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Abstract: Computed tomography (CT) images play an important role due to effectiveness and
accessibility, however, motion artifacts may obscure or simulate pathology and dramatically degrade
the diagnosis accuracy. In recent years, convolutional neural networks (CNNs) have achieved state-
of-the-art performance in medical imaging due to the powerful learning ability with the help of the
advanced hardware technology. Unfortunately, CNNs have significant overhead on memory usage
and computational resources and are labeled ‘black-box’ by scholars for their complex underlying
structures. To this end, an interpretable graph-based method has been proposed for motion artifacts
detection from head CT images in this paper. From a topological perspective, the artifacts detection
problem has been reformulated as a complex network classification problem based on the network
topological characteristics of the corresponding complex networks. A motion artifacts detection
method based on complex networks (MADM-CN) has been proposed. Firstly, the graph of each CT
image is constructed based on the theory of complex networks. Secondly, slice-to-slice relationship
has been explored by multiple graph construction. In addition, network topological characteristics
are investigated locally and globally, consistent topological characteristics including average degree,
average clustering coefficient have been utilized for classification. The experimental results have
demonstrated that the proposed MADM-CN has achieved better performance over conventional
machine learning and deep learning methods on a real CT dataset, reaching up to 98% of the accuracy
and 97% of the sensitivity.

Keywords: complex networks; computed tomography images; motion artifacts detection; network
topological characteristics; classification

1. Introduction

Computed tomography (CT) is widely used for diagnosis of various disease for the
sake of its readily accessibility and low cost. However, artifact is one of the commonly
encountered problems in CT, which can be generally described as any non-consistency be-
tween the real image and the reconstructed image, resulting from devices and individuals.
It may significantly degrade the image quality, cause harm to clinical diagnosis and compro-
mise the medical image post-processing. Therefore, it is essential to detect artifacts from CT
images [1,2]. To automatically detect artifacts, many efforts have been made over the past
decades. To comprehensively understand artifacts formation mechanism, researchers did a
plenty of valuable work. Spin-Neto et al. [3] has placed a strong emphasis on explaining the
physics behind the occurrence of motion artifacts with the aim of aiding artifact detection
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and mitigation in clinical situations. The impact and the correction of motion artifacts on
diagnostic accuracy of apical periodontitis in CBCT images have also been demonstrated
in [3]. To build dental implant artifact detection algorithm, seven designated features were
extracted from ROIs (regions of interest) and machine learning with random forests was
used in [4]. Recently, deep-learning methods have experienced a significant growth, they
can extract useful information from underlying data [5,6] in the field of computer vision [7]
and have shown unprecedented competitiveness in image classification [8], a convolutional
neural network (CNN)-based tool has been used for identifying motion artifacts in various
magnetic resonance imaging [9,10]; moreover, dental artifacts on each slice of a HN CT
scan have also been detected effectively [11].

Although CNNs have gained a great reputation and received substantial attention both
in computer vision community and other fields such as medical imaging applications [11–13],
there are still some limitations in the clinical practice. CNNs merely take physical features
into account and pay little attention to the relationship between the network topological
properties of different images. Moreover, due to the difficulty of collecting CT images with
artifacts in clinical practice, there are generally few datasets with sufficient samples for
model training in the clinical practice.

Complex Network theory [14–16] is a powerful method for describing the complexity
of systems [17]. Due to its flexibility and generality, the representation of different structures
as a graph by modeling a set of nodes linked with edges has been widely conducted [18].
Recently, researchers have described and explained the complex interactions among com-
ponents in the complex systems, such as economics [19], biology [20], social sciences [21],
and the earthquake network [22,23], from a novel perspective. By analyzing graphs, the
insights of the structure and the corresponding network topological characteristics, such
as average shortest path, clustering coefficient, degree distribution, have been studied
widely in various complex networks [24,25]. In addition, the complex network is a low
complexity and effective method to deal with large-scale data and their relations based on
graph theory. Motivated by complex network theory, images have begun to engage with
the literature of complex networks. Methodologies based on complex networks to better
characterize an image considering topological feature have been carried out as a notable
paradigm. However, few researchers have already introduced the complex network theory
into the detection of motion artifacts and topological features have not been taken into
consideration for detecting motion artifacts from CT images.

For medical image quality assess and artifacts detection [26–28], there are still three
major challenges remaining.

The first challenge is the effectiveness of feature extraction. Current approaches to CT
motion artifacts detection may not obtain the characteristics of the image thoroughly as
topological properties have not been involved.

Since accessible medical databases are limited, and valid medical ground truth databases
for the evaluation of algorithms are rare and usually comprise only a few images [29]. The
effectiveness of CT motion artifacts detection with limited data is still far from reach.

Another challenge with regards to the current motion artifacts detection method is
how to explain the acquired results that meet the demand of radiologists but fail to meet
clinical requirements. At present, in-depth studies on the mechanisms causing artifacts
are lacking.

Based on the above discussions, in this paper, a new framework based on complex
networks has been proposed to explore the hidden information behind the CT images,
extract topological features for interpretability and detect motion artifacts. The main
contributions of this work are summarized as follows:

Motion artifacts detection problem has been reformulated as a complex network
classification problem based on network topological characteristics.

An interpretable graph-based motion artifacts detection method has been proposed in clin-
ical practice. Two-level classification has been proposed to detect motion artifacts effectively.
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Extensive experiments have been carried out on a real-world dataset and experimental
results achieve comparable performance on evaluation criteria, in terms of motion artifacts
detection, which meet the medical clinical demand to a larger extent.

2. Materials and Methods
2.1. Data and Basic Assumptions
2.1.1. Dataset

Artifact is applied to any systematic discrepancy between CT numbers in the recon-
structed image and the true attenuation coefficients of the object, it can seriously degrade
the quality of CT images; in particular, motion artifacts are caused by patient movement,
which mostly appear as shading or streaking in the reconstructed image [30]. A single CT
scan has several slices.

The dataset containing 600 head CT slices collecting from Neusoft Medical CT scanner
is used in this paper. The ground-truth of head CT slices are labeled as a binary classification
problem, including 300 positive samples (with motion artifacts) and 300 negative samples
(without artifacts) by a neuroradiologist with 7 years’ experience. The resolution of each
slice is 128 × 128. Examples of head CT slices are illustrated in Figure 1.
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Figure 1. Illustration of original slices. (A–E) represent slices with motion artifacts. (F–J) represent
slices without motion artifacts.

2.1.2. Assumptions

Motivated by medical image analysis, for example MRI, based on complex network
theory, which has advantages in handling unstructured data, graph construction based on
complex network theory may also achieve better performance when utilized for CT images
quality analysis.

2.2. Complex Network-Based Graph Construction

A mathematical graph representation of the head CT image network is given by a
simple graph as follows:

G = (V, E) (1)

V = {v1, v2 , . . . , vn} is the set of vertices, E = {eij|i ∈ V, j ∈ V, eij 6∈ 0} is the set
of edges.

For eij = eji, the head CT images network is undirected.
As a weighted network is often used in the study of the interactive process, an un-

weighted network is suitable to explore network structure. Since the scale of the dataset is
fixed, we use unweighted graph to represent head CT image.

In summary, the head CT image can be mapped as an undirected, unweighted network.
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For the sake of the comprehensiveness and specificity, we design a two-level graph
construction method based on the complex network theory; our process of constructing
pixel-level and slice-level graph is as follows.

2.2.1. Pixel-Level Graph Construction Based on the Complex Network Theory

At pixel level, the edges represent the mutual relationships between vertices, the edges
are generated according to the location and grey scale between two pixels.

To make the connections between the vertices, pixel-by-pixel sweep over the image is
performed, grey difference has been calculated between its neighbors’ pixels for each pixel
selected. If distance between two pixels is not bigger than a given radius r (here, we set
r = 3), the two vertices are connected by an edge.

2.2.2. Slice-Level Graph Construction Based on the Complex Network Theory

At slice level, all of the slices have mapped network topology based on the complex
network theory to represent the mutual relationships between slices, and the edges are
generated when two slices of the same region sharing the same label. In this way, the
complex slice-slice correlation has been replaced by the edge. Slice-level graph construction
considers the heterogeneity of individuals, it has been pointed out that the correlation-based
methods provide relatively higher sensitivity of the network connection [31].

In order to describe the above method, we first obtain a set of data from a real dataset
as shown in Table 1. As the head CT images contains different slices reconstructed from
different angles, the regions are essential and of great important for the recognition and
exploration for classification. Actually, region is an attribute of slice. The slices which share
the same region may have similar features in nature than those with different regions; that
is to say, the slices are of great difference in nature according to the region they belong to.
We apply the data to generate related network topology, as shown in Figure 2. CT slices are
denoted as {a, b, c, d, e, f}, the edge is represented as straight lines.

Table 1. Head CT Slices of different qualities in different regions.

Slice ID Region Label Quality Label

a 1 0
b 2 1
c 1 0
d 3 1
e 2 1
f 1 0
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Figure 2. A schematic description of slice-level networks based on region and label consistency.
Edges which are described by the straight lines are generated when the slices belonging to the same
region label share the same quality label. Otherwise, the two slices are considered to be independent
to each other.
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By the two-level graph construction based on the complex network theory, both local
information and the complementary information among multiple CT slices have been taken
into account.

2.3. Basic Network Topological Properties

The network topological properties [21] are explained in detail.
Vertex Degree [14]: the degree is the most fundamental character and measure of

a vertex. The degree of a given vertex i is the number of vertices connected to it for an
undirected graph.

Average Degree: the average degree of G is the sum from the graph’s number of edges
divided by its number of vertices.

Degree Distribution: the degree distribution is of great important in G. The degree
distribution is defined by a probability function, P(k), which can be understood as the
probability that a randomly picked vertex has degree k.

Clustering coefficient [16]: clustering coefficient is the coefficient used to describe the
degree of clustering between the vertices of a graph. It implies the degree of clustering
of the network. In a graph, let i be a vertex with ki edges, which are called neighbors of
vertex i. Let deg(i) be the number of the actual edges existing among the ki vertice. The
ratio between the actual and the possible numbers of edges in the cluster of the ki vertice is
defined to be the clustering coefficient of the vertex i, denoted as Ci

Ci =
2deg(i)

ki(ki − 1)
(2)

The network topological properties may indicate the underlying organization princi-
ples of head CT images and help in understanding possible relevance of CT image quality.
The notations of basic network topological properties have been illustrated in Table 2.

Table 2. The Notations of basic network topological properties.

Notation Implication

V The set of vertices
E The set of edges

Average Degree The sum from the graph’s number of edges divided by
its number of vertices.

Average Clustering Coefficient The degree of clustering of constructed network

Single topological property can only describe the feature of head CT images from
one particular aspect. It is necessary to combine different topological properties to com-
prehensively understand the head CT images. In this way, we conduct multi-dimension
topological properties and consistency investigation.

2.4. Motion Artifacts Detection Method Based on Complex Networks (MADM-CN)

The framework of the proposed motion artifacts detection method based on complex
networks (MADM-CN) is illustrated in Figure 3. The general pipeline of the method is
described as follows:

2.4.1. Feature Extraction and Selection Based on the Complex Networks

On the one hand, based on the pixel-level graph construction, the head CT images with
and without artifact have been comprehensively expressed since pixel-to-pixel relationships
are represented as graphs. From the perspective of the complex network, the network
topological properties are exploited to express meta head CT image locally.

On the other hand, based on the slice-level graph construction, the head CT images
with and without artifact have been comprehensively expressed since image-image rela-
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tionships are represented as graphs. From the perspective of complex network, the network
topological properties are measured from head CT slices globally.
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Based on the two-level graph construction method, network topological characteristics
including the number of edges, average degree, average clustering coefficient can be
investigated, pixel-level and slice-level topological characteristics analysis are investigated
locally and globally; for pixel level analysis we focus on pixel-to-pixel relationship in a
single CT image while for slice-level analysis we focus on slice-to-slice relationship in the
datasets. Furthermore, the vertex of slice-level graph is the single CT image. Two-level
feature extraction method are utilized to extract consistency two-level robust features. In
this way, a combination of node attribution and graph properties has been made for motion
artifacts detection.

2.4.2. Classification

For a judgement problem with two classes, images with artifact and without artifact
are established as positive and negative, respectively. When it comes to the motion artifact
detection step, classifiers, machine learning methods, such as Support Vector Machine
(SVM) and Random Forest (RF), and deep learning methods, such as CNN, have been
used for classification. In particular, we use SVM(RBF kernel), RF(1000 trees) and ResNet
for classification.

2.4.3. Motion Artifacts Detection and Evaluation

To validate the effectiveness of the proposed MADM-CN method, a real-world dataset
would be utilized to detect motion artifacts from head CT images. From a clinical practice
perspective, sensitivity, which is an indicator that radiologists care the most, would be used
for evaluation. Moreover, accuracy and specificity have also been taken into consideration.

3. Results
3.1. Graph Construction

At pixel level, after graph modeling, we obtained corresponding graphs (See Figure 4A–J).
For the constructed graph, we obtain topological properties including average degree,

average clustering coefficient from CT images with and without artifacts, respectively.
As shown in Figure 5, the multi-dimension network topological properties including

average clustering coefficient and average degree have stable performance, which means
that they have the potential to be applied for subsequent classification. From the topological
perspective, at pixel level, motion artifacts form due to the increase in average clustering
coefficient and average degree.

At slice level, after graph construction, we have obtained the corresponding graphs in
Figure 6.
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clustering coefficient, (B) depicts average degree, respectively. It is worth noting that both the average
clustering coefficient and the average degree of the CT images with artifacts are larger than those of
the CT images without artifacts, respectively.
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Figure 6. The constructed graphs using slice-level graph construction method. (A) is the hybrid
graph which consists of head CT slices with motion artifacts and head CT slices without artifacts,
(B) contains head CT slices without artifacts alone, (C) contains head CT slices with artifacts alone.
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The constructed graphs representing different head CT slice qualities help to under-
stand the artifacts formation mechanism in a topological way. The topological properties
are explored in Table 3.

Table 3. The network topological properties of slice-level graph.

Dataset N Average Clustering
Coefficient

Average
Path

Length

Average
Degree |E|

Hybrid
CT images 600 0.994 1.127 12.039 2082

CT images without artifacts alone 300 0.988 1.357 8.817 821
CT images with artifacts alone 300 0.998 1.006 14.186 1981

Combined with Figure 5, the topological properties have possible relevance of different
CT slice qualities, taking the network topological properties stability and local-global
consistency into consideration, average clustering coefficient and average degree have been
selected for motion artifacts detection.

3.2. Performance Metrics

For a judgement problem with two classes, CT slices with artifact and without artifact
are established as positive and negative, respectively. Metrics of artifactes detection judge-
ment have been illustrated in Table 4. From the perspective of clinical application, since
radiologists are more concerned about whether all artifact images are detected, sensitivity
is regarded to be the most important metric. In artifacts detection, the higher sensitivity
indicates the higher probability that artifact image is detected.

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Speci f icity =
TN

FP + TN
(4)

Sensitivity =
TP

TP + FN
(5)

Table 4. Metrics of artifacts detection judgement.

Predicted

1 0

True 1 True Positive (TP) False Negative (FN)
False 0 False Positive (FP) True Negative (TN)

3.3. Experimental Results

We split the dataset into training set and test set at a ratio of 80%:20%.
We evaluate the model performance by accuracy, sensitivity, and specificity and AUC

on test set. We compare detection performance as shown in Table 5; the proposed method
works well in the clinical practice.

To evaluate the impact of topological properties utilization for classification, the
comparison has been conducted. We evaluated two classifiers (SVM, RF) to predict whether
CT slices are artifacts-affected or not when taking topological characteristics into account.
In addition, we also compared with the DL-based baseline approach, CNN.

From Table 5, we can see that by using physical and topological properties in combina-
tion we achieve the highest accuracy, sensitivity and AUC with the proposed MADM-CN
model employing SVM. We also conclude that including the topological properties into the
training (as well as the physical characteristics) improves the performance.
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Table 5. Performance compared with the state-of-the-art methods.

Classification Features Level Sensitivity Accuracy Specificity AUC

MADM-CN + SVM Physical + Topological hybrid 97% 98% 96% 0.9668
MADM-CN + RF Physical + Topological hybrid 95% 97% 98% 0.9591

CNN Physical Pixel 86.67% 76.67% 66.67% 0.722
RF Physical Pixel 85% 88% 89% 0.9366

SVM Physical Pixel 80% 88% 93% 0.8819

It can also be seen from Table 5 that the results of traditional algorithms, SVM and RF
with physical and topological properties outperform the state-of-the-art motion artifacts
detection method, CNN, and those with merely physical features with limited sample data,
in particular, our proposed MADM-CN method achieves highest accuracy using SVM with
limited samples. When it comes the sensitivity, our method proposed MADM-CN performs
best when employing SVM. The MADM-CN method obtains the accuracy of 98% and the
sensitivity of 97% when it employs SVM for classification.

It has also been indicated that topological properties are robust and can embed com-
prehensive description to fully express the characteristics of the head CT slices with and
without artifacts, respectively. In addition, average degree and average clustering coefficient
have been applied resulting in higher accuracy and sensitivity. The topological properties
indicate the internal mechanism of head CT image formation. It can be demonstrated that
the head CT slices with motion artifacts have larger average clustering coefficient and
average degree than those without motion artifacts. The head CT slices with small average
clustering coefficient and average degree may have better quality.

4. Discussion and Conclusions

In this paper, an interpretable graph-based motion artifacts detection method has been
proposed. We reformulate the artifacts detection problem as a complex network classifica-
tion problem based on network topological properties. A comprehensive description of
head CT images has been worked out to effectively express the characteristics of head CT
images with and without artifact, respectively. First, CT images have been constructed into
graphs at pixel and slice level, respectively. Then, based on the topological measurements,
it is found that average clustering coefficient and average degree are closely correlated to
the image quality locally and globally. Finally, when applying the proposed methods on a
real dataset of head CT images, motion artifacts has been effectively detected.

Our results confirm that the MADM-CN method can identify the quality of the head
CT images more effectively in clinical practice. It shows high accuracy and sensitivity even
with limited labeled samples, which meets clinical demand to a larger extent.

An interpretable graph-based framework has been designed to detect motion artifacts
from head CT images. A two-level graph construction method based on complex net-
work theory is proposed. The topological properties indicate the underlying organization
principles of different CT image qualities.

It can be demonstrated that the head CT images with motion artifacts may have larger
average clustering coefficient and average degree than those without motion artifacts. Head
CT images with a small average clustering coefficient and an average degree may have
better quality.

The study of motion artifacts detection from the perspective of the complex network
will help radiologists to study the law of artifacts formation mechanism in a new way.

Currently, the graph-based method exclusively detects motion artifacts from head
computed tomography; as the method explores the characteristics of medical images, it can
be used for other head CT artifacts, for instance, metal artifacts [32] in the maxillomandibu-
lar complex [29] and may be suitable for other modalities. Since the region label has been
marked manually, an automatic region detection method will be taken into account for a
future direction.
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