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Abstract: In this study, a strategy was developed for in situ, non-intrusive, and quantitative measure-
ment of the oxides of nitrogen (NO and NO2) to describe emission characteristics in gas turbines. The
linear calibration-free wavelength modulation spectroscopy (LCF-WMS) approach combined with
the temperature profile-fitting strategy was utilized for trace NO and NO2 concentration detection
with broad spectral interference from gaseous water (H2O). Transition lines near 1308 nm, 5238 nm,
and 6250 nm were selected to investigate the H2O, NO, and NO2 generated from combustion. Ex-
periments were performed under different equivalence ratios in a combustion exhaust tube, which
was heated at 450–700 K, with an effective optical length of 1.57 m. Ultra-low NOx emissions were
captured by optical measurements under different equivalence ratios. The mole fractions of H2O
were in agreement with the theoretical values calculated using Chemkin. Herein, the uncertainty
of the TDLAS measurements and the limitation of improving the relative precision are discussed
in detail. The proposed strategy proved to be a promising combustion diagnostic technique for the
quantitative measurement of low-absorbance trace NO and NO2 with strong H2O interference in real
combustion gases.

Keywords: NOx emission; multispecies sensor; in situ measurements; wavelength modulation
spectroscopy

1. Introduction

Combined-cycle gas turbines have generated more than 22% of the world’s electric-
ity [1]. The percentage in the USA is 43%. With the progress of materials and cooling
technology, the temperature of combustion chambers is gradually increasing, improving
the combustion efficiency while promoting the emission of nitrogen oxides (NOx) in paral-
lel [2]. NOx molecules, mainly nitrogen monoxide (NO) and nitrogen dioxide (NO2), have
a wide range of health and environmental impacts [3–6]. Given the detrimental effects of
NOx and the demand for higher efficiency, how to address the conflict between increasing
the combustion temperature and reducing NOx emission has been an important issue in
gas turbine technology research. A series of increasingly stringent regulatory standards
have been released to control the NOx emission of combustion-based devices [7,8]. As a
result, a reliable in situ and high temporal resolution measurement technique is required
to monitor ultra-low NOx emissions, evaluate the combustion organization method, and
analyze the influencing factors of emissions [9,10].
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Numerous techniques have been developed to quantify the species and concentration
of combustion products in recent years, such as chemiluminescence detectors (CLDs), elec-
trochemical gas sensors, chemiresistive gas sensors, Fourier transform infrared spectroscopy
(FTIR), non-dispersive infrared (NDIR), and tunable diode laser absorption spectroscopy
(TDLAS). These techniques can be broadly categorized into the chemical method and the
optical method, varying significantly in their accuracy and interference immunity. For
the chemical method, electrochemical gas sensors and chemiresistive gas sensors are well-
established techniques for monitoring trace-level concentrations of industrial gases [11,12].
However, the gas sensing properties are strongly influenced by the surrounding envi-
ronment and the nature of the interacting gases, especially the presence of high relative
humidity in combustion environments [13,14]. CLD analyzers have been recommended by
SAE International to guide the analysis of NOx emission due to their high accuracy and
simplicity [15], but they require pre-processing for cooling and decompression due to their
inability to endure high temperatures and pressures. Optical methods use specific spectral
information to identify gases and avoid disturbing the flow field. FTIR spectrometers have
the advantage of distinguishing multiple gases, but their low light source power demands
an increase in integration time to improve the signal-to-noise ratio (SNR) [16–18]. NDIR
is well known for its good sensitivity, but it suffers from interfering species [19]. For gas
turbines, a high temperature and pressure, as well as various interferences, are present in
the combustion exhaust. These issues pose significant challenges for the quantitative and
accurate measurement of trace NOx in harsh environments.

TDLAS has good sensitivity and quantitative performance and is one of the most
promising approaches at present [20,21]. It has been successfully applied to trace gas
detection in ambient environments [22–24]. However, only a few studies have been reported
on trace gas detection in harsh environments. Chao et al. [25] recorded the concentration of
NO in combustion exhaust using transitions near 1912 cm−1 and 1926 cm−1 at 600 K based
on direct absorption spectroscopy (DAS). Almodovar et al. [26] presented temperature and
NO concentration sensing in high-temperature gases using a pair of quantum cascade lasers
(QCLs) near 5 µm. Diemel et al. [27] developed a direct absorption NO sensor (transition at
1929.03 cm−1) for combustion exhaust gas. The detection limit was 30 ppm with a 10 ms
response time at 800 K. In the mentioned applications, the effect of interfering species can
be neglected by selecting suitable absorption lines based on the DAS method, due to the
strong absorbance of NO. Sur et al. [28] demonstrated NO2 detection of 1.45 and 1.6 ppm
at elevated temperatures in combustion exhaust. The first-harmonic-normalized, second-
harmonic detection wavelength modulation spectroscopy (2f /1f -WMS) method [29] was
used to probe the selected transitions near 1599.9 cm−1. The seeding NO2 was detected
based on the background signal collected from combustion gases, which not only reduced
the interference from gaseous water (H2O) but also ignored the NO2 generated from the
combustion process.

These works confirmed the potential of mid-infrared TDLAS technology in com-
bustion emission diagnosis. However, few studies have focused their attempts on the
mid-infrared-based detection of trace NO and NO2 generated from combustion and con-
sidered interference from other absorption components, such as water and methane (CH4).
The influence of the neighboring H2O spectral features becomes significant as the tem-
perature increases, making it difficult to obtain reliable non-absorbing baselines. Despite
the fact that the dependence on the baseline can be eliminated by using the 2f /1f -WMS
approach [30,31], challenges still remain. In the application of combustion diagnostics, a
uniform distribution of temperature is commonly assumed along the line of sight (LOS) [32].
This results in the harmonic signals being further distorted due to the nonlinear coupling
of the characteristics of the non-uniform flow field and laser parameters, which increases
the difficulty of resolving harmonic signals. Recently, linear calibration-free wavelength
modulation spectroscopy (LCF-WMS) has been reported [33,34], which is suitable for trace
gas detection in non-uniform fields. However, these works were primarily concerned with
the performance of a single component, which cannot capture overall NOx emissions. The
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main objective of this paper was to achieve in situ and quantitative diagnosis of ultra-low
NOx emissions under strong absorption interference from H2O in combustion exhaust.

In this work, a new strategy is presented to realize the detection of trace NO and NO2
with a low signal-to-noise ratio (SNR) despite the strong H2O interference. The strategy is
based on the LCF-WMS method, combined with temperature profile-fitting, to eliminate
the effects of water interference by resolving overlapped harmonic signals. A near-infrared
distributed feedback (DFB) laser near 1.3 µm for H2O and two mid-infrared quantum
cascade lasers (QCLs) near 5.2 µm for NO and 6.25 µm for NO2 were employed to probe
the selected absorption lines. The validation experiments were performed under different
equivalence ratio conditions in a combustion exhaust tube. The proposed method proves
not only the capability of trace gas detection in combustion gases under low absorbance
and high excess noise levels, but also the capability of quantitative measurements in a
non-uniform flow field. The novelty of the current detection strategy lies in the following:

1. The fourth harmonic of the linear calibration-free wavelength modulation spec-
troscopy (LCF-WMS-4f ) method for in situ NO2 measurement in combustion exhaust
at a high temperature;

2. The demonstration of ppm-level NO and NO2 detection with high H2O interference
in a non-uniform flow field.

2. TDLAS Diagnostics for NO and NO2

The theory of laser absorption spectroscopy is well understood and has been published
previously [33–36]. The principles and techniques of the LCF-WMS method are briefly
reviewed in Section 2.1 to define terms and guide the discussion. The selection of transition
lines for three components is introduced in Section 2.2. The strategy of NO and NO2
detection under high H2O interference is shown in Section 2.3.

2.1. Fundamentals of Linear Calibration-Free Wavelength Modulation Spectroscopy

When the collimating laser beam passes through a uniform gas medium, the spectral
transmissivity τν is defined according to the ratio between the transmitted beam intensity
It and the incident beam intensity I0, which is described by the Beer–Lambert law:

τν =

(
It

I0

)
ν

= exp(−αν) = exp(−kνL) (1)

where αν is the spectral absorbance at frequency ν, L (cm) is the optical path length, and
kν (cm−1) is the spectral absorption coefficient, which is given by

kν = PXS(T)φν (2)

where P (atm) is the gas pressure, X is the mole fraction of the absorbing gas species, S(T)
(cm−2 atm−1) is the temperature-dependent line strength, and φν is the line shape function.
The line shape function φν (cm) can be normalized, and therefore the integral of φν over the
entire frequency range is equal to one.

The wavelength of the laser is tuned using a combination of a high-frequency sinu-
soidal modulation and a lower-frequency scan signal. The frequency modulation and
intensity modulation can be expressed as

ν(t) = ν(t) + a(t) cos(2π f t + ψ) (3)

I0(t) = I0(t)

[
1 +

∞

∑
m=1

im(t) cos(m × 2π f t + ψm)

]
(4)

where ν(t) (cm−1) is the center frequency of the slower wavelength scan signal while
the laser is modulated at frequency f , a(t) (cm−1) is the modulation depth, and ψ is the
frequency modulation phase; I0(t) is the incident laser intensity without modulation, im(t)
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is the m-th Fourier coefficient of the laser intensity, and ψm is the phase of the m-th laser
intensity modulation.

The logarithm of the transmitted laser intensity can be written as

ln(It(t)) = ln
(
GI0(t)

)
+ ln

[
1 +

∞
∑

m=1
im(t) cos(m × 2π f t + ψm)

]
−PXS(T)L × φν[ν(t) + a(t) cos(2π f t + ψ), T, P, X]

(5)

After the logarithmic calculation, the transmitted light intensity consists of three parts:
the optical-electronic gain intensity term, the intensity modulation term, and the absorption
signal term. The harmonic signal is extracted from ln(It(t)) by lock-in amplifier, and the
k-th absorption harmonic signal becomes

Sa
k =

1
2

PXS(T)L ×
∣∣∣∣∣ ∞

∑
g=0

(
(a(t)/2)k+2g

g!(k + g)!
dk+2gφv

dνk+2g

∣∣∣∣∣
ν=ν

)∣∣∣∣∣ (6)

After subtracting the background, harmonic signals are theoretically independent of
the laser intensity characteristics. The measured harmonics are only related to the time–

frequency relationship (the line shape derivative dk+2gφv

dνk+2g and the modulation depth a(t)) and
the integrated absorbance. During the experiments, the time–frequency relationship can be
obtained using a Fabry–Perot interferometer. The signals detected are only associated with
the spectral features integrated along the LOS.

Owing to the decoupling of the laser characteristics and the integrated absorbance,
the influence of gas properties can be clearly reflected in the harmonics. This approach
allows the numerical simulation of large absorption harmonics without considering the
effect of laser intensity modulation characteristics. Therefore, the LCF-WMS approach is
suitable for trace gas detection in spite of the strong, broad spectral H2O interference in non-
uniform fields for the following reasons: compared with the DAS approach, it eliminates
the dependence on the baseline and suppresses the low-frequency noises; compared with
the normalized WMS approach, it decouples the characteristics of the light source and the
flow field, making the measured signals related to the spectral features integrated along
the line of sight (LOS).

2.2. Wavelength Selection

The selection of absorption transitions is critical from the viewpoint of multi-wavelength
sensor design. Considering the composition of typical combustion products, H2O takes
a large proportion (~10%), while NOx molecules are trace components (~ppm). For the
detection of NO and NO2 generated from combustion, spectroscopic signals can be affected
by the blended neighboring features and interfering species spectrum, which decreases the
SNR and influences the measurement accuracy. These require transition lines with stronger
absorption and weaker interference from the other combustion species [37–39]. To ensure a
sufficient SNR of the absorption signal, the peak absorbance should be above 0.001.

Figure 1 shows a broadband spectral simulation of typical components in near- and
mid-infrared bands at a representative exhaust temperature of 600 K based on the HITRAN
database [40]. The fundamental vibration band of NO near 5.2 µm and NO2 near 6.25 µm
holds the most promising candidates, which has the strongest absorption band and only
primary interference from H2O. In this circumstance, it is important to acquire an accurate
H2O concentration for the following spectral resolution. The overtone and combination
bands within 1.3–1.5 µm were investigated for H2O sensing because of the maturity of
near-infrared DFB lasers.
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Figure 1. Absorption line strength for near- and mid-infrared bands of typical combustion exhaust at
600 K based on HITRAN 2020 [40]. Transitions with a line strength of less than 5 × 10−24 cm/molecule
are not shown.

According to the aforementioned criteria, the absorption lines in the fundamental band
for NO and NO2, as well as the overtone and combination band of H2O, were investigated.
For H2O, several candidates (7456.1 cm−1, 7457 cm−1, and 7644.6 cm−1) are plotted in
Figure 2a. The absorption line at 7644.6 cm−1 was finally selected for the following reasons:
(1) 7644.6 cm−1 is well isolated; (2) this transition has negligible interference from other
absorption species; (3) compared with the strongest absorption line, 7456.1 cm−1, this
transition has a smaller variation in the line strength within the temperature range of 400–
700 K (shown in Figure 2b), which is less sensitive to temperature changes and more suitable
for non-uniform field measurements. The validation of the line strength of the selected
H2O transitions was carried out in an ambient environment. The deviation between the
measured line strength and the HITRAN database was less than 8%, while the uncertainty
of the spectral parameter was in the range of 5–10%.
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Figure 2. Absorbance simulation of three candidate H2O transitions (a) and the corresponding line
strength varying from 300 to 900 K (b). P = 1 atm, L = 2 m, T = 600 K, XH2O = 10%, XCH4 = 0.2%,
XCO2 = 3%.
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The promising transitions near 1909.13 cm−1 and 1599.9 cm−1 were selected for NO
and NO2, respectively. The line strength of the selected NO lines was validated in [41], and
it agrees with the uncertainty provided by the HITEMP database (5–10% uncertainty) [42].
For NO2 candidates near 1599.9 cm−1, a reliable collisional broadening parameter database
was established by Sur et al. [28]. The simulated spectra of typical components near the
target lines are plotted in Figure 3, which indicates that the H2O absorptions have major
interference from those of NO and NO2. In both spectrum regions, the absorption features
of H2O are smooth and weak at the intermediate temperature. However, several new
water spectral features appear with the temperature elevation, making the problem more
complicated. In such circumstances, the interference from weak, high-internal-energy
water vapor transitions cannot be eliminated by wavelength selection. The strategy for
the spectral resolution is discussed in the next section. It must be mentioned that CH4 has
negative influences on the detection of NO2. The influence of CH4 becomes significant
along with the temperature increases.
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Figure 3. Simulated absorption spectra of the selected H2O, NO, and NO2 transitions near 1.31,
5.2, and 6.25 µm for typical combustion exhaust: XH2O = 10%; XNO = 50 ppm; XNO2 = 10 ppm;
XCH4 = 0.2%; XCO2 = 3%; P = 1 atm; L = 2 m; T = 300, 600, and 900 K.

2.3. NO and NO2 Detection under High H2O Interference

Broad spectral interference presents great challenges for trace NO and NO2 detection.
Additional research needs to be conducted to minimize the effect of H2O interference on
NO and NO2 measurements. First of all, multispecies detections are required to obtain the
mole fraction of the mixture. Then, the influence of each component on the spectral feature
twisting needs to be quantified. Lastly, the technique should have high detection sensitivity
to catch the low absorbance of trace gases.

H2O concentrations in combustion gases are obtained based on near-infrared TDLAS
sensing. With a known concentration, H2O absorbance near the selected NOx absorption
lines can be calculated by using spectral parameters taken from the HITRAN database [40].
Based on the LCF-WMS approach, the overlapped harmonic signals are resolved by taking
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into account both the spectral features of the target (NOx) and interfering species (H2O).
Considering the non-uniformity of the flow field, the strategy of temperature profile fitting
was adopted in this study.

The second harmonic was recommended due to its higher SNR compared to other
order harmonics in the literature [33]. Accordingly, the second harmonic was used for
NO and H2O detection in the present study. However, it is more difficult to model and
resolve the NO2 spectrum under the presence of blended neighboring features and the
broad spectral interference from H2O, especially when H2O absorbance is of a magnitude
equivalent to NO2. Previous works have demonstrated the potential of higher harmonics
in the application of broad absorbance [43,44]. In this work, we used the fourth-harmonic
signal for NO2 detection due to its H2O sensitivity reduction.

It needs to be mentioned that the simulated harmonics can directly reflect gas prop-
erties, given the decoupling of the laser intensity and flow field characteristics. Figure 4
shows the numerical simulation of the second and fourth harmonics in typical combustion
exhaust conditions (NO2~1.5 ppm, H2O~16%) in the temperature range of 400–700 K.
Apparently, the line shape of H2O is very sensitive to temperature fluctuations. To evaluate
the significance of water vapor interference, the ratio of the NO2 to H2O harmonic signals
is used. When the ratio is higher, it indicates that the influence of H2O is greater. In contrast
with the second harmonic, the central lobe of the fourth harmonic (between 1599.85 cm−1

and 1599.92 cm−1) is almost unaffected by water vapor. According to the numerical results
shown in Figure 5, within the typical mole fraction range of 15.4–17.8% in combustion gases,
the H2O concentration has a limited effect on the line shape, and the harmonic performance
of the central lobe is in accordance with the above-mentioned phenomenon.
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Figure 4. Simulations of 1.5 ppm NO2 (red) and 15% H2O (black) in the typical exhaust temperature 

range of 400–700 K, P = 1 atm, L = 157.5 cm. The upper line (a–d) shows the 2f line shapes; the lower 

line (e–h) shows the 4f line shapes. 

Figure 4. Simulations of 1.5 ppm NO2 (red) and 15% H2O (black) in the typical exhaust temperature
range of 400–700 K, P = 1 atm, L = 157.5 cm. The upper line (a–d) shows the 2f line shapes; the lower
line (e–h) shows the 4f line shapes.

In the previous study on mid-infrared NO2 detection, Sur et al. [28] reduced the influ-
ence of fluctuations in interfering species on harmonics by selecting the optimal modulation
depth, resulting in the requirement for the WMS background of water generated under
typical combustion conditions. Compared with this approach, the present strategy reduces
the sensitivity of harmonics to H2O based on the LCF-WMS-4f method and quantifies the
effect of H2O by near-infrared H2O sensing.
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Figure 5. Simulation of 1.5 ppm NO2 in 15.4–17.8% H2O and the corresponding second harmonic (a)
and fourth harmonic (b). P = 1 atm, L = 157.5 cm, T = 650 K.

3. Validation Experiment Setup

The combustion exhaust experiment setup consisted of the pitch side, catch side,
auxiliary measurements, temperature-controlled long-path tube, burner facility, and flow
control system. This section addresses the design of the multispecies TDLAS system.

3.1. Optical Setup

Figure 6 depicts the configuration of the test rig. For the pitch side, three continuous-
wave lasers were chosen as the light source of the target gas diagnostics. Two mid-infrared
QCLs (Alpes Lasers, Switzerland) mounted in the Laboratory Laser Housing package near
5.2 µm and 6.25 µm were utilized to detect the concentration of NO and NO2. Moreover,
the light source for H2O detection was a narrow-linewidth, fiber-coupled near-infrared
DFB laser (LD-PD, Sinpapore) near 1.31 µm. Laser controllers were used to provide stable
and precise control of the laser diodes. The laser current was tuned by a 50 Hz scanning
sawtooth signal superimposed on a 50 kHz sinusoidal modulation signal generated by
the National Instruments DAQ system. The three laser beams were combined using
flipped mirrors.
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For the catch side, the transmitted laser beam was split into two parts by a CaF2 beam
splitter. Then, these two parts were separately focused on an HgCdTe thermo-electrically
cooled MIR detector LabM-I-6 (Vigo, Poland) and an InGaAs amplified NIR photodetector
PDA10CS2 (Thorlabs, United States). The absorption signals were recorded by the DAQ
system at a sampling rate of 2 MHz. The relationship between the laser scanning time and
frequency can be characterized by a silicon etalon placed in another laser path.

3.2. Exhaust Tube Hardware

The cylindrical exhaust tube provided a 157.5 cm effective optical length, with 25 cm
CaF2 column windows at both ends of the combustion tube to reduce the influence of
the non-uniform temperature. Moreover, thermal insulation of the exhaust tube was
provided by wrapping it in heating cables and ceramic wool. During the experiment, a
McKenna burner provided combustion emissions with a relatively stable composition.
The gas flow rates of the fuel and air were controlled and monitored by two mass flow
controllers (Bronkhorst, 1% accuracy). The air flow rate was maintained consistently, and
the experimental conditions were changed by adjusting the fuel flow rate. The equivalence
ratio of the premixed CH4/air flat flame varied from 0.73 to 0.99, as shown in Table 1.
Additionally, a cylinder glass cover was placed around the plate flame to prevent influence
from the surroundings.

Table 1. Experimental conditions of the premixed CH4/air flame in this work.

Flame No. CH4 (L/min) Air (L/min) Φ

1 1.65 16.5 0.99
2 1.56 16.5 0.94
3 1.47 16.5 0.89
4 1.39 16.5 0.84
5 1.30 16.5 0.78
6 1.21 16.5 0.73

The gas mixture in the tube was sampled by a gas analyzer (O2, CO, CO2, NOx, Testo
350), and the accuracy of the NOx sensor was around ±5 ppm at low concentrations (less
than 100 ppm). Several fine-wire K-type thermocouples (0.2% accuracy) with a diameter of
0.3 mm were installed in the temperature-controlled exhaust tube.

4. Results and Discussion
4.1. LCF-WMS Data Processing Procedure

LCF-WMS-2f and LCF-WMS-4f signals were measured for H2O, NO, and NO2 tran-
sitions. Figure 7 shows the algorithm for the calculation of the concentration based on
the LCF-WMS technique. The background laser intensity in high-purity nitrogen gas was
recorded before each test to provide the background signal for the LCF-WMS measure-
ments. The laser intensity recorded in the combustion gases and the background signal
were passed through a digital lock-in filter combined with a low-pass filter and were
applied to extract the harmonics for each laser. The normalized cutoff frequency of the
low-pass filter was 0.00312, 0.00062, and 0.00031 for H2O, NO, and NO2, respectively. The
actual gas properties can be inferred from the iterative fitting by comparing the simulation
with the measured harmonic signals. It should be noted that the simulated multi-line
absorbance considers the influence of both the target and interfering components with the
estimation of the NOx mole fraction and the known H2O concentration obtained through
near-infrared H2O sensing.
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Figure 7. Algorithm for iterative fitting by comparing simulated and measured harmonic signals.

4.2. Sensor Performance in Combustion Exhaust: A Demonstration of the Method

The heating temperature of the exhaust tube was set at 475 K. Temperatures were
varied in the range of 430–700 K, which was measured by several thermocouples axially
placed along the exhaust tube. Temperature data obtained at a steady state of Φ = 0.89 are
plotted in Figure 8, indicating that the temperature gradient was present along the length
of the exhaust tube due to the limitation of the thermal insulation materials. As the temper-
ature varies along the LOS and the transition line strength is temperature-dependent, the
path-integrated absorbance cannot be simplified by the uniform gas medium assumption.
Existing knowledge of how gas conditions vary along the LOS can be a resolution for
non-uniform measurement. In this work, the temperature profile was obtained by the
polynomial fitting of the thermocouple data.
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Figure 8. The temperature data along the optical length with typical experiment conditions at Φ = 0.89.
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Figure 9 shows the 2f line shape of H2O (a) and NO (b) in a representative combustion
exhaust (Φ = 0.89). There is excellent agreement in the line shapes of the simulated and
measured 2f signals. The relative fitting residuals (ratio of the peak value to the residual)
were about 2% and 3% for H2O and NO, respectively. Figure 9c shows the 4f line shape
of NO2 measured in the combustion exhaust and its corresponding best-fit curves. In
the line shape of the central lobe, there is better agreement between the simulation and
measurement than in the other parietal lobes. The concentration of NO2 was quantified
using the central lobe, which represents the spectral region between 1599.85 cm−1 and
1599.92 cm−1. A higher discrepancy in the outer lobes can be observed, which is caused
by vulnerability to water interference [28]. Accurate NO2 sensing requires an accurate
characterization of the spectral parameters of the local water features. However, it is
particularly difficult because the water transitions are weak and have high internal energy.
Further work is needed for the accurate measurement of these water transitions.
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Figure 9. Measured (red dashed line) and best-fit (black solid line) harmonic line shapes for (a) H2O,
(b) NO, and (c) NO2 in a combustion exhaust at Φ = 0.89.

The evaluation of uncertainty is important to reflect the reliability of the measure-
ment data. The uncertainty in TDLAS measurements includes contributions from optical
parameters and experimental noise [45,46]. In this research, the uncertainties in the op-
tical parameters and temperature measurements along the LOS were transferred to the
measurement results through the fitting process. The noise of the detector, as well as the
laser fluctuation due to the instability of the laser temperature and laser current controller,
results in systematic biasing and random noise.

Taking the NO2 measurement at Φ = 0.89 as an example, the fitting residual of the
selected lines was less than 5% (1599.9 cm−1). To evaluate the random noise level of optical
measurements, continuous recordings were performed at a relatively stable combustion
state for 10 s. The frequency distribution of the measured data and the Gaussian profile-
fitting curves are shown in Figure 10. The half width at half maximum (HWHM) of
H2O, NO, and NO2 was 0.0012, 0.23 ppm, and 0.45 ppm, corresponding to a relative
instrument accuracy of 0.76%, 2.93%, and 34.75%, respectively. The line-strength uncertainty
of the absorption lines from the HITRAN database was ~10% [47]. The accuracy of the
thermocouples was ~0.2%. These parameters were uncorrelated sources of uncertainties;
thus, a total uncertainty of ~36% was obtained, leading to a concentration uncertainty of
0.47 ppm.

The sensor measurement resolution can be reflected by the 2 s noise, which was
calculated using the values obtained from the RMS noise. Despite the H2O interference
having been eliminated as much as possible, the 2 s noises of the NO2 measurement were
estimated to be ~1 ppm. The NOx generation decreased with the further reduction in
the equivalence ratio due to the lower adiabatic flame temperature. Therefore, it was not
efficient to measure NO2 at Φ = 0.78 and 0.73 since the random noise was higher than
the predicted concentration. Extra data about the concentrations and uncertainties of
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these three components are listed in Table 2. The flame number and the corresponding
equivalence ratio of the flat flame are also listed.
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Figure 10. Frequency distribution of the measured data along with the Gaussian fitting based on the
time-resolved measurements of (a) H2O, (b) NO, and (c) NO2 at Φ = 0.89.

Table 2. Species mole fractions measured by TDLAS are listed beside the reference values calculated
using Chemkin or measured by a gas analyzer.

Flame No. XH2O
Chemkin/Laser Abs

XNO (ppm)
Testo 350/Laser Abs

XNO2 (ppm)
Testo 350/Laser Abs Φ

1 0.1759/0.1781 ± 0.0052 19.8 ± 5/11.39 ± 0.72 3.0 ± 5/1.15 ± 0.42 0.99
2 0.1692/0.1716 ± 0.0050 16.4 ± 5/9.43 ± 0.61 3.5 ± 5/1.32 ± 0.26 0.94
3 0.1614/0.1625 ± 0.0047 11.9 ± 5/7.64 ± 0.49 2.9 ± 5/1.30 ± 0.47 0.89
4 0.1531/0.1539 ± 0.0045 8.6 ± 5/6.40 ± 0.50 2.6 ± 5/1.29 ± 0.54 0.84
5 0.1447/0.1457 ± 0.0042 6.2 ± 5/4.32 ± 0.47 2.3 ± 5/- 0.78
6 0.1359/0.1361 ± 0.0039 4.5 ± 5/3.33 ± 0.48 1.9 ± 5/- 0.73

4.3. Comparison and Validation of Experimental Results

Under the assumption of complete combustion, temperature changes caused by the
heat loss effect have negligible impacts on the mole fraction of H2O generated from the
combustion process. The measurements of H2O and the simulation results calculated using
Chemkin are described in Figure 11. Additionally, the deviation of both data was less than
1.5% in all experimental conditions. This proves that the optical method was effective in
achieving a quantitative measurement in non-uniform flow fields.
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Figure 11. Mole fraction of H2O in combustion exhaust gas measured using absorption spectroscopy
versus equilibrium calculation using Chemkin with an equivalence ratio of 0.99–0.73.
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As described in Section 4.2, ultra-low NOx emissions were captured by both the optical
measurement and the reference sampling measurement. According to previous research,
the generation of NOx can be affected by the heat loss ratio. The definition of the heat
loss ratio and both experimental and simulation results have been published [48]. In the
presence of the radiation from the combustion zone to the surrounding environment and
the forced heat dissipation by the chiller, the effect of heat loss from the burner outlet to
the exhaust tube inlet cannot be ignored in this research, since it led to the NOx emission
being ultra-low. Despite the fact that the total heat loss ratio could be obtained using the
previous method, the proportion of radiation and the forced heat dissipation were less
clear. Moreover, the maximum temperature in the combustion zone was influenced by
the forced heat dissipation. Therefore, accurate NOx values were difficult to obtain from
the calculation.

The TDLAS results of NO and NO2 were compared with the gas analyzer results.
The deviation between the two methods may be due to the following reasons: (1) There is
an assumption in the data process that the distribution of concentration throughout the
range is uniform. However, NO2 begins dissociating near 423 K. Therefore, there may be
a concentration gradient of NOx dissociation along the LOS. (2) The measured position
of the sampling method is not exactly the same as the non-invasive optical method. (3) It
must be clarified that the measurement uncertainty of the Testo 350 is higher than the
predicted sensor accuracy in the CLD analyzer (±5 ppm) due to the loss of the condensate
and pipeline absorption.

The relative change in the NO concentration under different experimental conditions
can be reflected in the data recorded by the gas analyzer. The normalized NO emission
trends between the optical measurement and Testo 350 were similar, as shown in Figure 12.
As shown in Figure 13, NO (a) and NO2 (b) concentrations as well as measurement pre-
cisions decreased with the equivalence ratio, except for the NO2 measurement under the
operation condition of Φ = 0.99. It is worth noting that when the experimental conditions
are close to the chemical equivalence ratio, the residue of methane could affect the measured
NO2 concentration and lead to a reduction in measurement accuracy. Therefore, experi-
ments are recommended to be performed under fuel-lean conditions. Further verification
requires the measurement of the unburned hydrocarbon content (UHC).

Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 

experiments are recommended to be performed under fuel-lean conditions. Further veri-

fication requires the measurement of the unburned hydrocarbon content (UHC). 

 

Figure 12. Normalized NO concentration in combustion gas measured by optical measurement and 

a gas analyzer in a premixed flat flame with an equivalence ratio of 0.99–0.73. 

  

Figure 13. Measured NO (a) and NO2 (b) concentrations and relative precision varying with the 

equivalence ratio in combustion gases. 

5. Conclusions 

In this work, multispecies quantitative measurements of trace NO and NO2 with 

strong broad spectral H2O interference were demonstrated in combustion exhaust at high 

temperatures. The proposed strategy was based on the scanned-wavelength LCF-WMS 

method combined with temperature profile fitting. A discussion of the transition line se-

lection procedure and the trace gas detection methodology in the presence of a significant 

amount of gaseous water was presented. Absorption transitions within the near-infrared 

(~1308 nm) and mid-infrared (~6250 nm and ~5238 nm) spectra were probed for accurate 

and sensitive concentration measurements. 

Experiments were conducted at different methane mass fluxes, corresponding to an 

equivalence ratio Φ ranging from 0.73 to 0.99. The temperature variation along the optical 

path was provided by thermocouples. In the presence of a significant temperature gradi-

ent, the measured H2O mole fractions were found to be in agreement with the numerical 

simulation data calculated using Chemkin (less than 1.5%). Both optical measurements 

and traditional sampling data showed ultra-low NOx emissions. Under different combus-

tion conditions, 2s noise levels were observed to deteriorate from 0.4 to 1.0 ppm, 0.5 to 0.9 

ppm, and 1.9 to 2.4 ppm, corresponding to a relative precision level of 2.4–13.3%, 16.1–

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.0

0.2

0.4

0.6

0.8

1.0
 Reference measurement by sampling

 Optical measurement

N
o
rm

a
liz

a
te

d
 N

O
 c

o
n
c
e
n
tr

a
ti
o
n

Equivalence ratio

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

2

4

6

8

10

12

14

 NO concentration

 

Equivalence ratio

N
O

 c
o
n
c
e
n
tr

a
ti
n
 b

y
o
p
ti
c
a
l 
m

e
a
s
u
re

m
e
n
t 

(p
p
m

)

4

6

8

10

12

14

16

 Relative precision

R
e
la

ti
v
e
 p

re
c
is

io
n

(a)

0.85 0.90 0.95 1.00
0.0

0.5

1.0

1.5

2.0

 NO2 concentrationN
O

2
 c

o
n
c
e
n
tr

a
ti
n
 b

y

o
p
ti
c
a
l 
m

e
a
s
u
re

m
e
n
t 

(p
p
m

)

Equivalence ratio

10

20

30

40

50

60

70

80

 Relative precision

R
e
la

ti
v
e
 p

re
c
is

io
n

CH4

(b)

Figure 12. Normalized NO concentration in combustion gas measured by optical measurement and
a gas analyzer in a premixed flat flame with an equivalence ratio of 0.99–0.73.
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Figure 13. Measured NO (a) and NO2 (b) concentrations and relative precision varying with the
equivalence ratio in combustion gases.

5. Conclusions

In this work, multispecies quantitative measurements of trace NO and NO2 with
strong broad spectral H2O interference were demonstrated in combustion exhaust at high
temperatures. The proposed strategy was based on the scanned-wavelength LCF-WMS
method combined with temperature profile fitting. A discussion of the transition line
selection procedure and the trace gas detection methodology in the presence of a significant
amount of gaseous water was presented. Absorption transitions within the near-infrared
(~1308 nm) and mid-infrared (~6250 nm and ~5238 nm) spectra were probed for accurate
and sensitive concentration measurements.

Experiments were conducted at different methane mass fluxes, corresponding to an
equivalence ratio Φ ranging from 0.73 to 0.99. The temperature variation along the optical
path was provided by thermocouples. In the presence of a significant temperature gradient,
the measured H2O mole fractions were found to be in agreement with the numerical
simulation data calculated using Chemkin (less than 1.5%). Both optical measurements and
traditional sampling data showed ultra-low NOx emissions. Under different combustion
conditions, 2s noise levels were observed to deteriorate from 0.4 to 1.0 ppm, 0.5 to 0.9 ppm,
and 1.9 to 2.4 ppm, corresponding to a relative precision level of 2.4–13.3%, 16.1–39.8%,
and 0.6–0.8%, for NO, NO2, and H2O, respectively. The measurement precision and NOx
concentrations decreased with the equivalence ratio. The emerging water vapor lines with
high internal energy and ultra-low NOx concentrations were the main constraints in the
measurement accuracy. In addition, CH4 affected the accuracy of the NO2 measurement.
Experiments are recommended to be performed under fuel-lean conditions.

According to the case studied in combustion emissions, the developed measurement
technique was demonstrated to be reliable and appropriate for providing accurate detec-
tion of low-absorbance NO and NO2 with high H2O interference. This method can be
improved in terms of the spatial and temporal resolution and has the potential to be used
for monitoring the combustion exhaust from gas turbines.
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