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Abstract: Saturated highlights on metal surfaces reduce the detection accuracy of fuel nozzles. In this
paper, we propose an image inpainting method with a saturated highlight based on the statistics of
similar patches used in prior segmentation of the subregion. The sequence image acquisition is based
on the shape from focus in the five-axis platform. By our method, the focus measure (FM) operator
and the window size are evaluated using the sharpness evaluation curve and calculating time. We
observe that the detection accuracy is improved when the highlight area is filled by the highlight-free
area within the same segmentation region. There are fewer deviation points in the three-dimensional
(3D) point cloud that are extracted from the sequence images. The inlet circle and the outlet circle of
the fuel nozzle are both detected by the two-dimensional (2D) Hough Transform (HT) method. Our
experiments show that the method yields better results in 3D detection of the key parameters of fuel
nozzles with the saturated highlight characteristics.

Keywords: fuel nozzle; saturated highlight inpainting; statistics of similar patches; shape from focus;
three-dimensional measurement

1. Introduction

The atomization of fuel is a crucial process for aero-engine combustion chambers
and is one of the key technologies in addressing the problems of aviation engine combus-
tion chambers. Dual-orifice pressure-swirl atomizers are widely used in aircraft engine
combustors. Their precision affects the combustion performance and efficiency. If the
dimensions do not meet the requirements, further optimization and material upgrades
are necessary.

The fuel nozzle we detected is a dual-orifice pressure nozzle with a complex and
deep hole structure. The fuel nozzle was machined by Bumotec S191 Turning and Milling
Compound Machining Center. The material of the fuel nozzle in this paper is martensitic
stainless steel. Its inlet diameter is 4.9 mm with a tolerance scope of 50 µm, and the outlet
diameter is 0.48 mm with a tolerance scope of 10 µm. The outlet depth is 0.25 mm with
a tolerance scope of 30 µm, the inner cone angle is 90◦+10′

0◦ , and the outlet cone angle is
80◦+10′

0◦ . If the deviation for inner cone angle of the fuel nozzle is bigger than 1◦, it will lead
to oil leakage under high pressure.

Previous research has been conducted on the nozzle measurement. Peiner et al. [1]
introduced a novel sensor for the roughness measurement inside spray holes of nozzles
and realized a detection of 170 and 110 µm in diameter. Jermak et al. [2] examined
the nozzle head surface used in an air gauging systems and described the concept of
conical correction of the surface. Yan et al. [3] proposed a method based on the X-ray
phase to measure the nozzle geometry and used the three-dimension reconstruction
technique to construct the internal structure of nozzles. Li et al. [4] studied the critical
back pressure ratio and the discharge coefficients and used the method to measure
the traditional ISO nozzles with circular throat sections and sonic MEMS nozzles with
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rectangular throat sections. Fei et al. [5] employed conoscopic holography to measure
the inner cone angle of aero-engine nozzles in a noncontact way and used a five-axis
coordinate measuring machine to measure the high-precision conic angle. Li et al. [6]
presented a new method for quantifying the internal wall surface characteristics of fuel
nozzle micro-orifices and used synchrotron X-ray micro-CT technology to construct a
three-dimensional digital model of the fuel nozzle. Laguarta et al. [7] introduced a new
method based on a proprietary unfolded confocal arrangement, which used the light
that is reflected onto the inner surfaces and that passes through the nozzle instead of the
backscattering signal. KuoYi Huang et al. [8] presented an application of neural network
and image processing techniques for detecting the defects of an internal micro-spray
nozzle, and it effectively worked for detecting micro-spray nozzle defects to an accuracy
of 90.71%. Payri et al. [9] proposed a non-destructive characterization method, which is
based on the creation of silicone moulds. The study can be carried out examining the
influence of cavitation on the macroscopic spray behavior.

The fuel nozzle material of aero-engines is mostly martensitic stainless steel, with
hardness and high strength [10]. In a complicated industrial environment, there will be a
specular area on the surface of the fuel nozzle as a metal material. In order to improve the
accuracy measurement of the fuel nozzle, the effect of the specular area of the nozzle must
first be eliminated.

Shape from focus is a passive monocular method that mainly constructs 3D shapes
of objects [11–15]. Most of the SFF literature is focused on high-quality 3D shapes, not
on the prior image processing. A variety of methods have been proposed to deal with
the problem of highlight detection or removal on the surface. Zhu et al. [16] proposed a
polarization-based method to remove the image highlight, and the experimental results
showed that most of the fringe pattern was restored. Li et al. [17] proposed an adaptive
Robust Principal Component Analysis (Adaptive-RPCA) method to remove the specular
reflections in endoscopic image sequences, adaptively detecting the highlight image
based on pixels and achieving better highlight removal results. Suo et al. [18] used an an-
alytic solution to highlight removal based on an L2 chromaticity definition and the corre-
sponding dichromatic model; the proposed approach involved few complex calculations
and was able to quickly remove highlights from high-resolution images. Tan et al. [19]
presented a single-image highlight removal method that incorporated illumination-based
constraints into image inpainting; the inclusion of these illumination constraints allowed
for better recovery of shading and textures by inpainting. Shen et al. [20] introduced an
efficient method to separate the diffuse and specular reflection components from a single
image; image pixels of textured surfaces were classified into clusters by constructing a
pseudo chromaticity space without specular pixel identification. Yu et al. [21] proposed
a novel and simple method based on the polynomial calibration function and inpainting
method to address the problem of removing large-scale highlights from metal surfaces
in an image.

In this paper, we propose an image inpainting method for the saturated highlight
based on the statistics of similar patches used in prior segmentation of the subregion. First,
we filled the highlight area using the highlight-free area with the main offsets. Second,
shape from focus (SFF) was used to extract the depth point cloud data from the sequence
images. Third, we converted the point cloud into a two-dimensional gray image, to extract
the edge by the Canny operator. Fourth, the inlet circle and the outlet circle of the fuel
nozzle were detected by the two-dimension (2D) Hough Transform method. The results
show the new method greatly reduces the interference of the highlights and improves the
three-dimensional measurement accuracy of the fuel nozzle.

This paper is organized as follows. Section 2 describes the measuring principle of fuel
nozzles. Section 3 introduces the proposed method. Section 4 describes the process of the
experiment. Section 5 summarizes the paper.
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2. Measuring Principle of Fuel Nozzle

In this paper, we focus on the detection of dual oil circuit centrifugal fuel nozzles.
The structure of this type of nozzle is shown in Figure 1. The inlet diameter and the
outlet diameter directly affect the spray cone angle and spray uniformity [22]. The key
dimension of the fuel nozzle affects the performance of the engine [23]. The nozzle-
cyclone is assembled with an air cover to form the main oil circuit; the nozzle-cyclone
and the cyclone are assembled to form the auxiliary oil circuit [24]. The aviation fuel
flows into the combustion chamber from the two oil circuits. The swirling flow nozzle
can maintain a low flow state, so the fuel will have a better atomization effect and
performance [25].
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Figure 1. Schematics of the dual-orifice pressure nozzle.

In this paper, the detection of the three-dimensional size of fuel nozzle is based on
shape from focus, which is a passive monocular method to estimate the depth map and
reconstruct the object [26]. The 3D size detection and topography measurement principle
of fuel nozzles based on shape from focus (SFF) is shown in Figure 2. The sequence images
are acquired by the Z-axis. The focus of the pixel block varies because of the different
heights of the topography. Then, we traversed the sharpness of every pixel block, using
the clearest image information to represent the three-dimensional coordinate of the fuel
nozzle. As the nozzle is made of polished metal material, the highlight is serious in
complicated environments. Highlight will lead to the texture information being lost and
error measurements of the nozzle. In order to solve this problem, we need to remove the
saturated highlights of the sequence images.
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3. Proposed Method
3.1. Highlight Removal in Sequence Images

Highlight on the surface of the fuel nozzle will lead to deviation when extracting the
3D depth point cloud. In order to improve the accuracy of 3D measurement, we propose a
subregion highlight removal method based on Markov Random Field (MRF) to inpaint the
highlight image [27]. In image inpainting, many state-of-the-art methods are used to inpaint
the absent area by copying existing image textures [28]. Two categories of image inpainting
approaches are diffusion-based and patch-based. PatchMatch methods fill in the missing
areas by searching for the best similar patch with Markov Random Field (MRF) [28].

First, we propose a method that specifies specular-free image parts as labels and
specifies specular image parts as nodes. Specular image parts are inpainted by assigning
appropriate labels to the nodes [29]. Second, according to the texture information of the
fuel nozzle, the candidate labels are assigned to subregions. The best offsets of the similar
patch are counted separately for each subregion; then, the best 20 cumulative offsets of each
subregion are selected [30]. Third, according to the statistical histogram, the maximum
value of the cumulative offset of each subregion is selected as the main offset map, so
the candidate labels of the subregions are obtained [31,32]. Last, the highlight area of
the sequence images is repaired by optimizing the global energy equation and copying
the energy magnitude of the candidate label. The image highlight inpainting algorithm
based on the statistics of similar patches is shown in Figure 3. Specific steps are described
as follows:
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Step 1:According to the texture information of sequence images of the fuel nozzle, it can be
segmented into two main regions as shown in Figure 4a: area A of inlet hole A and
area B of the entrance annular.

Step 2:The patch size is important for the inpainting method based on MRF. It will directly
affect the inpainting effect. The patch size is too small to maintain the consistency
of texture information, and it is too large to maintain the fine texture information.
According to the RSS value [33], which is used to adaptively select the patch size,
and considering the window size of sharpness evaluation operator, the patch size
of inpainting is assigned as 12 × 12, which can better maintain the texture charac-
teristics and obtain a shorter calculation time. A suitable patch size can optimize
the patch offset in each segmented area and constrain the initialization offset map of
sequence images with highlights in focus.

Step 3:After initialization, the offset of the best matching patch in each subregion is as follows:

s(x) = argmin
s
‖P(x + s)− P(x)‖2 s.t.|s| > τ (1)

where s(u, v) represents the offset coordinate value, x = (x, y) represents the position
of each patch, and P(x) represents the sample patch of the center point at the patch
size of 12 × 12. The squared Euclidean distance is used to indicate the similarity of
the two sample patches, excluding the matching patch near the sample patch with
the value τ.

Step 4:After obtaining the optimized image offset map, the histogram statistics are used on
the offset map of the image, and the approximate offset value is calculated by using
the Nearest-Neighbor Field (NNF) algorithm [29] based on Kd-tree and propagated
iteratively to obtain the best matching patch and offset map [34]. The 2D histogram
statistics for all offsets are given in Equation (2):

h(u, v) = ∑
x

δ(s(x) = (u, v)) (2)

In this paper, the dominant offsets of each subregion have a maximum value of 20, and
the label set of sequence images is composed of two subregions; thus, a total of 40 offset
maps selected from the two subregions are placed in the candidate label set L(x). The
statistics of the offsets of the similar patches are shown in Figure 4b.

Step 5:The image inpainting method is based on MRF (Markov Random Field), and the
Graph-cut algorithm is proposed to solve the global energy based on the sam-
ple patch:

E(L) = ∑
x∈Ω

Ed(L(x))Ω + ∑
((x,x′)|x∈Ω,x′∈Ω)Es(L(x),L(x′))

(3)

In Equation (3), Ω is the highlight region using four neighborhood pixels (x, x′), L
represents the marker mapping, Ed is the data item, and Es is the smooth term. If the image
pixel x represents a label of the specular region, the data item energy value is infinite. If the
image pixel x represents a label of the specular-free region, the data item energy value is
zero. Therefore, the constrained energy value selects information from the specular-free
part of the subregion for inpainting the specular part. The smoothness term Es will penalize
irrelevant seams [30,31]. A marker is assigned to a block of pixels in a saturated highlight
region that represents the preselected offset {si}K

i=1 or so = (0, 0), which applies a boundary
constraint by s0 being a valid numeric value when x is at the boundary of the saturated
highlight region. Pixels at offset (x + si) are copied to the position of x. The primary offset
K takes the sum of the three subregion primary offsets as 60. Finally, according to the size
and distribution of the energy labels, the best matching patch of the subregion is copied to
the highlight area of the same subregion. The highlight part in the subregion is inpainted
by this method. Figure 5 shows the saturated highlight image inpainting strategy diagram.
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3.2. Sharpness Evaluation Function

Shape from focus (SFF) is a passive, monocular technique used to recover the 3D
(three dimensional) shape of an object from sequence images. In SFF, it is important to use
the reliable focus measure (FM) operator to obtain the accuracy depth map [35]. The FM
operator evaluates the focus value of every pixel block in the sequence images. The accuracy
value of the focus evaluation will affect the accuracy of the topography recovery. In SFF,
a focus measure operator is applied to each pixel by processing a small neighborhood or
evaluation window around it [12]. So, the window size of the neighborhood used to apply
the focus measure operator can affect the performance of the sharpness evaluation function.

There are five evaluation performances used to choose the most suitable focus mea-
sure operator: sensitivity, steep area width, steepness, fluctuation of the flat region, and
calculation time [36]. The different window size is used to evaluate the focus measure
operator in order to choose the optimal one. In order to test the performance of the focus
measure operator with different window sizes, we provided four sizes of windows: 10× 10,
24× 24, 38 × 38, and 52× 52. The objective lens of the microscope is 1.5×, and the number
of sequences images is 156. The different window size is shown in Figure 6. When the
window size is 10 × 10, multiple peaks appear in five sharpness evaluation curves, and the
computation time is long. When the window size is increased to 24× 24, the focus point of
each sharpness function is best, and the focus frame number is the 26th, which is unbiased.
When the window size is 38× 38 and 52× 52, three points have the peak values. A small
window size can preserve depth discontinuities but increase the sensitivity to noise [26].
Meanwhile, a large window size performs better for noisy images but at the cost of blurring
sharp edges. So, the window size of 24× 24 proved to be the best one.

In Figure 7, there are eight different points in the focus image of the fuel nozzle; we
can evaluate the sharpness of these points. In Figure 8, the sharpness curves show the
performance of the different focus measure operators. We fixed the window size as 24× 24.
Five focus measure operators based on different edge detection operators were used as
focus evaluation functions: SMD gray difference operator, Tenengrad gradient operator,
Laplacian gradient operator, Brenner operator, and energy gradient operator [37]. The best
focus measure operator was obviously the Tenengrad operator, because of its robustness
and peak value. Thus, we chose the Tenengrad function to extract the depth point of the
sequence images in this paper.
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3.3. Hough Transform for Circle Detection

We performed edge extraction for the scattered point cloud using interception with
a certain distance of the Z-axis slice. We fixed the thickness of the slice as four. Then, the
intercepted point cloud slice was converted into a two-dimensional gray image. The Canny
operator was used to extract the edge. The circle center and radius could be determined by
Hough Transform, and the cone angle of fuel nozzle could be calculated quickly.

A point on a circle in the image corresponds to a three-dimensional cone in the param-
eter space; all the points in the two-dimensional image coordinate space are mapped to the
three-dimensional parameter space [38]. The three-dimensional space (a, b, c) corresponds
to the two-dimensional space (a, b); when the points in the set are all in the same circle [39],
the corresponding three-dimensional cone intersects at one point.

As shown in Figure 9a, there are an infinite number of circles that can pass through
the three points of A, B, and C. One circle passes through three points at the same time; its
center coordinate is O(a, b) and the radius is r. All circles passing through point A form a
cone surface with coordinates of (x1, y1, r), as shown in Figure 9b in the three-dimensional
parametric space; the point center on the cone surface is (x1, y1), and there is a different
radius of r. All circles that pass through point B and all circles that pass through point
C also can form a conical surface in the three-dimensional parameter space. When three
conical faces intersect with a point O, then the center O can be regarded as the center of
the three points in the Cartesian coordinate space as a co-circle, so the value of their radius
(a, b, c) can be found.

The method of circle detection can be extended to cone angle measurement. By
intercepting two slices of the same thickness, the two slices are transformed separately by
Hough Transform [40,41]; then, the circle center and radius of the two circles are obtained.

The definition of conical degree K is shown in Figure 10.

K =
d2 − d1

h
(4)

tan α =
d2 − d1

2h
=

K
2

(5)
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Then, the angle of the cones is determined:

2α = 2arctan
K
2

(6)

In Figure 10, d2 is the diameter of a large circle, d1 is the diameter of a small circle, 2α is
angle of the fuel nozzle cone, and h is the distance between the two sections of the cone. The
center and diameter of the cross-section interception can be obtained by Hough Transform,
so that the angle and the conical degree of the cone can be calculated by Equations (4) and (6).
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Figure 9. The coordinate space transfer to Hough space. (a) Points A, B, and C on the circle of
parametric space. (b) The three points A, B, and C are the centers of different cones. The orange line
represented the point A in parametric space transform to the cone in Hough Space. The green line
represented the point B in parametric space transform to the cone in Hough Space. The blue line
represented the point C in parametric space transform to the cone in Hough Space.
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4. Experimental Verification

All experiments were run on a PC with an Intel Core i7 2.9 GHz and 16 G RAM. They
were performed on the five-axis platform; the camera that was fixed on the platform was
MER-2000-19U3C, and the microscope was OPTEM304310.

A sequence of 156 images of the fuel nozzle, each of 5496× 3672 pixels, was used in
the experiment. The objective lens of the microscope was 1.5×, and the number of sequence
images was 156. The software implementation and the validation were done in LabVEIW
and MATLAB on sequence images of the fuel nozzle.

4.1. Highlight Removal and Topography Reconstruction

There were 156 sequences images used in the experiment. We removed the saturated
region in sequences 140 to 152 because the highlight region was the focus of these frames.
The point cloud was extracted after highlight removal of some sequence images, as shown
in Figure 10. As shown in Figure 11a and the top view in Figure 11b, there are some
scattered points at the edge of the inlet of the fuel nozzle, and those points are at a deviation
position of the 3D coordinate. In Figure 11c, the edge of inlet of the fuel nozzle is darker
than the neighboring region, which is different from the actual fuel nozzle topography. In
Figure 11d, the saturated highlight region is repaired by the known area in the same region,
so the point cloud is better extracted. As shown in Figure 11e, there are no deviation points
at the edge of the fuel nozzle. In Figure 11f, the depth map of highlight-free images is better
than the map of highlight images.

Figure 11. Image restoration and 3D point cloud of nozzle inlet. (a) Specular point cloud; (b) Specular
point cloud top view; (c) Specular depth map; (d) Specular removal point cloud; (e) Specular-free
point cloud top view; (f) Specular-free depth map.

4.2. Diameter Measurement

The experimental object is the No. 2 fuel nozzle, and the inlet inner diameter measured
by the ultra-depth microscope is 5080.03 µm. As shown in Figure 12a, we first intercepted a
point cloud slice from the three-dimension point cloud with highlight. Then, we extracted
the edge using the Canny edge operator; as shown in Figure 12b, there are some discon-
tinuous lines on the circle edge. Thus, it is difficult to find the circle by Hough Transform
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(HT). When we performed the method of highlight removal, as shown in Figure 12c, the
slice of the point cloud was more complete without highlight, based on the prior statistics
of similar patches. So, it was easy to find the circle by Hough Transform, as shown in
Figure 12d. There are five fuel nozzles to be detect by our method; their diameters with
highlight and without highlight are given in Table 1. We adopted the Keyence super depth
of field as a standard to compare to our results.
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Figure 12. Slice of point cloud and circle detection with outlet of fuel nozzle by Hough Transform.
(a) Slice of point cloud with highlight. (b) The circle edge by HT. (c) Slice of point cloud without
highlight. (d) The circle edge by HT.

Table 1. Inlet radius of fuel nozzle (µm).

Fuel Nozzle Specular Specular-Free Keyence Specular Error Specular-Free Error

No. 1 5233.00 5142.00 5063.05 170.00 78.95
No. 2 none 5161.00 5082.03 none 78.97
No. 3 5325.00 5175.00 5088.78 236.22 86.22
No. 4 5311.00 5154.00 5069.98 241.02 84.02
No. 5 5265.00 5160.00 5076.53 188.47 83.47

The maximum deviation was seen in the No. 4 fuel nozzle, with 241.02 µm of inlet
diameter with highlight and 84.02 µm of inlet diameter without highlight. The minimum
was seen in No. 1, with 170 µm of inlet diameter with highlight and 78.95 µm of inlet
diameter without highlight.

The relative error δr of No. 4 is 4.75% with highlight and 1.66% without highlight. The
relative error δr of No. 1 is 3.36% with highlight and 1.56% without highlight. The relative
error is obviously reduced by the method of highlight removal.

As shown in Figure 13a,c, slices were obtained from the highlight point cloud and
highlight-free point cloud. There are some discontinuous lines in Figure 13b, so it is difficult
to obtain the circle by Hough Transform. In Figure 13d, the circle is detected by Hough
Transform quickly. The center and radius of the circle can also be measured after the
highlight removal by our method.
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Figure 13. Slice of point cloud and circle detection with outlet of fuel nozzle by Hough Transform.
(a) Slice of point cloud with highlight. (b) The circle edge by HT. (c) Slice of point cloud without
highlight. (d) The circle edge by HT.
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4.3. Conical Degree of Fuel Nozzle

For specular point clouds and specular-free point clouds, in order to extract an accurate
edge of the point cloud, we need to provide enough point data from the Z-axis. The large
circle of the inlet of the fuel nozzle is extracted from the frame of Z = 100 to the frame
of Z = 104. The thickness of point cloud is 4. The small circle of the outlet of the fuel
nozzle is extracted from the frame of Z = 120 and the frame of Z = 124. We computed the
calibration coefficient Kz = 53.61 µm, multiplied by the height of the large circle and small
circle. So, the true height between the two circles is obtained as h = 20× Kz = 1.07 mm,
which is shown in Figure 14. The circle radius is respectively r1 = 63.59× 38.16 µm and
r2 = 29.10× 38.16 µm. According to Equation (4), we obtained the conical degree of the
inlet of the fuel nozzle with the highlight point cloud as K1 = 2.46.
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Figure 14. Inlet circle and outlet circle extracted by Hough Transform. (a) Inlet circle of highlight;
(b) outlet circle of highlight; (c) inlet circle of highlight-free; (d) outlet circle of highlight-free.

According to Equation (6), the angle of the fuel nozzle cone is determined as
2a1 = 101.78◦. Points are obtained at the same location for point clouds after highlight
removal. The cloud slice interception distance is similar to the highlight one and is 4. So, the
circle radius is respectively r1 = 68.63 µm and r2 = 37.87 µm. According to Equation (4),
we obtained the conical degree of the inlet of the fuel nozzle with the highlight-free point
cloud as K2 = 2.20.

According to Equation (6), the cone angle is 2α2 = 95.46
◦
. As shown in Figure 14,

the large cone edge and small cone edge of the original highlight point cloud have a large
circularity error, and the large cone edge and the small cone edge of the highlight-free
point cloud are better. The cone angle measured by the Keyence microscope is 91.69◦,
and the conical degree of fuel nozzle is K = 2.06. So, the absolute error with highlight is
10.01◦, the relative error is 10.92%; the absolute error with the highlight-free is 3.77◦, the
relative error is 4.11%. Therefore, the circle detection experiment shows that the depth
point cloud extracted from the highlight-free image is better than the highlight images.
In this paper, the method can be used on machine detection further, but it is difficult to
detect the key parameter of fuel nozzles with ultra-depth field microscopes on machines.
Our method based on the prior statistics of similar patches has proven to be an accurate
detection method.

5. Conclusions

In this paper, the saturated highlight of sequence images is inpainted by a method
based on the statistics of similar patches used in prior segmentation of the subregion. This
method has proven to be suitable for inpainting saturated highlight regions. It used to
copy the patches of highlight-free areas to the highlight area within the same focus region.
We obtained several sequence images to address the problem of highlights, but not all the
images were usable. We do not need to know the exact details of the highlight region but
must ensure the highlight region that is filled is clear. So, this method based on image
inpainting of MRF patch-match is suitable for depth extraction and can quickly obtain the
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accurate 3D point cloud. The result shows that the accuracy of the inlet and outlet diameter
is improved when the highlight is removed. Obviously, there are also less discrete points in
the 3D point cloud extracted from the highlight-free images. In this article, the parameters
are detected by 2D Hough Transform. The next step, we will focus on the detection of cycles
by 3D Hough Transform directly. The result also provides a reference for the improvement
of processing technology.
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