation
view, (c) Plan view and contour plot for the measured geometric imperfections. Relative deviations
are in millimeters.

The excitation signal was generated by the LDS V406 shaker, then measured by the
B&K 4517 accelerometer and Microtrak™ 3 LTS-050-10 laser sensor, respectively. The
sampling frequency was 2000 Hz. Because the linear natural frequency of the vibration
absorber was much higher than the natural frequency of the shaker, the absorber and the
shaker can be regarded as a single-degree-of-freedom system [28]. The excitation signal
supplied to the shaker was from Agilent 33512B signal generator and passed through an
LDS PA500L power amplifier. The measured signals were sampled by a NI PXIe-4492
acquisition system after passing through a B&K 2693 conditioner. The equation of motion of
the plate with geometric imperfections can be simplified as a Helmholtz–Duffing oscillator,
as discussed in [4,28]. Therefore, the mathematical model of the free-decay response of the
nonlinear vibration absorber is given by

mEQ
..
x + c

.
x + k1x + k2x2 + k3x3 = 0 (18)

where mEQ = (ms + mv)(ma + m)/(ms + mv + ma + m) = 5.44 g is the equivalent mass
of the system. ms, mv, ma, and m are the mass of armature, support structure of the
absorber, accelerometer, and absorber mass, respectively. x is the vibration response of the
experimental system. Damping c, linear stiffness k1, quadratic and cubic nonlinear stiffness
k2 and k3 are the parameters to be estimated.
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5.2. Estimation and Discussion

Before the free decay experiment, several slow frequency sweep experiments from low
to high frequency were carried out to determine the system’s jump-down frequency, which
was about 201 Hz. Therefore, the excitation signal was switched off at 200 Hz. The circular
plate exhibited large stiffness nonlinearity, and the vibration modes of the system were
well-separated. In order to exclude the influence of the higher harmonics and high order
modes, the displacement of the mass measured by the laser sensor was passed through
a low pass filter with a cut-off frequency of 270 Hz, as shown in Figure 7a. The specific
experimental instruments and testing procedures were described in [42]. The data used in
identification is approximately taken from 0.205 to 0.37 s.

Figure 7b shows the restoring force curve. Because the response decayed fast, cubic
spline interpolation was used to construct envelope and frequency at each time point for
the zero-crossing method. The first several large-amplitude points were removed due to
the deviation. The restoring force was estimated by using Equation (3). The estimated
stiffness parameters are shown in Table 3. The estimated results of the zero-crossing and
direct quadrature methods are close to each other.

Table 3. Estimated stiffness parameters of the experimental system.

k1 (N/m) k2 (N/m2) k3 (N/m3)

RFCM BCM RFCM BCM RFCM BCM

HT 4837.7 4272.9 −2.252 × 107 −2.155 × 107 5.705 × 1010 6.346 × 1010

ZC 5452.3 4265.7 −2.461 × 107 −2.109 × 107 4.822 × 1010 6.302 × 1010

DQ 5597.5 4949.9 −2.193 × 107 −2.776 × 107 5.123 × 1010 8.614 × 1010

WT 4137.9 −2.152 × 107 7.096 × 1010

Figure 7c shows the backbone curve. The backbone curve obtained using the Hilbert
transform is compared well with the backbone curve obtained using the zero-crossing
method. The backbone curve obtained by using the wavelet transform shows a slight
deviation from the above two methods, while the backbone curve obtained by using the
direct quadrature method shows the most significant deviation. The estimated stiffness
parameters are shown in Table 3. It can be seen that, except for the direct quadrature
method, the estimated results of other methods are compared well. The identification
results of the Hilbert transform can be used to reasonably reconstruct the experimental
system’s restoring force and backbone curves. The stiffness parameters are also estimated
well by the zero crossing method and wavelet transform using the backbone curve.

The natural logarithm of the envelope and the damping force curve are shown in
Figure 7d,e. The results of the four methods are similar, as shown in Table 4. It can be seen
that the damping coefficient estimated by the logarithmic envelope method is less than
that estimated by the damping force curve method. The logarithmic envelope method uses
the analytical solution of the envelope of the linear system. However, the damping of the
experimental system is not strictly linear. It can be noticed from the logarithmic envelope
and damping force curve that the damping factor is amplitude dependant and decreases
with time.

Table 4. Estimated damping coefficient of the experimental system.

c (Ns/m) LEM DFCM

HT 0.234 0.320
ZC 0.232 0.317
DQ 0.232 0.325
WT 0.230 0.311
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To determine whether the identification procedure is successful, a reconstructed free
decay response is compared with the measured response as shown in Figure 7a. The
approximate solution of Equation (18) is given by

x(t) = A0(t) + A1(t) cos[φ(t)] (19)
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where A0(t) is the time-dependent amplitude (or envelope) of bias term, A1(t) is the
time-dependent amplitude of the first harmonic term, and φ(t) is the time-dependent
phase. The time-dependent phase is obtained by integrating the time-dependent damped
natural frequency

φ(t) =
∫ t

0
ω(t)dt (20)

The time-dependent damped natural frequency, namely the backbone curve, is given
by Equation (4). The parameters obtained by the Hilbert transform method using the
backbone curve and the measured envelopes are used in reconstructing the free decay
response. The results are shown in Figure 8a.
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Figure 8. Experimental and reconstructed time domain response for (a) large initial displace-
ment, and (b) small initial displacement. Solid lines, measured response; dashed-dotted lines,
reconstructed response.

For the small amplitude regime, using the multiple-scales method [11], the time
domain response is approximately given by

x(t) = A0(t) + A1e−ζωnt cos
[

ωnt +
3

16ζ

k3

k1
A2

1(1− e−2ζωnt)

]
(21)

where A0(t) is the measured envelope of bias term, A1 is the initial amplitude of the first
harmonic term. ωn =

√
k1/mEQ and ζ = c/2

√
mEQk1 are the undamped natural frequency

and the damping ratio of the underlying linear system respectively. Damping obtained
by the logarithmic envelope method is used in reconstructing the time response. The
results are shown in Figure 8b. It can be seen that the reconstructed responses obtained
by the two reconstruction methods are compared well with the measured responses. The
reconstruction method is described in detail in [28], which is applied to identify a Duffing
type nonlinear vibration absorber.

6. Conclusions

This paper compared four identification methods for the stiffness and damping param-
eters of asymmetric systems with square and cubic nonlinearities. We verified the feasibility
and accuracy of these methods by a Helmholtz–Duffing numerical example and a non-
linear vibration absorber with geometric imperfections. Hilbert vibration decomposition
decomposes the asymmetric signal to obtain the backbone curve of each harmonic term.
The asymmetric restoring force curve is constructed by the positive and negative congruent
envelopes and frequencies obtained by using a weighted summing of the decomposed
harmonic components. The obtained curves compare well with the analytical solution,
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but the disadvantage of the Hilbert transform is the end effect. Zero-crossing with the
peak picking method extracts positive and negative peak points and obtains instantaneous
frequency more simply. The bias term and first harmonic term are obtained by using the
sum and difference of the positive and negative envelopes. The direct quadrature method
also analyzes the positive and negative signal parts separately and uses the same method
as the zero-crossing method to obtain the bias term and the first harmonic term. The two
methods are more sensitive to noise. It is essential for the wavelet transform to select
wavelet function appropriately.

The nonlinear stiffness parameters estimated are not accurate in the numerical exam-
ple when the restoring force curve is obtained using the zero-crossing method and direct
quadrature method. The identification errors for nonlinear stiffness parameters are about
20%. The other methods can estimate the stiffness parameters accurately, and the identifica-
tion errors are less than 5%. For the experimental system, the identification results of the
Hilbert transform can describe the experimental system. The stiffness parameters estimated
by the restoring force curve using the zero-crossing method and the direct quadrature
method are close to each other. The backbone curve obtained by using the direct quadrature
method deviates from those obtained by the other methods.

The logarithmic envelope can be used to estimate damping. The estimated results are
the same, and all are less than the actual values. The other tool is the damping force curve,
which is constructed by the damping factor and envelope of the velocity. The estimated
results are better than those of the logarithmic envelope. However, the damping force
curve needs the derivative of the envelope, instantaneous frequency, and displacement,
so it has poor robustness against noise. It can be seen from the logarithmic envelope and
damping force curve that the damping of the experimental system is not strictly linear.

This paper is to identify the parameters of a predetermined system model. Restoring
the force curve method and damping force curve method are nonparametric identification
methods. They produce the best functional representation of the system without a priori
assumption about the system model. However, it is necessary for the backbone curve
method to know the nonlinear system model and the theoretical solution of the backbone
curve in advance. The logarithmic envelope method is suitable for lightly damped systems
and is an approximate estimation method.
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