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Abstract: In recent years, due to the ubiquitous presence of WiFi access points in buildings, the WiFi
fingerprinting method has become one of the most promising approaches for indoor positioning ap-
plications. However, the performance of this method is vulnerable to changes in indoor environments.
To tackle this challenge, in this paper, we propose a novel WiFi fingerprinting method that uses the
valued tolerance rough set theory–based classification method. In the offline phase, the conventional
received signal strength (RSS) fingerprinting database is converted into a decision table. Then a new
fingerprinting database with decision rules is constructed based on the decision table, which includes
the credibility degrees and the support object set values for all decision rules. In the online phase,
various classification levels are applied to find out the best match between the RSS values in the
decision rules database and the measured RSS values at the unknown position. The experimental
results compared the performance of the proposed method with those of the nearest-neighbor-based
and the random statistical methods in two different test cases. The results show that the proposed
method greatly outperforms the others in both cases, where it achieves high accuracy with 98.05% of
right position classification, which is approximately 50.49% more accurate than the others. The mean
positioning errors at wrong estimated positions for the two test cases are 1.71 m and 1.99 m, using the
proposed method.

Keywords: indoor positioning; WiFi fingerprinting; RSS; rough set; valued tolerance; decision rules

1. Introduction

Over the past ten years, location-based services have rapidly developed. In these ser-
vices, positioning is one of the most indispensable approaches. For outdoor environments,
the global navigation satellite system (GNSS) can provide very reasonable positioning
results, with an average error of 3–5 m [1]. However, this system is limited outdoors since
it cannot guarantee the same accuracy indoors, where the satellite signals are reflected or
blocked by the walls of buildings. Thus, there is an extreme demand to develop indoor
positioning systems (IPSs).

Currently, there are various technologies used to track the position of a mobile user
indoors. These technologies can be classified into two groups: building independent and
building dependent. The first group includes the IPSs that do not rely on the infrastructure
of a building to determine the user’s position. Some examples for this group are dead
reckoning [2] and image-based [3] technologies. On the other hand, the IPSs that relate
to the building where they are operated belong to the second group. For this group, we
can divide it into two subgroups: the dedicated infrastructure required and the building’s
infrastructure utilized. The former subgroup is defined as the IPSs that need the unpopular
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infrastructure to be set up in a building. Radio frequency identification [4], acoustic sig-
nal [5], or visible light communication [6] are some examples belonging to this group. The
latter subgroup utilizes the common infrastructure in the building to create the IPSs such as
Bluetooth [7,8] and WiFi [9,10]. Among these technologies, WiFi-based positioning [11–13]
has drawn tremendous attention due to the widespread of WiFi infrastructure in indoor
environments such as office buildings, hospitals, malls, etc. Moreover, the high populariza-
tion of smart devices such as smartphones or tablets and the compatible implementation of
these devices with WiFi systems also leads to the large deployment of this technology for
IPS. To enhance the performance of the WiFi-based positioning system, there are hybrid
systems that combine the result of the WiFi with other technologies, such as pedestrian
dead reckoning [2,9], camera [14], or magnetic field [15].

There are two main approaches for WiFi-based positioning: geometric and fingerprint-
ing [16]. For the former approach, some common conventional positioning methods are the
time of arrival [17], time difference of arrival [18], angle of arrival [19], etc. The positioning
accuracy of these methods depends on the line-of-sight condition, which is hard to keep
indoors, where there are many physical obstacles, such as walls or doors. For the latter one,
the WiFi fingerprinting method is another popular method due to its low cost and ease
of implementation on smart devices. However, the reflections, the multipath interference,
or the changes in the environmental conditions could greatly degrade the performance of
this method. Therefore, achieving a reliable and highly accurate WiFi fingerprinting-based
positioning method is a challenging problem.

The traditional WiFi fingerprinting method has two phases: the offline and the online
phases. In the offline phase, the radio map is built by collecting the RSS values from
the available APs at different reference points (RPs) in a target area. The unique set of
RSS values at one RP is defined as a fingerprint of that position. In the online phase, by
comparing the measured RSS values at one unknown position with the RSS values from
the radio map using different matching methods, the user’s position can be estimated.

The conventional rough set theory was first proposed by Pawlak [20] as an extension
of classical set theory to deal with vague information. This theory conceives that infor-
mation and knowledge in information systems are expressed via indiscernibility relations
(equivalence relations) between objects in the object set. The rough set theory is used for
big data mining and knowledge reduction [21,22] and can be applied in various fields
such as information systems [23] or real estate market analysis [24,25]. To give a more
flexible way to the rough set theory to handle the indiscernibility relation, Stefanowski and
Tsoukias [26] introduced the valued tolerance relation and proposed the valued tolerance
rough set and decision rules method (VTRS–DR). This method is often applied as a support
tool in decision-making systems. Rough set theory based on valued tolerance relation
calculates the valued tolerance relation for all objects in the decision table, resulting in a
valued tolerance relation matrix where the values belong to [0, 1]. This is the extension of
the conventional rough set theory proposed by Pawlak.

When applied to WiFi fingerprinting-based indoor positioning, the VTRS–DR works
not only in the offline phase but also in the online phase. In the offline phase, the con-
ventional RSS fingerprinting database is converted into a decision table where the RSS
values are classified into different decision classes which correspond to the predefined RPs.
Each tolerance granule corresponding to each object (i.e., one row in the decision table)
is calculated based on the valued tolerance relation matrix. After calculating the values
of the membership degrees of objects belonging to lower (upper) approximations of each
decision class, the credibility degrees of decision rules (i.e., objects in the decision table)
are also calculated. Besides that, the support object set values of decision rules are defined
by the tolerance granule of objects. A new fingerprinting database with decision rules is
constructed from the decision table that includes the credibility degrees and the support
object set values for all decision rules. In the online phase, the valued tolerance relation is
calculated between the RSS values in the new database and the measured RSS values at
an unknown position. The best decision class (i.e., one RP) is chosen among a set of RPs
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via the proposed method by comparing various components such as the valued tolerance
relations, the credibility degrees, the support object set values, and the Euclidean distances;
thus, the user’s position can be estimated. In our work, it means estimating the unknown
position as the RP closest to that position.

To deal with the instability in RSS values from APs, in this paper, a novel VTRS–
DR-based WiFi fingerprinting for IPS is proposed. The VTRS–DR method provides an
efficient computational structure and helps to solve the indoor positioning problem with
high accuracy. The main contributions are figured out as follows:

• The VTRS–DR method is applied in the offline phase of the WiFi fingerprinting
method by creating a new fingerprinting database with decision rules that includes
the credibility degrees and the support object set values for all rules.

• The VTRS–DR method is also applied in the online phase of the WiFi fingerprinting
method by estimating the user’s position based on the fingerprinting decision rules
database and the measured RSS value to determine the user’s position.

• For performance evaluation, the proposed method is compared with the nearest
neighbor-based and the random statistical methods to prove its superior positioning
accuracy and robustness.

The rest of this paper is organized as follows. Section 2 discusses the related works.
Section 3 describes the basis of the VTRS–DR method. Section 4 introduces the proposed
positioning method. Experimental results are displayed in Section 5, and the conclusion is
given in Section 6.

2. Related Works

Generally, there are two categories of WiFi fingerprint-based matching algorithms:
deterministic and probabilistic. The deterministic algorithm is very common due to its
ease of implementation and its possibility to work well in real time. The nearest neighbor
(NN), KNN, and weighted KNN (WKNN) [27,28] are some of the popular deterministic
algorithms. To handle the fluctuation of WiFi RSS values, as well as to normalize them,
Ninh et al. [10] introduced the random statistical method in the offline phase. The method
helped to create a standardized fingerprinting database. In the online phase, to figure
out the unknown position of a user, the authors applied the Mahalanobis distance as the
matching algorithm to improve the positioning accuracy. The experiments were conducted
in different setup conditions in an office room. As a result, the maximum positioning error
was only 0.75 m. In Reference [29], instead of using the common Euclidean distance in
NN-based algorithms, Duong-Bao et al. implemented five distance measures and compared
the positioning results in different settings such as changing the number of setup APs or
changing the grid spacing between two RPs. The experimental results showed that the
Chi-Squared distance is the best measure with a mean error of 1.17 m in two test cases.
Even though these deterministic algorithms could reduce computational complexity, they
used only a single reference fingerprint for each RP (i.e., a set of mean RSS values from
available AP) for finding the best match between the measured RSS values at an unknown
position and the fingerprints in the database, and this could lead to big positioning errors
due to the instability of the RSS values.

On the other hand, the probabilistic algorithm needs to know the probability distri-
bution of the RSS values from available APs at every RPs. Even though this algorithm
can provide good accuracy, it is more complex than the deterministic algorithm, and the
positioning performance relies on the computation of likelihood functions. Some popular
probabilistic algorithms are the Kalman filter [9], particle filter [30], and hidden Markov
models [31]. Using two Kalman filters, Zhuang et al. [32] fused the positional information
from the micro-electromechanical system (MEMS) sensors and WiFi fingerprinting to en-
hance the tracking accuracy. The MEMS sensors helped to reduce the searching space of
WiFi fingerprinting by using an extended Kalman filter, and another Kalman filter was
applied to smooth the positioning result of WiFi fingerprinting. From two test scenarios,
the results showed that the proposed method improved the accuracy by 47% and 28%
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with mean errors of 2.2 m and 2.6 m, respectively. In Reference [33], Deng et al. also used
the extended Kalman filter in the integrated system, which consisted of pedestrian dead
reckoning, WiFi fingerprinting, and special positions in a building (i.e., doors, elevators,
escalators, etc.) to reduce the positioning error. From the experiments, it was shown that
the mean positioning error was only 1.22 m in a test area of 487.2 m2. The two above
methods obtained good positioning results; however, they could not completely handle
the variation of the RSS values, even though they used different sources (i.e., smartphone
sensors and special positions in a building), which would make the systems become more
complicated, to calibrate for estimated user’s position.

Currently, many latest works use the WiFi fingerprinting technique as the main tool
to determine the user’s position with the help of machine learning techniques [34–38]. In
Reference [37], based on the conventional WiFi fingerprinting, Song et al. proposed the
CNNLoc which combined the stacked auto-encoder and convolutional neural network
(CNN) to track the users’ positions in multi-buildings with multi-floors. The framework
required a lot of data preprocessing in the training phase, such as sub-datasets division,
rectangle areas creation, cell grids division, etc. As the result, the proposed method obtained
a 96.03% accuracy of floor classification with a positioning error of 11.78 m. Moreover,
using the deep learning approach, Qin et al. [38] combined the convolutional denoising
autoencoder (CDAE) and CNN for the IPS. In the offline phase, the K-means algorithm was
used to extract the set of features. During the online phase, the RSS values were put into
the CDAE to extract the main features, and then the CNN was used to find out the user’s
position. The experimental results showed that the mean positioning errors were 1.05 m
and 12.4 m for two different datasets. These methods were vulnerable to the changes of
RSS values, and they were required to be adjusted to work well with different buildings.

The RSS values collected even from the same AP can fluctuate much due to the
changes of environmental conditions, such as the number of working people, the number
of electrical devices, the user’s body, the period in a day, etc. The aforementioned works
have not controlled the instability of the RSS values perfectly. Therefore, we propose a
novel WiFi fingerprinting-based method, which utilizes the valued tolerance rough set and
decision rules method to classify the user’s position among predefined reference points. To
the best of our knowledge, applying the VTRS–DR method to solve the indoor positioning
challenge has never been recorded before.

3. VTRS–DR Method

Say we have a set of objects, U = {u1, u2, . . . , um} (m is the total number of the finger-
prints of RPs), that can be characterized by a set of conditional attributes,
C = {RSS1, RSS2, . . . , RSSn} (a set of n RSS values collected from n APs at one RP,
n < m). If we denote a subset of objects in U by a decision attribute d /∈ C (with
d ∈ {RP1, RP2, . . . , RPN}), which is one RP in a set of N RPs, then we define the deci-
sion table DT = (U, C ∪ {d}). The decision attribute d partitions set U into N decision
classes (N ≤ m) as Dl , l = 1, 2, . . . , N, with each class being one RP in the fingerprint-
ing database. Each decision class is a tolerance class. At the beginning of the VTRS–DR
method, the relations between the objects and the attributes can be represented through
the decision table, DT, which is given in Table 1. In this table, n conditional attributes
(i.e., n RSS values from n APs) C = {RSS1, RSS2, . . . , RSSn} are given and each attribute
RSSj, j = 1, 2, . . . , n, has its RSS values changing in the interval [–100, 0] (dBm). Here,
each object (i.e., one row in Table 1) represents one fingerprint (i.e., a unique set of RSS
values) of the given RP, which is a decision class. It is worth noting that, in the decision
table, DT, we do not need to sort the RPs by their orders, and the number of appearing
times of each decision class (i.e., each RP) can be different which depends on the number of
RSS scanning times at each RP.



Sensors 2022, 22, 5709 5 of 26

Table 1. The structure of the decision table.

U RSS1 (dBm) RSS2 (dBm) . . . RSSn (dBm) d

u1 −51 −54 . . . −52 RP1
u2 −46 −47 . . . −51 RP2
u3 −50 −56 . . . −53 RP1
...

...
...

...
...

...
um−1 −76 −43 . . . −41 RPN

um −73 −41 . . . −38 RPN

To explain the VTRS–DR method clearly, we are able to give some basic definitions.

Definition 1. Valued tolerance relation among the objects of set U built on a set of conditional
attributes A ⊆ C is denoted by RA (i.e., RA : U ×U → [0, 1] ). RA satisfies two properties: (a)
reflexive, ∀u ∈ U, RA(u, u) = 1; and (b) symmetric, ∀u, v ∈ U, RA(u, v) = RA(v, u).

Definition 1 is used to determine whether the objects of set U satisfy the valued
tolerance relation built on a set of conditional attributes, A ⊆ C. If a pair of objects has the
valued tolerance relation, then these objects may belong to the same tolerance class.

Definition 2. The valued tolerance relation of each attribute RSSj, in any two objects, u, v ∈ U, is
denoted by Rj(u, v) and calculated as follows:

Rj(u, v) =
max

(
0, min

(
RSSj(u), RSSj(v)

)
+ k j −max

(
RSSj(u), RSSj(v)

))
k j

(1)

where RSSj ∈ A ⊆ C, k j > 0 is the discrimination threshold value of the attribute RSSj,
j = 1, 2, . . . , n. The discrimination threshold, k, is defined as the threshold of the
similarity measure. The value k j is used to measure the similarity between two values
of the attribute RSSj. From Equation (1), ∀u, v ∈ U : RA(u, v) = 1⇔ RSSj(u) = RSSj(v) ,
RA(u, v) = 0⇔

∣∣RSSj(u)− RSSj(v)
∣∣ ≥ k j , and 0 < RA(u, v) < 1⇔

∣∣RSSj(u)− RSSj(v)
∣∣

< k j. The value k j determines whether the two objects are indiscernible (equivalent) with
the respect to each attribute in rough set theory.

Definition 2 is used to calculate the valued tolerance relation between a pair of objects
in U built on a conditional attribute, RSSj ∈ A ⊆ C. This definition supports the calculation
of the valued tolerance relation between two objects in Definition 3.

Definition 3. The valued tolerance relation between two objects, u, v ∈ U, on a set of conditional
attributes, A ⊆ C, is denoted by RA(u, v) and calculated as follows:

RA(u, v) = min
RSSj ∈ A

(
Rj(u, v)

)
(2)

From Equation (2), ∀u, v ∈ U : 0 ≤ RA(u, v) ≤ 1, and RA(u, v) satisfies two properties,
(a) and (b), of the valued tolerance relation.

Definition 3 used is to determine the valued tolerance relation between a pair of objects
in U built on a set of conditional attributes, A ⊆ C. If RA(u, v) = 0, and then two objects,
u, v ∈ U, are not related. If 0 < RA(u, v) ≤ 1, then two objects have a valued tolerance
relation. If RA(u, v) is closer to 1, then two objects are more related. Then the valued
tolerance relation matrix is built, ∀ (u, v) ∈ U ×U : 0 ≤ RA(u, v) ≤ 1, where this matrix is
symmetric with the main diagonal is equal to 1. This definition supports Definition 4 to
calculate the tolerance granule for each object in U.

Definition 4. A tolerance granule of object u ∈ U for relation RA is denoted by RA(u) and
calculated as follows:
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RA(u) = {v ∈ U : RA(u, v) > 0} (3)

Definition 4 is used to determine whether the objects in U have the valued tolerance
relation with an object, u ∈ U, built on a set of conditional attributes, A ⊆ C. Here, RA(u)
is a tolerance granule of u, where it carries a set of objects that has the valued tolerance
relation with u (i.e., a set of supporting objects of u). This definition supports Definition 5
to determine the lower and upper approximations of the decision classes (i.e., the tolerance
classes) built on a set of conditional attributes, A ⊆ C.

Definition 5. With a set of decision classes, D ⊆ U, a subset of conditional attributes, A ⊆ C, and
an object, u ∈ U, the lower approximations and upper approximations of D for A are denoted by
DA and DA and defined as follows:

DA = {∀u ∈ U : RA(u) ⊆ D} (4)

DA =
{
∀u ∈ U : RA(u) ∩ D 6=
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Definition 5 used is to determine a lower approximation, DA, of decision class D,
which has tolerance granules, RA(u), involved in D and an upper approximation, DA, of
D that has tolerance granules, RA(u), intersected with D. In this way, any objects that
belong to DA are certainly involved in D; meanwhile, any objects that belong to DA can be
involved in D or not. Therefore, the determination of the lower and upper approximations
plays an important role in the performance of the VTRS–DR method since it strongly affects
the decision results, as well as the calculation space. The closer the DA and DA are to the
D, the more accurate the results and the lower the computational cost.

Definition 6. With a set of decision classes, D ⊆ U, a subset of conditional attributes, A ⊆ C, and
an object, u ∈ U, the membership degrees of object u ∈ U belonging to DA and DA are denoted by
µDA(u) and µDA(u) and calculated as follows:

µDA(u) = min
v∈RA(u)

(max(1− RA(u, v), v̂)) (6)

µDA(u) = max
v∈RA(u)

(min(RA(u, v), v̂)) (7)

where v̂ is the membership degree of object v in the set D (i.e., v̂ =

{
1, v ∈ D
0, v /∈ D

or v̂ ∈ {0, 1}).

Definition 6 is used to calculate the membership degree of an object, u ∈ U, to find out
whether it belongs to the lower or upper approximation. The µDA(u) and µDA(u) values
are in the interval between 0 and 1; thus, the object, u, will belong to the approximation
that is closer to 1. This is an important criterion to determine the decision class, D, that the
object, u, belongs to.

Definition 7. With a decision table DT = (U, C ∪ {d}) and a subset of attributes, A ⊆ C, a
decision rule that describes an object, ui ∈ U, i = 1, 2, . . . , m, is denoted by ρi, and defined by
the following:

ρi
def
= ∧

RSSj ∈ A

(
RSSj = RSSj(ui)

)
→ (D = d(ui)) (8)

where RSSj(ui) is a value of RSSj ∈ A and (D = d(ui)) is a decision class based on decision
attribute d of the object ui.

Definition 7 is used to describe a decision rule, ρi, corresponding to an object, ui ∈ U,
i = 1, 2, . . . , m. In Equation (8), the left side presents a set of conditional attributes, A ⊆ C,
and the right side presents a decision attribute, d, corresponding to a decision class that
involves the object, u.
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Definition 8. With a subset of attributes, A ⊆ C, the credibility degree of a decision rule ρi,
i = 1, 2, . . . , m, is denoted by µA(ρi) and calculated as follows:

µA(ρi) = min
u∈SA(ρi)

(
max

(
1− RA(ρi, u), µDA(u)

))
= min

u∈RA(ui)

(
max

(
1− RA(ui, u), µDA(u)

)) (9)

Definition 8 is to calculate the credibility degree of a decision rule, ρi, i = 1, 2, . . . , m.
The µA(ρi) value is in the interval between 0 and 1. If this value is closer to 1, then it is
reliable that the object ui is involved in the decision class D. This is an important criterion
for classifying a new object into a decision class.

Definition 9. With a subset of attributes, A ⊆ C, a support object set of a decision rule ρi,
i = 1, 2, . . . , m, is denoted by SA(ρi) and calculated as follows:

SA(ρi) = {u ∈ U : RA(ρi, u) > 0} = {u ∈ U : RA(ui, u) > 0} = RA(ui) (10)

In Equation (10), SA(ρi) is the tolerance granule of rule ρi for relation sA. It means,
on binary relation {ρi}m

i=1 ×U, and with a set of conditional attributes, A ⊆ C, we build
a valued tolerance relation, sA : {ρi}m

i=1 ×U → [0, 1] , such that sA(ρi, u) > 0, where
sA(ρi, u) is the support degree of rule ρi for object u ∈ U. Object u is similar to some extent
to the conditional part of the rule ρi on the set of conditional attributes, A ⊆ C. Moreover, sA
is a valued tolerance relation defined exactly as the relation RA. Thus, sA(ρi, u) is calculated
as in Equation (3), i.e., ∀u ∈ U and i = 1, 2, . . . , m, sA(ρi, u) ≡ RA(ρi, u) ≡ RA(ui, u),
where ui is an object of the rule ρi.

Definition 9 is to determine the SA(ρi), a support object set of a decision rule, ρi,
corresponding to an object, ui, i = 1, 2, . . . , m. The SA(ρi) of ρi is equivalent to a tolerance
granule, RA(ui), of the object ui. If many decision classes have the same credibility degrees,
then it is difficult to decide which class the object ui belongs to; thus, the support object set
of each class will help to solve the problem of classification. This value plays an important
role in classifying a new object into a decision class.

4. The Proposed Positioning Method

In this section, to apply the VTRS–DR method to the WiFi fingerprinting method, we
recount how we used the VTRS–DR method with a set of conditional attributes, A = C,
meaning that the whole set of C (i.e., the whole APs) in the decision table, DT, was applied.
Figure 1 shows the overall structure of the proposed method. The method is applied not
only in the offline phase but also in the online phase. For the offline phase, at each reference
point, RPl , l = 1, 2, . . . , N, a large number of RSS values from n APs is collected. Then
the original RSS fingerprinting database is created, as shown in Table 2. The structure of
this database is presented as follows: {Position, Coordinate, RSS values from APs}. To
make this database similar to the decision table, DT, in Table 1, two parts {Position, RSS
values from APs} in the original database are copied, and the index of each row is added
as the first column to mark the objects. Finally, Algorithm 1 is applied to the DT to make
the fingerprinting decision rules database. The structure of the fingerprinting decision
rules database is shown in Table 3, with the format as follows: {Rule, Conditions of rule,
Decision attribute, Support components}. Here, the support components include two
values: the credibility degree and the support object set value. For the online phase, based
on the fingerprinting decision rules database and measured RSS values θ = (θ1, θ2, . . . , θn)
received from one unknown position, the user’s position is obtained via Algorithm 2.
Algorithm 2 chooses the best RP candidate as the user’s position among the whole RPs
by considering the valued tolerance relation, the credibility degree, the support object
set value, and the Euclidean distance. One example of the proposed method can be seen
in Appendix A.
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Algorithm 1: The Construction of a Fingerprinting Decision Rules Database for IPS

Input: The decision table DT.
Output: The fingerprinting decision rules database.
Step 1. Create the valued tolerance relation matrix from relations of all pairs of two objects (two
rows) in DT: RA(u, v), ∀u, v ∈ U (Equation (1) and Equation (2)).
Step 2. Determine the tolerance granule, RA(u), ∀u ∈ U (Equation (3)).
Step 3. Determine the set of decision classes D (i.e., a total number of RPs) of decision table, DT,
based on the decision attribute, d. For each decision class, Dl , calculate the lower approximations,
(Dl)A and the upper approximations, (Dl)

A, l = 1, 2, . . . , N (Equation (4) and Equation (5)).
Step 4. Calculate the membership degrees, µ(Dl)A

(u) and µ
(Dl)

A (u), of object u, corresponding to

(Dl)A and (Dl)
A, ∀u ∈ U, ∀Dl ∈ {D1, D2, . . . , DN} ≡ {RP1, RP2, . . . , RPN} (Equation (6) and

Equation (7)).
Step 5. Define the decision rule, ρi, that describes the object, ui ∈ U, on the set of attributes A,
i = 1, 2, . . . , m (Equation (8)).
Step 6. Calculate the credibility degree, µA(ρi), of a decision rule, ρi, i = 1, 2, . . . , m (Equation
(9)).
Step 7. Define the support object set, SA(ρi), of a decision rule, ρi, for the set of attributes A,
i = 1, 2, . . . , m (Equation (10)).
Step 8. Create the fingerprinting decision rules database.
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Table 2. The original RSS database.
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Algorithm 2: The Advanced Positioning Algorithm Based on the Proposed VTRS–DR 
Method 
Input: Set of measured RSS values, 𝜃, fingerprinting decision rules database. 
Output: Position of the user. 
Step 1. Calculate the valued tolerance relation between 𝜃 to conditions of rule 𝜌௜: 𝑅஺(𝜃, 𝜌௜), 𝑖 = 1, 2, … , 𝑚 (i.e., 𝑅஺(𝜃, 𝜌௜)  = 𝑚𝑖𝑛ோௌௌೕ ∈ ஺ ቀ𝑅௝(𝜃, 𝜌௜)ቁ, as in Equation (2)). 

Step 2. Determine the smallest value 𝜇ఘ೔(𝜃) between the valued tolerance relation 𝑅஺(𝜃, 𝜌௜) and the credibility degree of rule 𝜌௜: 𝜇ఘ೔(𝜃) = 𝑚𝑖𝑛൫𝑅஺(𝜃, 𝜌௜), 𝜇஺(𝜌௜)൯, 𝑖 =1, 2, … , 𝑚. 
Step 3. Calculate the credibility degree of 𝜃 to each decision class 𝐷௟ (i.e., one RP), 𝑙 =1, 2, … , 𝑁: 𝜇஽೗(𝜃) = 𝑚𝑎𝑥ఘ೔∈ோ(஽೗) ቀ𝜇ఘ೔(𝜃)ቁ, where 𝑅(𝐷௟) is the set of all decision rules that be-

longs to 𝐷௟ and having 𝜇ఘ೔(𝜃) > 0, 𝑖 = 1, 2, … , 𝑚.  
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Algorithm 2: The Advanced Positioning Algorithm Based on the Proposed VTRS–DR Method

Input: Set of measured RSS values, θ, fingerprinting decision rules database.
Output: Position of the user.
Step 1. Calculate the valued tolerance relation between θ to conditions of rule ρi: RA(θ, ρi),

i = 1, 2, . . . , m (i.e., RA(θ, ρi) = min
RSSj ∈ A

(
Rj(θ, ρi)

)
, as in Equation (2)).

Step 2. Determine the smallest value µρi (θ) between the valued tolerance relation RA(θ, ρi) and
the credibility degree of rule ρi: µρi (θ) = min(RA(θ, ρi), µA(ρi)), i = 1, 2, . . . , m.
Step 3. Calculate the credibility degree of θ to each decision class Dl (i.e., one RP), l = 1, 2, . . . , N:
µDl (θ) = max

ρi∈R(Dl)

(
µρi (θ)

)
, where R(Dl) is the set of all decision rules that belongs to Dl and

having µρi (θ) > 0, i = 1, 2, . . . , m.
Step 4. Choose the class Dl that maximizes the credibility degree µDl (θ). If ∃!Dl : µDl (θ) is at the
maximum, then choose this Dl as the user’s position.
Step 5. If the same maximum credibility degrees exist on different L (L < N) decision classes,{

Dl1 , Dl2 , . . . , DlL

}
, then calculate the relative supports of rules in

{
Dl1 , Dl2 , . . . , DlL

}
, as denoted

by Supp(ρi). Note that Supp(ρi) is a ratio of the number of the support object set SA(ρi) to the
total number of the set of all objects in any decision class which has the rule ρi.
Step 6. Calculate the aggregated support of θ as SuppDlp

(θ) = max
ρi∈R(Dlp )

(Supp(ρi)),

p = 1, 2, . . . , L.
Step 7. Choose the Dlp that maximizes the aggregated support SuppDlp

(θ). If ∃!Dlp : SuppDlp
(θ)

is at the maximum, then choose this Dlp as the user’s position.
Step 8. If the same maximum aggregated support values, SuppDlp

(θ), exist on many decision
classes, then use the Euclidean distance to choose the decision class Dlp which has the minimum
distance between the set of measured RSS values θ and the mean of RSS values of that decision
class; then choose that class (i.e., one RP) as the user’s position.

5. Experimental Results
5.1. Experimental Setup

To validate the efficiency and accuracy of the proposed method, we used the dataset
introduced by Duong-Bao et al. [39]. The dataset was created in an office room at Hunan
University, China, over four months. The room had an area of 9.0 × 6.5 m2. Five APs were
installed at different positions, and each one was fixed at 1.1 m to 1.6 m from the ground, as
can be seen in Figure 2. The smartphone played a role as a client to send the scanned RSS
values to the server (i.e., the laptop). This server was responsible for storing the RSS values,
creating the radio map, and classifying the user’s position among predefined RPs. Figure 3
shows the positions of the APs, as well as the RPs in a two-dimensional coordinate. From
this figure, there existed 205 RPs in the room, and the grid spacing between two adjacent
RPs was 0.5 m. The starting point (RP0) was marked at the entrance door on the top left of
the figure, and the other RPs were marked orderly from the left side to the right side, and
from the top to the bottom. The last point (RP204) ended at the bottom right, where it was
nearby the AP3.

In the offline phase, a subject holding a smartphone in front of his body stood at
each determined RP to collect the RSS values from the five available APs. For each RP,
the subject scanned the RSS values 100 times in different directions, meaning that there
were 20,500 scanning times for 205 RPs. In this phase, various environmental conditions
(i.e., the density of people and electrical devices, the direction of the user, the period of a
day, etc.) were considered to create a noisy and complex fingerprinting database. In the
online phase, the RSS values were collected in two separate test cases which were set up
with different environmental conditions. Table 4 shows the conditions for the RSS collection
of the two cases. For each case, the subject stood on each RP and used the smartphone
to scan the RSS values once, meaning that the subject collected the RSS values 205 times
over 205 RPs (i.e., 410 times in two cases). More detailed descriptions of the dataset can be
found in Reference [31].
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Table 4. The difference in environmental conditions in Case 1 and Case 2.

Conditions Case 1 Case 2

Density of people 1 to 9 6 to 13

Density of electrical devices 11 20

Temperature Cool Warm

Height from the ground 1.3 m 1.3 m

Subject direction Random Random
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5.2. Experimental Results

From the aforementioned dataset, in this experiment, the fingerprinting decision rules
database was created from the original RSS fingerprinting database, which involves the RSS
values collected from 205 RPs in the offline phase. Therefore, the training data used to build
the new database include 20,500 objects corresponding to 20,500 samples (i.e., 20,500 rows)
and five conditional attributes corresponding to five APs (i.e., five columns). At each RP
position, the subject collected the RSS values 100 times; thus, there are 100 rules for each
class (i.e., each RP), which also means that, for each RP, there are 100 collected fingerprints
(i.e., set of RSS values). The testing data used the two test cases that were collected in the
online phase of the above dataset to classify the user’s position. For each test case, the RSS
values from the five APs were collected at each RP once, meaning there were 205 sets of
RSS values collected over 205 RPs used for performance evaluation.

The discrimination thresholds, k, corresponding to the number of conditional attributes
are shown in Table 5. To the best of our knowledge, the k values are mostly chosen from the
trial-and-error method, meaning that different sets of k values were put into the proposed
method and repeatedly tested to find out the best k values. We chose the discrimination
threshold values, k j, for each attribute RSSj, j = 1, 2, . . . , n, to measure the similarity
among the objects and calculate the experimental results to find out which set of k j can help
the VTRS–DR method to achieve the best result. With each set of k j, the VTRS–DR method
builds a fingerprinting decision rules database. We used the database with 20,500 rows
to test with the fingerprinting decision rules database corresponding to each k. From the
classification results corresponding to different sets of k values, we then chose the set that
maximizes the result.

Table 5. The discrimination threshold values, k.

Attribute RSS1 RSS2 RSS3 RSS4 RSS5

kj 1.97 1.98 1.96 1.95 1.99

To evaluate the performance of our proposed method, we compared it with the NN-
based methods (i.e., the 1-NN and WKNN (K is chosen as 3)) [17] and the random statistical
(RS) method [14]. Note that the NN-based methods use the original fingerprinting database
and the RS method uses the standardized fingerprinting database; meanwhile, the proposed
method uses the fingerprinting decision rule database when matching with the measured
RSS values in the online phase. For the compared methods, in the offline phase, the
fingerprint of one RP is presented as a set of means of collected RSS values (i.e., 100 RSS
values for each available AP at that RP). In the online phase, the NN-based and RS methods
calculate the distance between the measured RSS values with the fingerprints of the whole
RPs to find out the user’s position. The Euclidean distance was used for the two NN-based
methods, while the Mahalanobis distance was used for the RS method, respectively. The
mean error in the experiment is calculated as follows:

∆ME =
∑N

l=1 El

N
(11)

where ∆ME is the mean error (m), N is the number of RPs used in the online phase
(N = 205), and El is the Euclidean distance between RPl and its classified position.

Figure 4 shows the results of positioning errors of the four methods for the dataset
of Case 1. It can be seen from the figure that the VTRS–DR method achieves the best
results, as it can mostly find out the exact user’s positions among the predefined RPs
(i.e., the same positions as the RPs where the user stood), which means no error (0 m). In
Figure 4, there are only four positions (the 15th, 44th, 86th, and 162nd positions) where the
proposed method obtains the wrong results, while the 1-NN and RS methods obtain 93 and
113 wrong results. The positioning errors corresponding to the four wrong estimated
positions are 1 m, 3.35 m, 1.80 m, and 0.71 m, respectively. Comparing the mean positioning
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errors, the 1-NN, WKNN, and RS methods achieve errors around 1 m, which are 1.13 m
for 1-NN, 1.17 m for WKNN, and 0.94 m for RS, respectively. Meanwhile, the mean errors
of the proposed method are far better than others with only 0.033 m. A deeper statistical
comparison of error positions is pointed out in Table 6. In this table, we can see that the
WKNN method has the smallest minimum positioning error, with only 0.05 m, while the
maximum error of the VTRS–DR method is only 3.35 m, which is approximately half of
that of other methods, with 8.02, 7.03 m, and 6.73 m, respectively. However, the mean
positioning error at wrong classified positions of the proposed method is not the smallest
one (1.71 m with the standard deviation of 1.03 m), as it is higher than the WKNN mean
error of only 1.17 m but lower than the two others, 2.05 m and 2.06 m. The results show
the superiority of the VTRS–DR method to other methods for the dataset of Case 1 since
it improves the classified accuracy from the above methods by 53.17% and 43.42%. The
WKNN method cannot provide the exact positions where the user stood since this method
calculates the mean positions from the three nearest candidates.
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Table 6. Statistical comparison of four methods in Case 1 at error positions.

1-NN WKNN RS VTRS–DR

No. of Errors 113 205 93 4

Max (m) 8.02 7.03 6.73 3.35

Min (m) 0.50 0.05 0.50 0.71

Mean (m) 2.05 1.17 2.06 1.71

Stdev (m) 1.69 1.15 1.52 1.03

Figure 5 displays the positioning errors of the four methods for the dataset of Case
2, where the environmental conditions were set up as being more complicated, such as
increasing the number of working people or increasing the number of electrical devices.
Overall, even though the testing condition is more complex, the proposed method is still
better than others since it still maintains a very small number of wrong estimated positions
with only four errors (the 46th, 62nd, 86th, and 99th positions) compared to the 1-NN
(116) and RS (108) methods, meaning that it reduces the classification errors by 54.64% and
50.73%, respectively. The positioning errors corresponding to the four wrong estimated
positions are 1.58 m, 3.16 m, 1.80 m, and 1.41 m, respectively. The mean positioning error of
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the proposed method is the best one with only 0.039 m, while the others’ errors are around
1.2 m. Table 7 shows the further statistical analysis of the four methods in Case 2 at error
positions. From this table, the proposed method still achieves the smallest maximum error
with 3.16 m, but the mean positioning error of the WKNN method is higher than others
with 1.26 m.
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Table 7. Statistical comparison of four methods in Case 2 at error positions.

1-NN WKNN RS VTRS–DR

No. of Errors 116 205 108 4

Max (m) 7.65 7.00 7.02 3.16

Min (m) 0.50 0.001 0.50 1.41

Mean (m) 2.10 1.26 2.21 1.99

Stdev (m) 1.67 1.20 1.62 0.69

Moreover, the cumulative position error distributions in the two test cases are shown
in Figure 6. For Case 1 (a), at the 60th percentile, the positioning error of the proposed
method is 0 m, and at the 90th percentile, the error is still 0 m. The 0 m error continues
until the 98th percentile. At the same percentiles, the errors of the NN, the WKNN, and
RS methods are 0.68 m, 0.48 m, and 0.93 m at the 60th percentile and 3.24 m, 3.02 m,
and 2.61 m at the 90th percentile, respectively. From this result, the VTRS–DR method
certainly achieves much better accuracy compared to others. For Case 2 (b), the same
phenomenon for the positioning errors among four methods also happens where the error
of the proposed method is greatly smaller than the results of the other methods at the same
percentiles. From both test cases, the VTRS–DR method outperforms the performance of the
other methods from the point of view of classification since it can help to correctly classify
the unknown position among the predefined RPs. The major reason for the extraordinary
results of the proposed method is that it uses many classification levels (i.e., calculating
the valued tolerance relation, the credibility degree, the support object set value, and the
Euclidean distance).
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The computational cost of the four implemented methods is analyzed by calculating
the running time of each method on MATLAB (R2019a). We used a Dell Vostro laptop which
was equipped with an Intel(R) Core (TM) i7-8550U CPU @1.80 GHz processor, 8 GB RAM,
and 128 GB SSD. The operating system was Microsoft Windows 10 Professional Edition
(64-bit). The computational cost for creating the fingerprinting decision rules database in
the offline phase is approximately 96.62 min, and the time for creating the valued tolerance
relation matrix obtains 89.34% of the total running time. Furthermore, Figure 7 shows the
running time of the four algorithms over 205 RPs in Case 1 to classify the user’s position in
the online phase. The figure revealed that the 1-NN becomes the smallest average cost of
about 0.0002 s while the VTRS–DR method obtains the biggest average cost of about 0.12 s.
Concurrently, the WKNN and RS methods obtain the average values of 0.0077 and 0.0155 s,
respectively. From the above costs in two phases, we can easily see that the proposed
method will take lots of time to build the fingerprinting decision rules databases, especially
the valued tolerance relation matrix, but it does not take much time to estimate the user’s
position in the online phase. This means that the proposed method can be used in the
real-time scenario, while the database creation can be performed on the server readily.
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Furthermore, to evaluate the robustness of the proposed method, we intentionally
reduced the number of APs to four and three APs instead of using the default five APs.
Since there are many possible sets of using four or three APs, we used the combination
method to consider the whole possible cases. Therefore, if we consider three APs, the
number of possible cases is C3

5 = 10, and with four APs, this number is C4
5 = 5, respectively.

The positioning results of the proposed method in two test cases were also compared to the
1-NN, WKNN, and RS methods. Tables 8 and 9 show the mean positioning errors among
the four methods in two cases with different combinations of four APs. For example, the
notation {1, 2, 3, 4} in the tables represents the combination of four APs from 1 to 4. From
both tables, even though the mean positioning errors of all cases increase, the VTRS–DR
method still shows the best performance. The error of the proposed method is by far much
lower than the others.

Table 8. Mean errors of using four APs in Case 1.

Case 1 (4 APs) {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5} Mean (m)

1-NN 1.374 1.433 1.411 1.471 1.390 1.416

WKNN 1.352 1.346 1.532 1.371 1.514 1.423

RS 1.588 1.350 1.407 1.462 1.636 1.489

VTRS–DR 0.210 0.184 0.315 0.227 0.334 0.254

Table 9. Mean errors of using four APs in Case 2.

Case 2 (4 APs) {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5} Mean (m)

1-NN 1.527 1.536 1.732 1.473 1.520 1.558

WKNN 1.599 1.537 1.735 1.496 1.563 1.586

RS 1.588 1.538 1.663 1.477 1.650 1.583

VTRS–DR 0.183 0.116 0.237 0.191 0.174 0.180

However, this is not right when using only three APs in two test cases. The mean
positioning errors can be seen in Tables 10 and 11. The results show that the VTRS–DR
method cannot outperform the positioning results of other methods; even some combina-
tions’ results of the proposed method are much worse than others, for example, the cases
of {1, 3, 4} in both cases. The reason can come from the characteristic of the VTRS–DR
method that it may require more than a certain number of attributes (i.e., the number of
APs) to produce good results. This problem, however, might not occur in practical scenes
due to the widespread of APs indoors, especially in urban areas. Figures 8 and 9 display
the comparisons of the mean of mean errors of the four methods in three different numbers
of APs. From these figures, we can see that the mean of mean errors of the VTRS–DR
methods is much better than others in cases using five and four APs, but for three APs, it is
slightly better than others in Case 2 but somewhat worse than WKNN method in Case 1
(i.e., 1.766 m for WKNN and 1.865 m for VTRS–DR). Meanwhile, the RS method obtains
the worst error in Case 1 with 1.959 m, and the 1-NN method gets the worst error in Case 2
with 2.103 m. The accuracy of the proposed method in Case 2 is better than in Case 1; we
think that this is because the RSS values in Case 1 are more stable at any RPs than in Case 2
due to their simpler setup; thus, there may exist many valued tolerance relations that have
the same values, and this makes it hard to classify the decision classes clearly. Therefore,
the proposed method can work well in complicated environments, which are more popular
in real life than stable environments are, such as Case 1.
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Table 10. Mean errors of using three APs in Case 1.

Case 1
(3 APs) {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5} Mean

(m)

1-NN 1.845 1.858 2.000 1.999 1.713 1.902 2.011 1.716 2.230 1.878 1.915

WKNN 1.679 1.843 1.778 1.741 1.532 1.721 1.864 1.715 2.050 1.732 1.766

RS 1.785 1.930 1.879 1.996 1.643 1.821 2.138 1.977 2.338 2.089 1.959

VTRS–
DR 1.478 1.848 1.650 3.486 1.237 1.810 2.004 1.444 2.024 1.664 1.865

Table 11. Mean errors of using three APs in Case 2.

Case 2
(3 APs) {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5} Mean

(m)

1-NN 1.912 2.120 2.294 2.133 1.993 2.125 2.159 2.001 2.418 1.873 2.103

WKNN 1.793 1.975 2.028 1.798 1.740 2.018 1.934 1.929 2.234 1.749 1.920

RS 1.821 2.112 2.292 1.954 1.925 2.137 2.165 2.058 2.521 1.947 2.093

VTRS–
DR 1.447 1.828 1.735 3.390 1.461 1.733 1.921 1.631 1.920 1.597 1.866
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6. Conclusions

In this paper, a novel WiFi fingerprinting positioning method based on the valued tol-
erance and decision rules method was proposed. The proposed method is implemented not
only in the offline phase but also in the online phase. In the offline phase, the fingerprinting
decision rules database is built from the decision table based on the conventional RSS
fingerprinting database. The created database consists of different components, such as the
credibility degree and support object set, which are utilized to support the classification of
the measured RSS values in the online phase to the precise class. This helps to increase the
classification performance. The evaluation shows that the proposed method outperforms
the other methods for both the datasets of the two cases which were set up with different
environmental conditions, although the test data were collected in a small number (only
two sets) of RSS samples on the exact position of each RP rather than the random positions
in the target area. The wrong classification rate of the proposed method is very low, which
reduced the errors from the other methods from 43.42% to 54.64%. However, the proposed
method also has some limitations. The first one is high complexity. Even though it can
achieve extraordinary positioning results, the computational complexity makes it difficult
to be used in real-time since it needs to compute the relation matrix in the offline phase, as
well as the complicated components, such as the credibility degree and support object set
values in the online phase. The second limitation is that the performance of the proposed
method will greatly degrade when the number of available APs is reduced. For future work,
we want to evaluate the performance of this method in bigger areas, such as buildings with
multiple floors and various available APs that consist of more complicated environmental
conditions. Furthermore, we also want to investigate how to optimize the number, as well
as the setup positions, of APs in a target area.
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Appendix A

In this part, we provide an example of how to use the VTRS–DR method to deter-
mine the user’s position. Suppose we set up five APs and there are ten predefined RPs,
RP1, RP2, . . . , RP10, in a test area. At each RP, we collected the RSS values twice, as in
Table A1. The decision table, DT, was created from Table A1, as shown in Table A2.

Table A1. The original RSS database proposed for the example.

Position Coordinates RSS1 (dBm) RSS2 (dBm) RSS3 (dBm) RSS4 (dBm) RSS5 (dBm)

RP1 (x1, y1) −57 −48 −64 −45 −52

RP1 (x1, y1) −58 −49 −63 −48 −53

RP2 (x2, y2) −57 −43 −65 −51 −53

RP2 (x2, y2) −58 −42 −67 −51 −55

RP3 (x3, y3) −55 −54 −63 −52 −57

RP3 (x3, y3) −56 −51 −62 −52 −58

RP4 (x4, y4) −40 −50 −57 −52 −53

RP4 (x4, y4) −43 −51 −61 −53 −53

RP5 (x5, y5) −41 −53 −62 −39 −50

RP5 (x5, y5) −42 −53 −63 −39 −49

RP6 (x6, y6) −50 −49 −61 −53 −50

RP6 (x6, y6) −50 −50 −61 −53 −51

RP7 (x7, y7) −50 −56 −65 −45 −48

RP7 (x7, y7) −51 −56 −69 −46 −49

RP8 (x8, y8) −57 −46 −65 −48 −56

RP8 (x8, y8) −58 −47 −64 −50 −55

RP9 (x9, y9) −59 −49 −63 −47 −56

RP9 (x9, y9) −60 −51 −64 −47 −54

RP10 (x10, y10) −67 −51 −66 −51 −42

RP10 (x10, y10) −66 −53 −66 −51 −43

https://github.com/luongnt1983/IPS
https://github.com/luongnt1983/IPS
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Table A2. The structure of the decision table created from the original RSS database.

U RSS1 (dBm) RSS2 (dBm) RSS3 (dBm) RSS4 (dBm) RSS5 (dBm) d
(Position)

u1 −57 −48 −64 −45 −52 RP1

u2 −58 −49 −63 −48 −53 RP1

u3 −57 −43 −65 −51 −53 RP2

u4 −58 −42 −67 −51 −55 RP2

...
...

...
...

...
...

...

u19 −67 −51 −66 −51 −42 RP10

u20 −66 −53 −66 −51 −43 RP10

From Definition 1, the objects that have the valued tolerance relation can belong to the
same tolerance class (i.e., decision class). Thus, we calculated the valued tolerance relation
for all pairs of objects in the decision table, DT (Definition 3). To keep the generality, we
choose A = C and u, v ∈ U. The valued tolerance relation was calculated from Equations (1)
and (2). In this example, we chose k j corresponding to each attribute RSSj, j = 1, 2, . . . , 5,
based on the standard normal distribution. Then we applied Definition 3 to calculate the
valued tolerance relation for all pairs of objects in the decision table, DT (Table 2). For
example, we calculated the relation between the two objects u3 and u4.

RA(u3, u4) = min{R1(u3, u4), R2(u3, u4), R3(u3, u4), R4(u3, u4), R5(u3, u4)}
= min{0.868, 0.725, 0.213, 1.0, 0.517} = 0.213

By applying the same way to all pairs, we calculated the valued tolerance relation for
20 objects in Table A2 and finally obtained the valued tolerance relation matrix, as shown
in Table A3.
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Table A3. Valued tolerance relation matrix, RA.

RA u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

u1 1.0 0.274 0 0 0 0 0 0 0 0 0 0 0 0 0.034 0 0.034 0.174 0 0

u2 0.274 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0.174 0.449 0.275 0.449 0 0

u3 0 0 1.0 0.213 0 0 0 0 0 0 0 0 0 0 0.174 0 0 0 0 0

u4 0 0 0.213 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u5 0 0 0 0 1.0 0.174 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u6 0 0 0 0 0.174 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u7 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0

u8 0 0 0 0 0 0 0 1.0 0 0 0.073 0.073 0 0 0 0 0 0 0 0

u9 0 0 0 0 0 0 0 0 1.0 0.606 0 0 0 0 0 0 0 0 0 0

u10 0 0 0 0 0 0 0 0 0.606 1.0 0 0 0 0 0 0 0 0 0 0

u11 0 0 0 0 0 0 0 0.073 0 0 1.0 0.725 0 0 0 0 0 0 0 0

u12 0 0 0 0 0 0 0 0.073 0 0 0.725 1.0 0 0 0 0 0 0 0 0

u13 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0

u14 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0

u15 0.034 0.174 0.174 0 0 0 0 0 0 0 0 0 0 0 1.0 0.516 0.174 0 0 0

u16 0 0.449 0 0 0 0 0 0 0 0 0 0 0 0 0.516 1.0 0.274 0 0 0

u17 0.034 0.275 0 0 0 0 0 0 0 0 0 0 0 0 0.174 0.274 1.0 0.449 0 0

u18 0.174 0.449 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.449 1.0 0 0

u19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.449

u20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.449 1.0
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Twenty tolerance granules of object u ∈ U for relation RA were calculated based on
Definition 4, as follows:

RA(u1) = {u1, u2, u15, u17, u18}; RA(u2) = {u1, u2, u15, u16, u17, u18};
RA(u3) = {u3, u4, u15}; RA(u4) = {u3, u4};
RA(u5) = {u5, u6}; RA(u6) = {u5, u6};
RA(u7) = {u7}; RA(u8) = {u8, u11, u12};
RA(u9) = {u9, u10}; RA(u10) = {u9, u10};
RA(u11) = {u8, u11, u12}; RA(u12) = {u8, u11, u12};
RA(u13) = {u13}; RA(u14) = {u14};
RA(u15) = {u1, u2, u3, u15, u16, u17}; RA(u16) = {u2, u15, u16, u17};
RA(u17) = {u1, u2, u15, u16, u17, u18}; RA(u18) = {u1, u2, u17, u18};
RA(u19) = {u19, u20}; RA(u20) = {u19, u20}.

From Table A2, we can see that there are ten decision classes: D1 = {u1, u2},
D2 = {u3, u4}, D3 = {u5, u6}, D4 = {u7, u8}, D5 = {u9, u10}, D6 = {u11, u12},
D7 = {u13, u14}, D8 = {u15, u16}, D9 = {u17, u18}, and D10 = {u19, u20}. The lower
approximation and upper approximation of each decision class Dl , l = 1, 2, . . . , 10, were
determined from Definition 5, as follows:

(D1)A = φ; (D1)
A = {u1, u2, u15, u16, u17, u18}.

(D2)A = {u4}; (D2)
A = {u3, u4, u15}.

(D3)A = {u5, u6}; (D3)
A = {u5, u6}.

(D4)A = {u7}; (D4)
A = {u7, u8, u11, u12}.

(D5)A = {u9, u10}; (D5)
A = {u9, u10}.

(D6)A = φ; (D6)
A = {u8, u11, u12}.

(D7)A = {u13, u14}; (D7)
A = {u13, u14}.

(D8)A = φ; (D8)
A = {u1, u2, u3, u15, u16, u17}.

(D9)A = φ; (D9)
A = {u1, u2, u15, u16, u17, u18}.

(D10)A = {u19, u20}; (D10)
A = {u19, u20}.

The membership degrees of object u ∈ U belong to (Dl)A and (Dl)
A, l = 1, 2, . . . , 10,

and were calculated from Definition 6.
µ(D1)A

(u1) = min
v∈RA(u1)

(max(1− RA(u1, v), v̂))

= min(max(1− RA(u1, u1), 1), max(1− RA(u1, u2), 1),
max(1− RA(u1, u15), 0); max(1− RA(u1, u17), 0), max(1− RA(u1, u18), 0))
= min(1.0, 1.0, 0.966, 0.966, 0.826) = 0.826

µ
(D1)

A (u1) = max
v∈RA(u1)

(min(RA(u1, v), v̂))

= max(min(RA(u1, u1), 1), min(RA(u1, u2), 1), min(RA(u1, u15), 0),
min(RA(u1, u17), 0), min(RA(u1, u18), 0))
= max(1.0, 0.274, 0.0, 0.0, 0.0) = 1.0.

The results of the membership degrees of each object belong to (Dl)A and (Dl)
A, as

shown in Table A4.
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Table A4. The membership degrees of each object belong to (Dl)A and (Dl)
A.

U µ(D1)A
µ(D1)A µ(D2)A

µ(D2)A µ(D3)A
µ(D3)A µ(D4)A

µ(D4)A µ(D5)A
µ(D5)A µ(D6)A

µ(D6)A µ(D7)A
µ(D7)A µ(D8)A

µ(D8)A µ(D9)A
µ(D9)A µ(D10)A

µ(D10)A

u1 0.826 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.034 0 0.174 0 0

u2 0.551 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.449 0 0.449 0 0

u3 0 0 0.826 1.0 0 0 0 0 0 0 0 0 0 0 0 0.174 0 0 0 0

u4 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u5 0 0 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u6 0 0 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u7 0 0 0 0 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0

u8 0 0 0 0 0 0 0.927 1.0 0 0 0 0.073 0 0 0 0 0 0 0 0

u9 0 0 0 0 0 0 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0 1.0

u10 0 0 0 0 0 0 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0 1.0

u11 0 0 0 0 0 0 0 0.073 0 0 0.927 1.0 0 0 0 0 0 0 0 0

u12 0 0 0 0 0 0 0 0.073 0 0 0.927 1.0 0 0 0 0 0 0 0 0

u13 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 0 0 0 0 0 0

u14 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 0 0 0 0 0 0

u15 0 0.174 0 0.174 0 0 0 0 0 0 0 0 0 0 0.826 1.0 0 0.174 0 0

u16 0 0.449 0 0 0 0 0 0 0 0 0 0 0 0 0.551 1.0 0 0.274 0 0

u17 0 0.275 0 0 0 0 0 0 0 0 0 0 0 0 0 0.274 0.725 1.0 0 0

u18 0 0.449 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.551 1.0 0 0

u19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0

u20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0
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To build the fingerprinting decision rules database, we used Definition 7. Moreover,
we used Definition 8 to calculate the credibility degree of the rule ρ1 as follows:

µA(ρ1) = min
u∈RA(u1)

(
max

(
1− RA(u1, u), µDA (u)

))
= min

(
max

(
1− RA(u1, u1), µ(D1)A

(u1)
)

, max
(

1− RA(u1, u2), µ(D1)A
(u2)

)
,

max
(

1− RA(u1, u15), µ(D8)A
(u15)

)
, max

(
1− RA(u1, u17), µ(D9)A

(u17)
)

,

max
(

1− RA(u1, u18), µ(D9)A
(u18)

))
= min(0.826, 0.726, 0.966, 0.966, 0.826) = 0.726.

Furthermore, we used Definition 9 to determine the support object set of decision rule
ρ1, as follows:

SA(ρ1) = RA(u1) = {u1, u2, u15, u17, u18}

The fingerprinting decision rules database is shown in Table A5.

Table A5. The fingerprinting decision rules database.

Decision
Rule

RSS1
(dBm)

RSS2
(dBm)

RSS3
(dBm)

RSS4
(dBm)

RSS5
(dBm) d Credibility Degree (µA(ρi)) Support Object Set (SA(ρi))

ρ1 −57 −48 −64 −45 −52 RP1 0.726 {u1, u2, u15, u17, u18}
ρ2 −58 −49 −63 −48 −53 RP1 0.551 {u1, u2, u15, u16, u17, u18}
ρ3 −57 −43 −65 −51 −53 RP2 0.826 {u3, u4, u15}
ρ4 −58 −42 −67 −51 −55 RP2 0.826 {u3, u4}
ρ5 −55 −54 −63 −52 −57 RP3 1.0 {u5, u6}
ρ6 −56 −51 −62 −52 −58 RP3 1.0 {u5, u6}
ρ7 −40 −50 −57 −52 −53 RP4 1.0 {u7}
ρ8 −43 −51 −61 −53 −53 RP4 0.927 {u8, u11, u12}
ρ9 −41 −53 −62 −39 −50 RP5 1.0 {u9, u10}
ρ10 −42 −53 −63 −39 −49 RP5 1.0 {u9, u10}
ρ11 −50 −49 −61 −53 −50 RP6 0.927 {u8, u11, u12}
ρ12 −50 −50 −61 −53 −51 RP6 0.927 {u8, u11, u12}
ρ13 −50 −56 −65 −45 −48 RP7 1.0 {u13}
ρ14 −51 −56 −69 −46 −49 RP7 1.0 {u14}
ρ15 −57 −46 −65 −48 −56 RP8 0.551 {u1, u2, u3, u15, u16, u17}
ρ16 −58 −47 −64 −50 −55 RP8 0.551 {u2, u15, u16, u17}
ρ17 −59 −49 −63 −47 −56 RP9 0.551 {u1, u2, u15, u16, u17, u18}
ρ18 −60 −51 −64 −47 −54 RP9 0.551 {u1, u2, u17, u18}
ρ19 −67 −51 −66 −51 −42 RP10 1.0 {u19, u20}
ρ20 −66 −53 −66 −51 −43 RP10 1.0 {u19, u20}

To test the positioning result in the online phase, we collected the RSS values at RP1
with the set θ = (−56,−48,−62,−46,−51) (dBm), where each value is from one AP over
five APs. Algorithm 2 of the VTRS–DR method was calculated, step by step, as follows.

Step 1: Calculate the valued tolerance relation between θ to the conditions of the rule
ρi: RA(θ, ρi), i = 1, 2, . . . , 20. The valued tolerance relation RA(θ, ρi) is greater than zero
only for four rules, namely ρ1, ρ2, ρ16, and ρ18, with RA(θ, ρ1) = 0.213, RA(θ, ρ2) = 0.516,
RA(θ, ρ16) = 0.032, and RA(θ, ρ18) = 0.174, respectively.

Step 2: The smallest value µρi (θ) between the valued tolerance relation RA(θ, ρi) and
the credibility degree µA(ρi) of rule ρi is greater than zero only for four rules, namely ρ1, ρ2,
ρ16, and ρ18, with µρ1(θ) = min(0.213, 0.726) = 0.213, µρ2(θ) = min(0.516, 0.551) = 0.516,
µρ16(θ) = min(0.032, 0.551) = 0.032, and µρ18(θ) = min(0.174, 0.551) = 0.174.
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Step 3: The credibility degree µDl (θ) = max
ρi∈R(Dl)

(
µρi (θ)

)
is greater than zero only

for three decision classes, namely D1, D8, and D9, with µD1(θ) = max
ρi∈R(D1)

(
µρi (θ)

)
=

max
(
µρ1(θ), µρ2(θ)

)
= max(0.213, 0.516) = 0.516, µD8(θ) = 0.032, and µD9(θ) = 0.174.

Step 4: Because ∃!D1 : µD1(θ) = 0.516 is the maximum, the new set θ belongs to the
decision class D1, meaning that Algorithm 2 returns the position of RP1 (the right classified
position); thus, the positioning error is 0 m.
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