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Abstract: A fuzzy set extension known as the hesitant fuzzy set (HFS) has increased in popularity
for decision making in recent years, especially when experts have had trouble evaluating several
alternatives by employing a single value for assessment when working in a fuzzy environment.
However, it has a significant problem in its uses, i.e., considerable data loss. The probabilistic hesitant
fuzzy set (PHFS) has been proposed to improve the HFS. It provides probability values to the HFS
and has the ability to retain more information than the HFS. Previously, fuzzy regression models
such as the fuzzy linear regression model (FLRM) and hesitant fuzzy linear regression model were
used for decision making; however, these models do not provide information about the distribution.
To address this issue, we proposed a probabilistic hesitant fuzzy linear regression model (PHFLRM)
that incorporates distribution information to account for multi-criteria decision-making (MCDM)
problems. The PHFLRM observes the input–output (IPOP) variables as probabilistic hesitant fuzzy
elements (PHFEs) and uses a linear programming model (LPM) to estimate the parameters. A case
study is used to illustrate the proposed methodology. Additionally, an MCDM technique called
the technique for order preference by similarity to ideal solution (TOPSIS) is employed to compare
the PHFLRM findings with those obtained using TOPSIS. Lastly, Spearman’s rank correlation test
assesses the statistical significance of two rankings sets.

Keywords: PHFS; FLRM; PHFLRM; peters model; MCDM

1. Introduction

Statistical regression analysis is a valuable tool for determining the functional rela-
tionship between an output variable (the dependent variable) and the input variables (the
independent variables). In statistical regression analysis, the relationship between IPOP
variables is determined using precise data and precise relationships. However, when a phe-
nomenon is imprecise, when there is vague variability rather than stochastic variability, and
when the underlying regression model distributional assumptions are violated or cannot be
tested (e.g., due to small sample size), it is more reasonable to assume a fuzzy relationship
rather than a crisp relationship. Several researchers have modified and extended notions of
statistical regression analysis to overcome these limitations using the fuzzy set theory (FST).
Firstly, Tanaka et al. [1] introduced fuzzy regression analysis employing LPM. Further,
Tanaka [2] introduced fuzzy intervals, Celmin [3], and Diamond [4] introduced fuzzy
least-square models. Tanaka’s model was very sensitive to outliers, and then Peters [5]
generalized Tanaka’s approach [1] where output values no longer fall within or outside the
interval but rather belong to a certain degree of membership. Wang and Tsaur [6] presented
a variable selection approach for a FLRM with crisp input and fuzzy output based on
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two criteria: the minimal total sum of vagueness and the minimal total sum of squares in
estimation. Hong et al. [7] used fuzzy arithmetic operations to evaluate FLRMs based on
Tanaka’s approach [1], where both IPOP data are fuzzy numbers (FNs). The solutions are
derived using a generalized linear algorithm. Sakawa [7] modified FLRM by introducing
two-phase construction of a linear regression model incorporating least-square estimation
and LPM in different phases. Tanaka and Lee [8] used the proposed identification approach
to perform exponential possibility regression analysis, resulting in a smaller region of
possibility distribution that considered all possible sets of IPOP linear systems. To make
LPMs more predictable and reduce computational effort, Modarres et al. [9] developed
three FLRMs: risk seeking, risk neutral, and risk averse. They also developed a mathemati-
cal programming model to estimate FLRM parameters from crisp input and fuzzy output
data. Parvathi et al. [10] introduced intuitionistic FLRM by incorporating an extension
of FST called an intuitionistic fuzzy set into FLRM, where the parameters are symmetric
triangular intuitionistic FNs. The parameters of an intuitionistic FLRM are estimated using
an LPM that minimizes the total fuzziness of intuitionistic FLRM, which is associated with
the width of intuitionistic fuzzy parameters. Sultan et al. [11] developed a fuzzy regression
model employing HFS to solve a decision-making problem, in which IPOP variables are
observed as hesitant fuzzy elements.

Nonlinear programming is used when the constraints or the objective function are
nonlinear. To account for the nonlinear situation, Bárdossy [12]—considering regression
models for FNs and the nonlinear problem—developed a generalized mathematical pro-
gramming model. When the relationship between IPOP variables is intricate and nonlinear,
determining the number of input variables for the model selection and the number of pow-
ers for input variables is challenging. Fuzzy regression analysis has also been studied from
the perspective of the least-square approach, where the variability between the predicted
fuzzy values and the actual fuzzy data is minimized for different distance measurements
between two FNs. The fuzzy least-square method was initially proposed by Celmin [3] and
Diamond [4] simultaneously, who estimated the fuzzy model parameters by minimizing
the sum of squared error of the output variable.

The FST, introduced by Zadeh [13], is an excellent tool for describing ambiguous/vague
information. The FST and their generalizations are powerful tools used in different
fields [14,15]. The FST effectively employs membership functions and fuzzy numbers
to deal with uncertainty in decision-making problems. It also has limitations when dealing
with imprecise and vague data; as a result, the FST has been developed in a number of
different directions, including the type-2 FSs [16], the hesitant FSs [17], probabilistic hes-
itant FSs [18], and the intuitionistic FSs [19] etc. Recently, the study of decision-making
problems with the use of hesitant fuzzy information has become a significant focus of
research, such as that of Liu et al. [20], who introduced a correlation coefficient approach to
determine the strength of association between HFSs, which can be used to evaluate whether
they are negatively or positively associated. Zeng et al. [21] introduced the weighted
dual HFS, along with a few fundamental mathematical operations for weighted dual hesi-
tant fuzzy elements, including union, intersection, multiplication, and complement; and
Yan et al. [22] proposed a mathematical model for monitoring and evaluation bridge safety
based on HFS. The HFS comprises a significant weakness in terms of data loss; to address
this flaw, an extension of HFS called the PHFS has been proposed that enhances the HFS
with probability and is capable of retaining more information than the HFS. Firstly, Zhu
and Xu [18] developed a concept of PHFS, which incorporates distribution information
into the HFS. Afterward, Zhang et al. [23] improved PHFE at first, then developed prop-
erties and aggregation operations for the modified PHFEs. In addition, Gao et al. [24]
introduced a dynamic reference point technique using PHFS for emergency response that
was based on probabilistic hesitant fuzzy information. Li and Wang [25] modified the
QUALIFLEX approach to include probabilistic hesitant fuzzy environments and applied
the suggested method to the selection of green suppliers; Wu et al. [26] developed a novel
consensus-achieving approach for probabilistic hesitant fuzzy group decision making,
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and they implemented the suggested method to evaluate the strategic positions of energy
transmission and distribution networks, and so on.

A single criterion is not enough in real-world decision-making problems, as they are
often poorly structured and highly complex. Multi-Criteria Decision-Making (MCDM)
methods solve complex problems and help to make the right decision. Finding the best
alternative among the multiple alternatives is a challenging task. In decision-making
problems, several techniques are used to assist DMs in ranking the alternatives, such as
the Analytic Hierarchy Process [27], the Best Worth Method [28], EDAS (Evaluation on
Distance from Average Solution) [29], and TOPSIS (a Technique for Order Performance
by Similarity to Ideal Solution) [30]. The TOPSIS method is a well-known technique and
considers the distances to both Positive Ideal Solution (PIS) and Negative Ideal Solution
(NIS) simultaneously, and assigns a preference order based on their relative closeness and
a combination of these distance measures. Recently, many papers have been devoted to
developing new approaches, i.e., a new logarithm methodology of additive weights [31],
FUCOM [32], COMET extensions [33,34], WASPAS method [35], SPOTIS [36,37], RAFSI [38],
and an integrated SWOT–fuzzy PIPRECIA [39]. These methods are valuable and address the
main challenges of MCDA techniques such as rank reversal paradox resistance or handling
uncertainty. Sometimes, authors propose a new operators to support decision making [40–42].

The literature review shows how gradually the area of regression analysis has de-
veloped and how researchers continue to show increasing interest over time. We can see
that most of the researchers’ attention has focused on the FLRM, a simple linear regres-
sion model developed using FST. Still, several extensions of the FST can be employed in
the FLRM for complex problems. The PHFS works in a hesitant environment so that a
researcher not only collects information in a HFS, but also finds its probability values for
each HFE, which are referred to as PHFEs. Motivated by PHFS, a fuzzy regression model
developed by Peters [5] has been extended using probabilistic information in a hesitant
environment called PHFLRM, where IPOP variables are observed as PHFEs. We introduce
the concept of PHFLRM such that the model’s coefficients are STFNs. Consequently, the
PHFLRM incorporates these PHFEs into the fuzzy regression analysis and uses the LPM to
estimate the PHFLRM parameters. Furthermore, alternatives are ranked according to the
residual values of the proposed PHFLRM. The proposed approach is evaluated by compar-
ing the results of PHFLRM to those of TOPSIS, which is the most popular MCDM technique.
Previously, fuzzy regression models such as the FLRM [43] and HFLRM were used for
decision-making; however, these models do not give distribution information. The novelty
of our proposed model PHFLRM [11] is that it incorporates distribution information to
account for multi-criteria decision-making (MCDM) problems.

This study is organized as follows: In Section 2, some basic definitions and terminolo-
gies are discussed. In Section 3, we establish the idea of PHFLRM. Section 4 includes an
algorithm of the proposed approach PHFLRM. Section 5 presents an application example of
the purposed approach, and a comparative study of the PHFLRM with TOSPSIS methods
is discussed. This study concludes in Section 6.

2. Preliminaries

This section discusses basic definitions and terminologies to help readers understand
the proposed approach. It is generally tough to reach a final conclusion, because people are
usually hesitant when making decisions. Torra [17] developed the following definition of
HFS in consideration of this problem:

Definition 1 ([17]). For a fixed set Z, a HFS on Z is a function that, when applied to Z, returns a
subset of values that fall within the interval [0, 1]. Mathematically, it is defined as:

E = {〈z, hE(z)〉, z ∈ Z}

where hE(z) denotes the possible hesitant membership degrees of z ∈ Z to set E, and it is called the
hesitant fuzzy element.



Sensors 2022, 22, 5736 4 of 17

The PHFS proposed by Zhu and Xu [18] is an enhanced form of HFS that not only
addresses the situation in which decision makers are uncertain as to which of several
assessment values best represents their perspective, but also assigns varying probabilities
to the assessed values. Mathematically, it is defined as:

Definition 2 ([18]). Let Z be a reference set, then a PHFS on Z is defined as:

Ep = {z, hz(γl |pl), z ∈ Z},

where hz(γl |pl) denotes the probabilistic degrees of memberships of the element z ∈ Z to set Ep.
This is referred to as PHFEs, which can take several membership degrees γl = (l = 1, 2, . . . , #hz(p))

with the probabilities pl = l = 1, 2, . . . , #hz(p)) such that,
#hz(p)

∑ pl = 1
l=1

. For sake of convenience, we

have assumed hz(γl |pl) as hz(p) i.e., hz(p) = hz(γl |pl).

Sometimes, the probabilistic information for a PHFE is incomplete; in this situation,
an estimate for the incomplete probabilistic information is used by averaging the avail-
able data.

Definition 3 ([23]). If a PHFE hz(p) is given by
#hz(p)

∑
l=1

pl < 1, then probabilities for the hz(p)

are obtained as pl =
pl

|
#hz(p)

∑
l=1

pl |
, l = 1, 2, ..., #hz(p).

Some basic operations of PHFEs are defined as follows.

Definition 4. Let h1
z(p), h2

z(p) and hz(p) be three PHFEs; then, for any λ > 0,

1. h1
z(p)⊕ h2

z(p) = ∪γ1l∈h1
z(p),γ2k∈h2z(p){[γ1l

+ γ2k
− γ1l

γ2k
](p1l p2k /

#h1
z(p)
∑

l=1
p1l .

#h2
z(p)
∑

l=1
p2k )};

2. hλ
z (p) = ∪γl∈hz(p)

{
γλ

l (pl)
}

;

3. λh = ∪γl∈hz(p)

{
[1− (1− γl)

λ](pl)
}

.

Definition 5 ([23]). Let hz(p) be a PHFE, the score function of hz(p) is defined as:

Sr(hz(p)) = (
#hz(p)

∑
l=1

γl .pl)/
#hz(p)

∑
l=1

pl

Let h1
z(p) and h2

z(p) be two PHFEs, then

1. if Sr(h1
z(p)) > Sr(h2

z(p)), then h2
z(p) < h1

z(p);

2. if Sr(h1
z(p) = Sr(h2

z(p)), then h1
z(p) = h2

z(p).

Definition 6. Suppose h1
z(p) and h2

z(p) are two PHFEs. Assuming #h1(p) = #h2(p), the
distance between h1

z(p) and h2
z(p) is defined as

D(h1
z(p), h2

z(p)) =

√√√√#h1
z(p)=#h2

z(p)|

∑
l=1

((γ1l ](pl)− γ2l (pl))2

The distance measure D(h1
z(p), h2

z(p)) satisfies the following properties:

1. D(h1
z(p), h2

z(p)) < 1;

2. D(h1
z(p), h2

z(p)) = 0 if and only if h1
z(p) = h2

z(p).
3. D(h1

z(p), h2
z(p)) = D(h2

z(p), h1
z(p))
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3. Probabilistic Hesitant Fuzzy Linear Regression Model

In this section, we discuss our purposed methodology about PHFLRM from a statistical
perspective using hesitant fuzzy information.

Initially, the FLRM was introduced by Tanaka et al. [1]. It is defined as:

Ŷi = Ã0 + Ã1Xi1 + Ã2Xi2 + Ã3Xi3 + · · ·+ ÃN XiN ,

where the parameters Ãj = (αj, cj) are symmetrical TFNs, αj is the centre, and cj is the
spread of the symmetrical TFNs. The FLRM minimizes the spread of the symmetrical TFNs
in the following way [44]:

min
N

∑
j=0

(
cj

M

∑
i=0

∣∣xij
∣∣)

with following constraints

yi ≤
N
∑

j=0
αjxij +

∣∣F−1
m
∣∣ N

∑
j=0

cj
∣∣xij
∣∣,

yi ≥
N
∑

j=0
αjxij −

∣∣F−1
m
∣∣ N

∑
j=0

cj
∣∣xij
∣∣,

xi0 = 1, cj ≥ 0
where F is the membership function of a standardized fuzzy parameter [43].

Peters [5] modified Tanak’s model [1], introducing a new variable λ in the following way:

max λ =
1
M

M

∑
i=1

λi

with the constraints

−d0 ≤
(
1− λ

)
p0 −

M
∑

i=0

N
∑

j=0
cj
∣∣xij
∣∣,

−yi ≤ (1− λi)pi −
N
∑

j=0
αjxij +

N
∑

j=0
cj
∣∣xij
∣∣,

yi ≤ (1− λi)pi +
N
∑

j=0
αjxij +

N
∑

j=0
cj
∣∣xij
∣∣,

xi0 = 1, cj ≥ 0,
∣∣F−1

m (H)
∣∣ = 1,

where λ(0 ≤ λi ≤ 1) represents the degree of membership that belongs to a set of
good solutions.

The parameters d0, p0 , and pi are selected to determine the width of the estimated
interval. If a wide interval (a high p0 and a small pi) is deemed to minimize the spread,
the requirement is regarded as lenient, while a narrow interval (a small p0 and a high pi)
is taken as a strict condition. The value of d0 , a desired value of the objective function, is
taken as 0 [5].

Motivated by Peters [5], we introduced the PHFLRM for solving decision-making
problems. The output variable Yi = {yk

i (pyk
i
)|1 < i < M, 1 < k < P} and the input

variables Xj = {xk
ij(pxk

ij
)|1 < i < M, 0 < j < N, 1 < k < P} are PHFEs. It is defined as:

Yi = γ̃0 � X0 ⊕ γ̃1 � X1 ⊕ γ̃2 � X2 ⊕ γ̃3 � X3 ⊕ · · · ⊕ γ̃N � XN

where the parameters γ̃j =
(

αk
j , ck

j

)
, 0 < j < N are symmetrical TFNs and k denotes the

number of values assigned by the P DMs to the IPOP variables. The PHFLRM parameters
are estimated using the following LPM.

max λk =
1
M

M

∑ λk
i

i=1



Sensors 2022, 22, 5736 6 of 17

with the constraints

−d0 ≤
(

1− λk
)

p0 +
M
∑

i=1

N
∑

j=0
ck

j

∣∣∣∣xk
ij(pxk

ij
)

∣∣∣∣,
yk

i (pyk
i
) ≤

(
1− λk

i

)
pi +

N
∑

j=0
αk

j xk
ij(pxk

ij
) +

N
∑

j=0
ck

j

∣∣∣∣xk
ij(pxk

ij
)

∣∣∣∣,
−yk

i (pyk
i
) ≤

(
1− λk

i

)
pi −

N
∑

j=0
αk

j xk
ij(pxk

ij
) +

N
∑

j=0
ck

j

∣∣∣∣xk
ij(pxk

ij
)

∣∣∣∣,
λk

i ≤ 1, xk
i0(pxk

i0
) = 1, ck

j ≥ 0.

4. Decision-Making Algorithms

In this section, we will describe the algorithms that are used to solve the PHFLRM and
the TOPSIS method, respectively, in detail.

4.1. Algorithm for PHFLRM

Assume A = {A1, A2, . . . , AM} is a set of alternatives and D = {dl , 1 < l < P} is a set
of DMs that provide their evaluations in the form of PHFEs about alternatives Ai under
some input variables Xj (j = 0, 1, 2, . . . , N) and output variable Yi (i = 1, 2, . . . , M). Let
H1 = [Xij]M×N be an input variable decision matrix, H2 = [Yi]M×1 be an output vari-
able decision matrix, where Xij = {xk

ij(pxk
ij
), k = 1, 2, . . . , #(Xij)} and Yi = {yk

i (pyk
i
),

k = 1, 2, . . . , #(Yi)} are PHFEs. Figure 1 shows the flowchart of the proposed algorithm,
and below are the detailed steps of this algorithm.

Step 1. Let H = [Zij]M×(N+1) be a connected IPOP variable decision matrix provided by
the DMs, where Zij = {zk

ij(pzk
ij
), k = 1, 2, . . . , #(Zij)} are PHFEs.

Step 2. For two finite PHFEs h1 and h2, there are two opposite principles for normalization.
The first one is α− normalization, in which we remove some elements of h1 and h2
which have more elements than the other ones. The second one is β− normalization,
in which we add some elements to h1 and h2 , which have fewer elements than
the other one. In this study, we use the principle of β−normalization to make all
PHFEs equal in the matrix H . Let H̀ = [Z̀ij]M×(N+1) be the normalized matrix,
where Z̀ij = {z̀k

ij(pz̄k), k = 1, 2, . . . , S} are PHFEs.

Step 3. Using Definition 3, probabilistic information is completed for the PHFES in the
decision matrix H̀ . Let H̄ = [Z̄ij]M×(N+1) be a decision matrix after completing
probabilistic information in the matrix H̀, where Z̄ij = {z̄k

ij(pz̄k), k = 1, 2, . . . , P}
are PHFEs.

Step 4. Again, normalize the matrix H̄ by using the following equation

Ẑij =
z̄k

ij pz̄k
ij
−min(Z̄ij)

max(Z̄ij)−min(Z̄ij)

Let Ĥ = [Ẑij]M×(N+1) be a normalized decision matrix where Ẑij = {ẑk
ij pẑk

ij
,

k = 1, 2, . . . , P} are PHFEs.
Step 5. By using the normalized decision matrix Ĥ, the PHFLRM is obtained. We further

estimate the parameters of PHFLRM employing LPM.
Step 6. Rank the alternatives using residual values obtained from the score values of

Yi(i = 1, 2, . . . , M) and Y∗i (i = 1, 2, . . . , M) i.e., ei = Sc(Yi)− Sc(Y∗i ), where Y∗i are
predicted values which are calculated by using Definitions 3 and 4.

Step 7. Finally, the alternatives are ranked according to the values of ei(i = 1, 2, . . . , M).
The alternative with the least residual is identified as the best choice.
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STEP 1.

PHFEs decision

matrix provided by
DMs

STEP 2.

Normalization to
make all PHFEs

equal


STEP 3.

Completing
probabilistic
information

STEP 4.

The second

normalization

 

STEP 5.

The PHFLRM is

obtained using LPM

 

STEP 6.

Rank the alternatives
using residual values


 

STEP 7.

The final ranking 


(the best option is the
least residual)

Figure 1. Flowchart of the proposed algorithm for PHFLRM.

The HFS, an extension of FST, has attracted the attention of many researchers in a
short period, as hesitant situations are very common in real-world problems. Numerous
extensions are introduced to address the uncertainty caused by hesitation; PHFS is one of
them. The PHFS illustrates not only decision-makers’ hesitancy when they are undecided
about something, but also the hesitant distribution of information. In the PHFLRM (3)
IPOP variables are observed as PHFEs instead HFEs, which is a basic form of PHFS.

4.2. The TOPSIS Algorithm

A MCDM methodology, TOPSIS, was developed by Hwang and Yoon [30], which
provides the shortest distance from the positive ideal solution (PIS) and the longest from
the negative ideal solution (NIS) for all possible alternatives. The mathematical formulation
of the TOPSIS method when the criteria values are PHFEs is as follows:

Step 1. Take the decision matrices H, H̀ and H̄ same as mentioned in Step 1, 2, and 3
of Section 4.1.

Step 2. Normalize the decision matrix H̄ with the help of the following formula.

Ẑij =


z1

11 p1
z1
11

M
∑

i=1

(
z1

i1 p1
z1
11

)2 ,
z2

11 p2
z2
12

M
∑

i=1

(
z2

i2 p2
z2
i2

)2 , . . . ,
zP

1(N+1)pP
zP
1(N+1)

M
∑

i=1

(
zP

i(N+1)pP
zP
i(N+1)

)2


Let Ĥ = [Ẑij]M×(N+1) be the normalized decision matrix, where Ẑij are PHFEs.

Step 3. The weighted normalized decision matrix is calculated by multiplaying the nor-
malized decision matrix with its associated weights, i.e., Vij = Ẑij ×Wj, where Vij
is a PHFE.

Step 4. Determine the positive ideal solution A+ and negative ideal solution A− as

A+ = {(max
i

Vij|j ∈ Jb), (min
i

Vij|j ∈ Jc|i = 1, 2, . . . , N)}

= {A+
1 , A+

2 , . . . , A+
J , . . . , A(N+1)}

A− = {(min
i

Vij|j ∈ Jb), (max
i

Vij|j ∈ Jc|i = 1, 2, . . . , N)}

= {A−1 , A−2 , . . . , A−J , . . . , A−
(N+1)−

}

where Jb and Jc represent the set of benefit and cost criteria, respectively.
Step 5. Calculate the Euclidean distances of D+

i and D−i of each alternative Ai from
the positive ideal solution A+ and negative ideal solution A−, respectively, by
using Definition 6.

Step 6. Calculate the relative closeness Pi of each alternative to the ideal solution as

Pi =
D−i

D−i + D+
i

, i = 1, 2, . . . , M.

Step 7. The alternatives Ai(i = 1, 2, . . . , M) are ranked according to relative closeness
values Pi in the descending order.

5. Application Example

Wheat is the most important rabi crop in Pakistan, and it is also the country’s staple
diet. Wheat production is one of the most pressing concerns confronting the agricultural
industry today, and it is expected to continue to grow. Various factors such as farm size, seed
quality, fertilizer price, irrigation area, and rain amount contribute to the yield of wheat. In
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this example, a simultaneous analysis including multiple variables is performed for efficient
decision making. We consider rain amount (X1), farm size (X2), and irrigation area (X3) in
order to determine their effect on wheat yield (Y). Twelve districts Ai (i = 1, 2, . . . , 12) of
Punjab (Pakistan) are selected in the form of alternatives. These alternatives are evaluated
using Yi (i = 1, 2, . . . , 12) and Xj + 1(j = 0, 1, 2) as input and output variables, respectively.
The IPOP variables have been evaluated by three agriculture department experts. The steps
necessary to resolve this problem are listed below.

Step 1. Table 1 shows the connected IPOP variable decision matrix provided by the
DMs employing PHFEs.To make all PHFES equal using beta−normalization
and to make the sum of all probabilities equal to one for all PHFES in the
decision matrix Hand H̀, respectively, and to obtain matrix H̄, as shown in
Table 2.

Step 2 & 3. We obtain the matrix H̄, which can be shown in Table 2, by making all PHFES
equal using beta−normalization and making the sum of all probabilities equal
to one for all PHFES in the decision matrix H and H̀, respectively.

Step 4 & 5. We will estimate the parameters from the normalized decision matrix Ĥ using
LP after normalizing the matrix H̄, as follows:

For k = 1

Maxλ
1
=

M
∑ λ1

i=1

M
Subject to the constraints(

λ1
1 + λ1

2 + . . . + λ1
12

)
+

12
1000

(12c1
0 + 5.0417c1

1 + 0.3597c1
2 + 0.0534c1

3 ≤ 12

and

λ1
1 − (α1

0 + 0.4398α1
1 + 0.0121α1

2 + 0.0073α1
3)− (c1

0 + 0.4398c1
1 + 0.0121c1

2 + 0.0073c1
3) ≤ 0.2416

λ1
2 − (α1

0 + 0.3254α1
1 + 0.0277α1

2 + 0.0040α1
3)− (c1

0 + 0.3254c1
1 + 0.0277c1

2 + 0.0040c1
3) ≤ 0.1681

λ1
3 − (α1

0 + 0.5052α1
1 + 0.0173α1

2 + 0.0028α1
3)− (c1

0 + 0.5052c1
1 + 0.0173c1

2 + 0.0028c1
3) ≤ 0.3053

λ1
4 − (α1

0 + 0.4251α1
1 + 0.0290α1

2 + 0.0026α1
3)− (c1

0 + 0.4251c1
1 + 0.0290c1

2 + 0.0026c1
3) ≤ 0.1061

λ1
5 − (α1

0 + 0.4914α1
1 + 0.0248α1

2 + 0.0079α1
3)− (c1

0 + 0.4914c1
1 + 0.0248c1

2 + 0.0079c1
3) ≤ 0.0915

λ1
6 − (α1

0 + 0.4447α1
1 + 0.0264α1

2 + 0.0052α1
3)− (c1

0 + 0.4447c1
1 + 0.0264c1

2 + 0.0052c1
3) ≤ 0.0467

λ1
7 − (α1

0 + 0.4643α1
1 + 0.0305α1

2 + 0.0055α1
3)− (c1

0 + 0.4643c1
1 + 0.0305c1

2 + 0.0055c1
3) ≤ 0.1354

λ1
8 − (α1

0 + 0.3590α1
1 + 0.0379α1

2 + 0.0089α1
3)− (c1

0 + 0.3590c1
1 + 0.0379c1

2 + 0.0089c1
3) ≤ 0.0280

λ1
9 − (α1

0 + 0.4002α1
1 + 0.0460α1

2 + 0.0071α1
3)− (c1

0 + 0.4002c1
1 + 0.0460c1

2 + 0.0071c1
3) ≤ 0.2544

λ1
10 − (α1

0 + 0.4290α1
1 + 0.0310α1

2 + 0.0011α1
3)− (c1

0 + 0.4290c1
1 + 0.0011c1

2 + 0.0243c1
3) ≤ 0.0244

λ1
11 − (α1

0 + 0.4067α1
1 + 0.0513α1

2 + 0.0010α1
3)− (c1

0 + 0.4067c1
1 + 0.0513c1

2 + 0.0010c1
3) ≤ 0.1288

λ1
12 − (α1

0 + 0.3509α1
1 + 0.0257α1

2 + 0.0000α1
3)− (c1

0 + 0.3509c1
1 + 0.0257c1

2 + 0.0000c1
3) ≤ 0.3132

and

λ1
1 + (α1

0 + 0.4398α1
1 + 0.0121α1

2 + 0.0073α1
3)− (c1

0 + 0.4398c1
1 + 0.0121c1

2 + 0.0073c1
3) ≤ 1.7584

λ1
2 + (α1

0 + 0.3254α1
1 + 0.0277α1

2 + 0.0040α1
3)− (c1

0 + 0.3254c1
1 + 0.0277c1

2 + 0.0040c1
3) ≤ 1.8319

λ1
3 + (α1

0 + 0.5052α1
1 + 0.0173α1

2 + 0.0028α1
3)− (c1

0 + 0.5052c1
1 + 0.0173c1

2 + 0.0028c1
3) ≤ 1.6947

λ1
4 + (α1

0 + 0.4251α1
1 + 0.0290α1

2 + 0.0026α1
3)− (c1

0 + 0.4251c1
1 + 0.0290c1

2 + 0.0026c1
3) ≤ 1.8939
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λ1
5 + (α1

0 + 0.4914α1
1 + 0.0248α1

2 + 0.0079α1
3)− (c1

0 + 0.4914c1
1 + 0.0248c1

2 + 0.0079c1
3) ≤ 1.9085

λ1
6 + (α1

0 + 0.4447α1
1 + 0.0264α1

2 + 0.0052α1
3)− (c1

0 + 0.4447c1
1 + 0.0264c1

2 + 0.0052c1
3) ≤ 1.9533

λ1
7 + (α1

0 + 0.4643α1
1 + 0.0305α1

2 + 0.0055α1
3)− (c1

0 + 0.4643c1
1 + 0.0305c1

2 + 0.0055c1
3) ≤ 1.8646

λ1
8 + (α1

0 + 0.3590α1
1 + 0.0379α1

2 + 0.0089α1
3)− (c1

0 + 0.3590c1
1 + 0.0379c1

2 + 0.0089c1
3) ≤ 1.9720

λ1
9 + (α1

0 + 0.4002α1
1 + 0.0460α1

2 + 0.0071α1
3)− (c1

0 + 0.4002c1
1 + 0.0460c1

2 + 0.0071c1
3) ≤ 1.7456

λ1
10 + (α1

0 + 0.4290α1
1 + 0.0310α1

2 + 0.0011α1
3)− (c1

0 + 0.4290c1
1 + 0.0011c1

2 + 0.0243c1
3) ≤ 1.9757

λ1
11 + (α1

0 + 0.4067α1
1 + 0.0513α1

2 + 0.0010α1
3)− (c1

0 + 0.4067c1
1 + 0.0513c1

2 + 0.0010c1
3) ≤ 1.8712

λ1
12 + (α1

0 + 0.3509α1
1 + 0.0257α1

2 + 0.0000α1
3)− (c1

0 + 0.3509c1
1 + 0.0257c1

2 + 0.0000c1
3) ≤ 1.6868

For k = 2

Maxλ
2
=

M
∑ λ2

i=1

M
Subject to the constraints(

λ2
1 + λ2

2 + λ2
3 + . . . + λ2

12

)
+

12
1000

(12c2
0 + 5.0660c2

1 + 0.3584c2
2 + 0.0308c2

3 ≤ 12

and

λ2
1 − (α2

0 + 0.3758α2
1 + 0.0197α2

2 + 0.0012α2
3)− (c2

0 + 0.3758c2
1 + 0.0197c2

2 + 0.0012c2
3) ≤ 0.3483

λ2
2 − (α2

0 + 0.3843α2
1 + 0.0228α2

2 + 0.0012α2
3)− (c2

0 + 0.3843c2
1 + 0.0228c2

2 + 0.0012c2
3) ≤ 0.1615

λ2
3 − (α2

0 + 0.5068α2
1 + 0.0261α2

2 + 0.0030α2
3)− (c2

0 + 0.5052c2
1 + 0.0261c2

2 + 0.0030c2
3) ≤ 0.3020

λ2
4 − (α2

0 + 0.3632α2
1 + 0.0187α2

2 + 0.0018α2
3)− (c2

0 + 0.3632c2
1 + 0.0018c2

2 + 0.0026c2
3) ≤ 0.2275

λ2
5 − (α2

0 + 0.4201α2
1 + 0.0264α2

2 + 0.0016α2
3)− (c2

0 + 0.0264c2
1 + 0.0248c2

2 + 0.0016c2
3) ≤ 0.3174

λ2
6 − (α2

0 + 0.4463α2
1 + 0.0281α2

2 + 0.0052α2
3)− (c2

0 + 0.4463c2
1 + 0.0281c2

2 + 0.0052c2
3) ≤ 0.2810

λ2
7 − (α2

0 + 0.3969α2
1 + 0.0236α2

2 + 0.0056α2
3)− (c2

0 + 0.3969c2
1 + 0.0236c2

2 + 0.0056c2
3) ≤ 0.1272

λ2
8 − (α2

0 + 0.4235α2
1 + 0.0379α2

2 + 0.0024α2
3)− (c2

0 + 0.4235c2
1 + 0.0379c2

2 + 0.0024c2
3) ≤ 0.0000

λ2
9 − (α2

0 + 0.3509α2
1 + 0.0383α2

2 + 0.0012α2
3)− (c2

0 + 0.3509c2
1 + 0.0383c2

2 + 0.0012c2
3) ≤ 0.1223

λ2
10 − (α2

0 + 0.5052α2
1 + 0.0408α2

2 + 0.0043α2
3)− (c2

0 + 0.5052c2
1 + 0.0408c2

2 + 0.0043c2
3) ≤ 0.0149

λ2
11 − (α2

0 + 0.4790α2
1 + 0.0414α2

2 + 0.0011α2
3)− (c2

0 + 0.4790c2
1 + 0.0414c2

2 + 0.0011c2
3) ≤ 0.2474

λ2
12 − (α2

0 + 0.4140α2
1 + 0.0048α2

2 + 0.0000α2
3)− (c2

0 + 0.4140c2
1 + 0.0346c2

2 + 0.0048c2
3) ≤ 0.1893

and

λ2
1 + (α2

0 + 0.3758α2
1 + 0.0197α2

2 + 0.0012α2
3)− (c2

0 + 0.3758c2
1 + 0.0197c2

2 + 0.0012c2
3) ≤ 1.6517

λ2
2 + (α2

0 + 0.3843α2
1 + 0.0228α2

2 + 0.0012α2
3)− (c2

0 + 0.3843c2
1 + 0.0228c2

2 + 0.0012c2
3) ≤ 1.8385

λ2
3 + (α2

0 + 0.5068α2
1 + 0.0261α2

2 + 0.0030α2
3)− (c2

0 + 0.5052c2
1 + 0.0261c2

2 + 0.0030c2
3) ≤ 1.6980

λ2
4 + (α2

0 + 0.3632α2
1 + 0.0187α2

2 + 0.0018α2
3)− (c2

0 + 0.3632c2
1 + 0.0018c2

2 + 0.0026c2
3) ≤ 1.7725

λ2
5 + (α2

0 + 0.4201α2
1 + 0.0264α2

2 + 0.0016α2
3)− (c2

0 + 0.0264c2
1 + 0.0248c2

2 + 0.0016c2
3) ≤ 1.6826

λ2
6 + (α2

0 + 0.4463α2
1 + 0.0281α2

2 + 0.0052α2
3)− (c2

0 + 0.4463c2
1 + 0.0281c2

2 + 0.0052c2
3) ≤ 1.7190

λ2
7 + (α2

0 + 0.3969α2
1 + 0.0236α2

2 + 0.0056α2
3)− (c2

0 + 0.3969c2
1 + 0.0236c2

2 + 0.0056c2
3) ≤ 1.8728

λ2
8 + (α2

0 + 0.4235α2
1 + 0.0379α2

2 + 0.0024α2
3)− (c2

0 + 0.4235c2
1 + 0.0379c2

2 + 0.0024c2
3) ≤ 2.0000

λ2
9 + (α2

0 + 0.3509α2
1 + 0.0383α2

2 + 0.0012α2
3)− (c2

0 + 0.3509c2
1 + 0.0383c2

2 + 0.0012c2
3) ≤ 1.8777

λ2
10 + (α2

0 + 0.5052α2
1 + 0.0408α2

2 + 0.0043α2
3)− (c2

0 + 0.5052c2
1 + 0.0408c2

2 + 0.0043c2
3) ≤ 1.9851

λ2
11 + (α2

0 + 0.4790α2
1 + 0.0414α2

2 + 0.0011α2
3)− (c2

0 + 0.4790c2
1 + 0.0414c2

2 + 0.0011c2
3) ≤ 1.7526

λ2
12 + (α2

0 + 0.4140α2
1 + 0.0048α2

2 + 0.0000α2
3)− (c2

0 + 0.4140c2
1 + 0.0346c2

2 + 0.0048c2
3) ≤ 1.8107
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Table 1. Decision matrix H.

Ai Yi Xi1 Xi2 Xi3

A1 {475(0.35), 478(0.30), 482(0.35)} {280(0.35), 281(0.30), 282(0.35)} {23(0.25), 24(0.30), 25(0.35)} {13.40(0.40), 13.50(0.30)}
A2 {520(0.35), 524(0.35), 530(0.30)} {245(0.30), 246(0.35), 247(0.35)} {25(0.35), 26(0.30), 27(0.25)} {13.30(0.35), 13.50(0.30), 13.60(0.35)}
A3 {436(0.35), 438(0.35), 439(0.30)} {320(0.35), 321(0.35), 322(0.30)} {24(0.25), 25(0.30), 26(0.25)} {12.55(0.35), 12.65(0.35), 12.70(0.30)}
A4 {530(0.35), 536(0.30), 540(0.30)} {271(0.35), 272(0.30), 273(0.35)} {25(0.40), 26(0.30), 30(0.30)} {13.75(0.30), 13.25(0.30), 13.30(0.35)}
A5 {496(0.40), 500(0.30), 506(0.30)} {296(0.35), 297(0.30), 298(0.30)} {26(0.35), 27(0.35), 27(0.30)} {13.68(0.40), 13.75(0.30), 13.80(0.30)}
A6 {520(0.40), 526(0.30), 530(0.30)} {283(0.35), 284(0.35), 285(0.30)} {27(0.35), 28(0.30), 29(0.30)} {14.00(0.35), 14.50(0.30), 14.80(0.35)}
A7 {540(0.35), 545(0.35), 551(0.30)} {295(0.35), 296(0.30), 297(0.35)} {28(0.35), 28(0.30), 30(0.30} {14.18(0.35), 14.25(0.35), 14.30(0.30)}
A8 {530(0.40), 545(0.40), 552(0.40)} {269(0.30), 270(0.35), 271(0.35)} {34(0.35), 34(0.35), 35(0.30)} {14.23(0.40), 14.35(0.30), 14.40(0.30)}
A9 {545(0.30), 548(0.35), 550(0.35)} {243(0.35), 250(0.30), 255(0.30)} {39(0.35), 40(0.30)} {13.30(0.40), 13.50(0.30), 13.60(0.30)}
A10 {532(0.40), 537(0.40), 540(0.20)} {303(0.30), 304(0.35), 305(0.30)} {33(0.30), 34(0.35), 35(0.30)} {13.38(0.30), 13.45(0.35), 13.65(0.35)}
A11 {544(0.35), 550(0.30), 553(0.35)} {303(0.30), 304(0.35), 305(0.35)} {38(0.35), 38(0.30), 40(0.25)} {13.35(0.30), 13.45(0.30), 13.55(0.40)}
A12 {503(0.30), 507(0.35), 508(0.35)} {250(0.30), 251(0.35), 252(0.30)} {31(0.30), 32(0.35), 33(0.35)} {12.63(0.30), 13.75(0.35), }

Table 2. Decision matrix.

Ai Yi Xi1 Xi2 Xi3

A1 {475(0.35), 478(0.30), 482(0.35)} {280(0.35), 281(0.30), 282(0.35)} {23(0.25), 24(0.30), 25(0.35)} {13.40(0.40), 13.50(0.30), 13.50(0.30)}
A2 {520(0.35), 524(0.35), 530(0.30)} {245(0.30), 246(0.35), 247(0.35)} {25(0.35), 26(0.30), 27(0.25)} {13.30(0.35), 13.50(0.30), 13.60(0.35)}
A3 {436(0.35), 438(0.35), 439(0.30)} {320(0.35), 321(0.35), 322(0.30)} {24(0.25), 25(0.30), 26(0.25)} {12.55(0.35), 12.65(0.35), 12.70(0.30)}
A4 {530(0.35), 536(0.30), 540(0.30)} {271(0.35), 272(0.30), 273(0.35)} {25(0.40), 26(0.30), 30(0.30)} {13.75(0.30), 13.25(0.30), 13.30(0.35)}
A5 {496(0.40), 500(0.30), 506(0.30)} {296(0.35), 297(0.30), 298(0.30)} {26(0.35), 27(0.35), 27(0.30)} {13.68(0.40), 13.75(0.30), 13.80(0.30)}
A6 {520(0.40), 526(0.30), 530(0.30)} {283(0.35), 284(0.35), 285(0.30)} {27(0.35), 28(0.30), 29(0.30)} {14.00(0.35), 14.50(0.30), 14.80(0.35)}
A7 {540(0.35), 545(0.35), 551(0.30)} {295(0.35), 296(0.30), 297(0.35)} {28(0.35), 28(0.30), 30(0.30} {14.18(0.35), 14.25(0.35), 14.30(0.30)}
A8 {530(0.40), 545(0.40), 552(0.40)} {269(0.30), 270(0.35), 271(0.35)} {34(0.35), 34(0.35), 35(0.30)} {14.23(0.40), 14.35(0.30), 14.40(0.30)}
A9 {545(0.30), 548(0.35), 550(0.35)} {243(0.35), 250(0.30), 255(0.30)} {39(0.35), 40(0.30), 40(0.30)} {13.30(0.40), 13.50(0.30), 13.60(0.30)}
A10 {532(0.40), 537(0.40), 540(0.20)} {303(0.30), 304(0.35), 305(0.30)} {33(0.30), 34(0.35), 35(0.30)} {13.38(0.30), 13.45(0.35), 13.65(0.35)}
A11 {544(0.35), 550(0.30), 553(0.35)} {303(0.30), 304(0.35), 305(0.35)} {38(0.35), 38(0.30), 40(0.25)} {13.35(0.30), 13.45(0.30), 13.55(0.40)}
A12 {503(0.30), 507(0.35), 508(0.35)} {250(0.30), 251(0.35), 252(0.30)} {31(0.30), 32(0.35), 33(0.35)} {12.63(0.30), 13.75(0.35), 13.75(0.35)}
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For k = 3

Maxλ
3
=

M
∑ λ3

i=1

M
Subject to the constraints(

λ3
1 + λ3

2 + λ3
3 + . . . + λ3

12

)
+

12
1000

(12c3
0 + 5.0111c3

1 + 0.3423c3
2 + 0.0424c3

3 ≤ 12

and

λ3
1 − (α3

0 + 0.4431α3
1 + 0.0277α3

2 + 0.0012α3
3)− (c3

0 + 0.4431c3
1 + 0.0277c3

2 + 0.0012c3
3) ≤ 0.2301

λ3
2 − (α3

0 + 0.3859α3
1 + 0.0173α3

2 + 0.0045α3
3)− (c3

0 + 0.3859c3
1 + 0.0173c3

2 + 0.0045c3
3) ≤ 0.2754

λ3
3 − (α3

0 + 0.4333α3
1 + 0.0202α3

2 + 0.0001α3
3)− (c3

0 + 0.4333c3
1 + 0.0202c3

2 + 0.0001c3
3) ≤ 0.4029

λ3
4 − (α3

0 + 0.4284α3
1 + 0.0243α3

2 + 0.0052α3
3)− (c3

0 + 0.4284c3
1 + 0.0243c3

2 + 0.0052c3
3) ≤ 0.2216

λ3
5 − (α3

0 + 0.4216α3
1 + 0.0201α3

2 + 0.0016α3
3)− (c3

0 + 0.4216c3
1 + 0.0201c3

2 + 0.0016c3
3) ≤ 0.3090

λ3
6 − (α3

0 + 0.3815α3
1 + 0.0229α3

2 + 0.0065α3
3)− (c3

0 + 0.3815c3
1 + 0.0229c3

2 + 0.0065c3
3) ≤ 0.2754

λ3
7 − (α3

0 + 0.4676α3
1 + 0.0265α3

2 + 0.0023α3
3)− (c3

0 + 0.4676c3
1 + 0.0265c3

2 + 0.0023c3
3) ≤ 0.2460

λ3
8 − (α3

0 + 0.4251α3
1 + 0.0313α3

2 + 0.0025α3
3)− (c3

0 + 0.4251c3
1 + 0.0313c3

2 + 0.0025c3
3) ≤ 0.5023

λ3
9 − (α3

0 + 0.3582α3
1 + 0.0477α3

2 + 0.0014α3
3)− (c3

0 + 0.3582c3
1 + 0.0477c3

2 + 0.0014c3
3) ≤ 0.1190

λ3
10 − (α3

0 + 0.4319α3
1 + 0.0339α3

2 + 0.0046α3
3)− (c3

0 + 0.4319c3
1 + 0.0339c3

2 + 0.0046c3
3) ≤ 0.5135

λ3
11 − (α3

0 + 0.4807α3
1 + 0.0342α3

2 + 0.0076α3
3)− (c3

0 + 0.4807c3
1 + 0.0342c3

2 + 0.0076c3
3) ≤ 0.1141

λ3
12 − (α3

0 + 0.3538α3
1 + 0.0362α3

2 + 0.0049α3
3)− (c3

0 + 0.3538c3
1 + 0.0362c3

2 + 0.0049c3
3) ≤ 0.1877

and

λ3
1 + (α3

0 + 0.4431α3
1 + 0.0277α3

2 + 0.0012α3
3)− (c3

0 + 0.4431c3
1 + 0.0277c3

2 + 0.0012c3
3) ≤ 1.7699

λ3
2 + (α3

0 + 0.3859α3
1 + 0.0173α3

2 + 0.0045α3
3)− (c3

0 + 0.3859c3
1 + 0.0173c3

2 + 0.0045c3
3) ≤ 1.7246

λ3
3 + (α3

0 + 0.4333α3
1 + 0.0202α3

2 + 0.0001α3
3)− (c3

0 + 0.4333c3
1 + 0.0202c3

2 + 0.0001c3
3) ≤ 1.5971

λ3
4 + (α3

0 + 0.4284α3
1 + 0.0243α3

2 + 0.0052α3
3)− (c3

0 + 0.4284c3
1 + 0.0243c3

2 + 0.0052c3
3) ≤ 1.7784

λ3
5 + (α3

0 + 0.4216α3
1 + 0.0201α3

2 + 0.0016α3
3)− (c3

0 + 0.4216c3
1 + 0.0201c3

2 + 0.0016c3
3) ≤ 1.6910

λ3
6 + (α3

0 + 0.3815α3
1 + 0.0229α3

2 + 0.0065α3
3)− (c3

0 + 0.3815c3
1 + 0.0229c3

2 + 0.0065c3
3) ≤ 1.7246

λ3
7 + (α3

0 + 0.4676α3
1 + 0.0265α3

2 + 0.0023α3
3)− (c3

0 + 0.4676c3
1 + 0.0265c3

2 + 0.0023c3
3) ≤ 1.7540

λ3
8 + (α3

0 + 0.4251α3
1 + 0.0313α3

2 + 0.0025α3
3)− (c3

0 + 0.4251c3
1 + 0.0313c3

2 + 0.0025c3
3) ≤ 1.4977

λ3
9 + (α3

0 + 0.3582α3
1 + 0.0477α3

2 + 0.0014α3
3)− (c3

0 + 0.3582c3
1 + 0.0477c3

2 + 0.0014c3
3) ≤ 1.8810

λ3
10 + (α3

0 + 0.4319α3
1 + 0.0339α3

2 + 0.0046α3
3)− (c3

0 + 0.4319c3
1 + 0.0339c3

2 + 0.0046c3
3) ≤ 1.4865

λ3
11 + (α3

0 + 0.4807α3
1 + 0.0342α3

2 + 0.0076α3
3)− (c3

0 + 0.4807c3
1 + 0.0342c3

2 + 0.0076c3
3) ≤ 1.8859

λ3
12 + (α3

0 + 0.3538α3
1 + 0.0362α3

2 + 0.0049α3
3)− (c3

0 + 0.3538c3
1 + 0.0362c3

2 + 0.0049c3
3) ≤ 1.8123

After solving the linear programming model, as mentioned above, we get the values
of λk

i (i = 1, 2, . . . , 12), αk
j (j = 1, 2, 3, 4) and ck

j (j = 1, 2, 3, 4), which are shown in Table 3:
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Table 3. Estimated values obtained by PHFLRM.

k = 1 k = 2 k = 3

λ1
1 = 1.0000 λ2

1 = 1.0000 λ3
1 = 1.0000

λ1
2 = 1.0000 λ2

2 = 0.9872 λ3
2 = 1.0000

λ1
3 = 1.0000 λ2

3 = 1.0000 λ3
3 = 0.9975

λ1
4 = 1.0000 λ2

4 = 1.0000 λ3
4 = 1.0000

λ1
5 = 1.0000 λ2

5 = 1.0000 λ2
5 = 1.0000

λ1
6 = 1.0000 λ2

6 = 1.0000 λ2
6 = 1.0000

λ1
7 = 1.0000 λ2

7 = 1.0000 λ2
7 = 1.0000

λ1
8 = 1.0000 λ2

8 = 1.0000 λ3
8 = 1.0000

λ1
9 = 0.9824 λ2

9 = 1.0000 λ3
9 = 1.0000

λ1
10 = 1.0000 λ2

10 = 1.0000 λ3
10 = 0.9797

λ1
11 = 1.0000 λ2

11 = 1.0000 λ3
11 = 1.0000

λ1
12 = 1.0000 λ2

12 = 1.0000 λ3
12 = 1.0000

α1
0 = 0.5984 α2

0 = 0.8602 α3
0 = 0.4812

α1
1 = 2.1288 α2

1 = 15.5364 α3
1 = 8.8699

α1
2 = 3.2602 α2

2 = 11.1963 α3
2 = 1.6489

α1
3 = 0.3059 α2

3 = −1.0018 α3
3 = 0.2233

c1
0 = 0.0000 c2

0 = 0.03757 c3
0 = 0.0000

c1
1 = 0.0000 c2

1 = 0.0000 c3
1 = 1.4431

c1
2 = 1.3864 c2

2 = 1.7105 c3
2 = 4.7510

c1
3 = 0.1913 c2

3 = 0.0000 c3
3 = 0.0000

We can see in Table 3 that the estimated values λk
i obtained by solving a LP model are

either equal to 1 or very close to 1. The resultant estimated PHFLRM employing equations
from Section 3, is obtained as follows:

Y∗ = (0.6467, 0.01252)⊕ (−0.1575, 0.06378)� X1 ⊕ (5.3685, 2.6160)� X2

⊕(8.8450, 0.4811)� X3.

Step 6 & 7. By using PHFLRM, we will find the estimated PHFEs (Y∗) of all possible
alternatives. To save time, we will just compute the estimated PHFE Y∗1 against
the alternative A1 using the Definition 3 and 4, as follows:

Y∗1 = {0.7194(0.03889), 0.7137(0.03333), 0.7197(0.03888), 0.7308(0.04667),

0.7253(0.04667), 0.7311(0.04667), 0.7424(0.05444), 0.7371(0.04667),

0.7559(0.05444), 0.7038(0.02917), 0.6977(0.02500), 0.7041(0.02917),

0.7158(0.03500), 0.7100(0.03000), 0.7162(0.03500), 0.7281(0.04083),

0.7225(0.03500), 0.7284(0.04083), 0.7038(0.02917), 0.6977(0.02500),

0.7041(0.02917), 0.7158(0.03500), 0.7100(0.03000), 0.7162(0.03500),

0.7281(0.04083), 0.7281(0.03500), 0.7284(0.04083)}

By using Definition 5, the score value (Sc(Y∗1 )) of the estimated PHFE (Y∗1 ) is computed,
i.e., 0.7223. In the same way, we can find all score values (Sc(Y∗i ) of the estimated PHFEs,
Y∗i (i = 2, . . . , 12), in Table 4. Further, residual values ei against each alternative Yi are
calculated as ei = Sc(Yi)− Sc(Y∗i ), i = 1, 2, . . . , 12, and finally, all alternatives are ranked
using these residual values ei, in Table 4. We have the smallest residual e3 = 30.04827
against the alternative A3 , so it is considered as the best choice. Additionally, the alternative
A11 has the largest residual e11 = 47.9838, and is considered the worst alternative.
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Table 4. Ranking with PHFLRM (RPHFLR).

Ai Sc(Yi) Sc(Y∗
i ) ei RPHFLR

A1 37.0085 0.7223 36.2862 2
A2 44.2253 0.7203 43.5050 6
A3 30.7738 0.7255 30.04823 1
A4 46.0855 0.7258 45.3597 8
A5 40.1481 0.7305 39.4176 3
A6 44.1899 0.7333 43.4566 5
A7 47.7795 0.7362 47.0433 10
A8 46.3455 0.7465 45.5989 9
A9 48.6282 0.7526 47.8756 11
A10 45.4646 0.7476 44.7179 7
A11 48.7416 0.7578 47.9838 12
A12 41.5150 0.7352 40.7798 4

A Comparative Study of the PHFLRM and the TOPSIS

The TOPSIS method, which is a MCDM tool, has been used to verify the results and
efficiency of our proposed approach. For the same problem, the results of the proposed
method are compared with the results of the TOPSIS method. We have taken rain amount
(X1), farm size (X2), irrigated area (X3), and wheat yield (Y) as the benefit criteria.
Following steps 1, 2, and 3 of the TOPSIS algorithm (Section 4.1), we have the PIS (A+) and
NIS (A−), as follows:

A+ = {{0.3422, 0.3420, 0.3292}, {0.4079, 0.3542.0.4019},
{0.3437, 0.3312, 0.3420}, {0.3297, 0.3540, 0.3500}}

A− = {{0.2246, 0.2403, 0.2454}, {0.1765, 0.2180, 0.2153},
{0.2289, 0.2674, 0.2398}, {0.2338, 0.2328, 0.1953}}

Further, the values of Euclidean distances ( D+and D−) and relative closeness (Pi)
for each alternative are computed in Table 5 by using step 5, 6, and 7 of the algorithm
(Section 4.1), as follows:

Table 5. Ranking using the TOPSIS (Section 4.1) approach.

Ai D+ D− Pi RTOPSIS

A1 0.3595 0.1877 0.6570 2
A2 0.3311 0.1781 0.6503 3
A3 0.3585 0.1850 0.6591 1
A4 0.2976 0.2094 0.5870 5
A5 0.3075 0.2156 0.5878 4
A6 0.2764 0.2262 0.5500 6
A7 0.2497 0.2465 0.5032 8
A8 0.2446 0.2948 0.4535 10
A9 0.2051 0.3605 0.3627 11
A10 0.2478 0.2936 0.4577 9
A11 0.1856 0.3731 0.3323 12
A12 0.2817 0.2385 0.5416 7

Table 5 shows that the best choice among the alternatives is A3 as it has the largest
value of Pi, whereas the alternative A11 is considered the worst choice of alternative, as it
has the largest value of Pi. Further, two sets of ranking RHFLLR and RTOPSIS are compared
using the bar chart in Figure 2, as follows:
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Figure 2. Ranking with PHFLRM and TOPSIS.

Figure 2 illustrates that the ranking order between two sets of rankings, RPHFLLR
and RTOPSIS, is nearly similar, and that there is no significant difference between them.
Although the graphical presentation provides a quick assessment of the performance of two
ranking sets, RPHFLLR and RTOPSIS, it is not conclusive. In order to determine the statistical
significance of the two sets of rankings, the Spearman’s rank correlation coefficient is
calculated, as shown in Table 6.

Table 6. Spearman’s rank correlation coefficients.

Ai RPHFLLR RTOPSIS d2

A1 2 2 0
A2 3 6 9
A3 1 1 0
A4 5 8 9
A5 4 3 1
A6 6 5 1
A7 8 10 4
A8 10 9 1
A9 11 11 0
A10 9 7 4
A11 12 12 0
A12 7 4 9

From Table 6, Spearman’s correlation coefficient is calculated as rs = 1− 6(38)
1584 = 0.87,

which shows that two sets of rankings, RPHFLLR and RTOPSIS, are strongly related to each
other [45]. To evaluate whether the correlation coefficient rs = 0.87 is meaningful or not, a
statistical test is performed, taking the null hypothesis (H0: there is no relationship between
the two sets of rankings) against the alternative hypothesis (H1: there is a relationship
between two sets of rankings) at the 5% level of significance. As the calculated value,
Zc rs

√
M− 1 = 0.87

√
12− 1 = 2.88, exceeds the table value Z0.05 = 1.645, we reject H0

and conclude that there is a very strong relationship between the two sets of rankings.
Additionally, the values of correlation rw and similarity coefficient WS [46] were examined
for the considered example. These values are 0.8607 and 0.9289, respectively, confirming
the close correlation between the obtained results.

6. Conclusions

This paper provides a MCDM approach to FLRMs by incorporating probabilistic
hesitant information. This concept has not been explored previously, and is a novel alterna-
tive to statistical regression in resolving MCDM challenges. The proposed methodology
PHFLRM is applied in agriculture to evaluate wheat production in different Pakistan
districts by considering significant factors such as rainfall, farm size, and irrigated area.
We examined twelve districts’ yields across the country in the context of four factors that
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significantly affect wheat yield production. Similarly, we may include more criteria and
alternatives, but computing becomes more complicated as the number of alternatives or
criteria examined increases. Finally, the suggested methodology’s (PHFRM) outcomes are
compared to the widely used decision-making technique called TOPSIS.

Compared with TOPSIS, the complexity of the proposed methodologies does not
increase by inserting more criteria and alternatives into the given MCDM problems. The
proposed methodology provides results by solving a simple LP model to obtain the ranking
for decision-making problems, which provides results quickly, with less computational time
than TOPSIS. The proposed methodologies may be a feasible alternative decision-making
approach that accommodates a high-level system fuzziness. In the future, we will further
investigate the applications of FLRM in decision-making using different FS extensions, and
we should also investigate the accuracy of the obtained results.
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