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Abstract: In July 2021, an extreme precipitation event occurred in Henan, China, causing tremen-
dous damage and deaths; so, it is very important to study the observation technology of extreme
precipitation. Surface rain gauge precipitation observations have high accuracy but low resolution
and coverage. Satellite remote sensing has high spatial resolution and wide coverage, but has large
precipitation accuracy and distribution errors. Therefore, how to merge the above two kinds of
precipitation observations effectively to obtain heavy precipitation products with more accurate
geographic distributions has become an important but difficult scientific problem. In this paper, a
new information fusion method for improving the position accuracy of satellite precipitation estima-
tions is used based on the idea of registration and warping in image processing. The key point is
constructing a loss function that includes a term for measuring two information field differences and
a term for a warping field constraint. By minimizing the loss function, the purpose of position error
correction of quantitative precipitation estimation from FY-4A and Integrated Multisatellite Retrievals
of GPM are achieved, respectively, using observations from surface rain gauge stations. The errors
of different satellite precipitation products relative to ground stations are compared and analyzed
before and after position correction, using the ‘720’ extreme precipitation in Henan, China, as an
example. The experimental results show that the final run has the best performance and FY-4A has
the worse performance. After position corrections, the precipitation products of the three satellites
are improved, among which FY-4A has the largest improvement, IMERG final run has the smallest
improvement, and IMERG late run has the best performance and the smallest error. Their mean
absolute errors are reduced by 23%, 14%, and 16%, respectively, and their correlation coefficients with
rain gauge stations are improved by 63%, 9%, and 16%, respectively. The error decomposition model
is used to examine the contributions of each error component to the total error. The results show that
the new method improves the precipitation products of GPM primarily in terms of hit bias. However,
it does not significantly reduce the hit bias of precipitation products of FY-4A while it reduces the
total error by reducing the number of false alarms.

Keywords: extreme precipitation; satellite precipitation estimation; data fusion; image registration;
position correction

1. Introduction

Precipitation, as an essential part of the global water flux cycle, can connect the
water and energy cycle on the earth [1], whose spatial and temporal distribution and
motion trajectories play an important role in physical processes such as global atmospheric
circulation and water balance [2–5]. Natural disasters such as floods, droughts, and
mudslides can be caused by an uneven spatial and temporal distribution of precipitation.
Secondary hazards caused by heavy precipitation events have become some of the most
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serious natural disasters in the world [6,7]. These natural disasters pose a serious risk to
people’s lives and property.

The Intergovernmental Panel on Climate Change (IPCC) states in its Sixth Assessment
Report that the impact of global warming caused by carbon emissions is irreversible and
that the probability of extreme weather will increase as a result [8,9]. In July 2021, heavy
rains hit various parts of the world. On 14 and 15 July, extreme precipitation affected
Germany greatly and led to flooding that caused more than 50 deaths [10]. Influenced by
the 6th Typhoon In-Fa, China’s Henan Province suffered extreme precipitation events [11].
The ‘720’ extreme precipitation event in Henan is well worth studying because this event
records the strongest hourly precipitation since meteorological observations are available
in mainland China, and it is also the largest cumulative precipitation in northern China
since 1975 [12]. Thus, numerous scholars have conducted a lot of research work on the
rainstorm event. Nie and Sun explored the mechanism of the development of this extreme
precipitation event. They found that moisture was transported from the Western Pacific to
Henan along three routes, which included the Western Pacific Subtropical High (WPSH),
WPSH and the tropical cyclone In-Fa, as well as WPSH and the tropical cyclone Cempaka,
which resulted in long-term and large-scale heavy rain in Henan [13]. Li et al. analyzed
the generation and development of quasi-stationary mesoscale vortices in the early stages
during heavy rainfall events [12]. Xia analyzed the characteristics and abnormality of
atmospheric circulations of the heavy rainfall event and found that the South Asian high
pressure enhanced the eastward extension and the subtropical high pressure was unusually
strong and northward. They also discovered that, similar to Nie’s findings, the southeast
airflow on the southwest side of the subtropical high pressure transported enough water
vapor to Henan Province [14]. Zhang used the observations from CYSNSS to study the
distribution and impact of floods in Henan [15]. Shi used observations from BeiDou/GNSS
to analyze the relationship between extreme rainfall processes and the precipitation water
vapor [16].

According to data from the National Meteorological Observatory, heavy rain continued
for six days from 17 to 22 July and the heaviest precipitation occurred between 19 and 21
July (https://en.gmw.cn/2021-08/18/content_35091062.htm (accessed on 7 June 2022)).
In Henan, there were 794 measuring stations with more than 100 mm of heavy rainfall
from 08:00 on 19 July to 08:00 on 20 July. In Zhengzhou and Pingdingshan, there was 250
to 401 mm of very heavy rainfall, and five national meteorological observation stations in
the province broke the extreme value of daily rainfall since meteorological records [17].
The total precipitation in Zhengzhou City in the 24 h from 8:00 on 20 July to 8:00 on the
21st was 624.1 mm, which is equivalent to half of its annual precipitation. The peak hourly
precipitation reached 201.9 mm/h at 9:00 on 20 July, which broke the strongest hourly
precipitation since meteorological observations were available in mainland China [12,18].
In addition, since Henan Province is one of China’s major grain-producing and populous
provinces, devastating disasters such as floods and urban inundation caused by extreme
precipitation have a profound impact on agricultural production, human livelihoods, and
economic development [19]. At the end of 2 August, the devastating flooding it caused had
killed 302 people and affected more than 14.53 million people in 150 county-level areas.
According to official data, more than 1.09 million hectares of crops have been damaged in
Henan Province, more than 30,600 houses have collapsed, and the cumulative economic
loss has exceeded CNY 120 billion [20,21]. Therefore, the observation and prediction of
extreme precipitation weather are crucial.

The observation types of precipitation mainly include rain gauge, ground-based radar,
satellite estimation, and so on [22]. Rain gauge and ground-based radar are traditional
observation methods [23]. The rain gauge is the most direct and accurate observation
method [24,25]. However, its spatial resolution is low due to its limited observation
position, inflexible observational means, and more significant influence by station distri-
bution [26]. Ground-based radar is gradually applied to precipitation observation with
ground remote sensing technology development, which has solved the above problems to
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a certain extent. It is now an important tool for precipitation observation due to its high
spatial and temporal resolution [27]. It has an excellent performance in observing slight
and medium-scale precipitation, but the high cost and the shortcomings of terrain make it
difficult to follow large-scale precipitation, which creates uncertainty in radar precipitation
estimates [28,29]. Meteorological satellites specifically for remote precipitation measure-
ment are created to solve the problem of traditional observation methods’ spatial limitations
with the development of remote sensing technology and the emergence of high-resolution
satellites [30]. They use active or passive remote sensing to invert precipitation, provide
high-resolution precipitation observation data for the world and regions, make up for the
uneven distribution of surface rain gauge stations and complex maintenance, and make up
for the deficiencies of ground-based radar that are limited by terrain [31].

At this stage, the mainstream precipitation satellite is Global Precipitation Measure-
ment (GPM). GPM is the successor to the Tropical Rainfall Measuring Mission (TRMM),
which inherits the TRMM’s ability to detect large-scale and mesoscale precipitation. It can
accurately detect light precipitation because it is equipped with a more advanced space-
borne dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) [1,31].
Since its release, the accuracy of Integrated Multisatellite Retrievals for GPM (IMERG) has
been studied by numerous scholars [1]. For example, Gaona used rain gauge data to assess
IMERG products released in the Netherlands for one year [32]. IMERG has been positively
evaluated in terms of precision and accuracy in detecting precipitation compared with
the precipitation products of TRMM. FY-4A is a new generation of China’s geostationary
meteorological satellite launched in 2016. Since its release, it has provided China and the
world with different data products, including quantitative precipitation estimation (QPE)
(nsmc.org.cn (accessed on 7 June 2022)). Ren evaluated the summer QPE of FY-4A using
rain gauges and found that it presented poor accuracy over the complex terrain of western
China, and established cloud classification thresholds for FY-4A with dynamic clustering
methods to identify convective clouds, which eventually improved the QPE [33]. In fact,
few studies have been conducted on the QPE product of FY-4A, especially its performance
in extreme weather and comparison with mainstream satellite precipitation products.

Due to the high spatial and temporal resolution and comprehensive coverage, satellite
precipitation products have become an important data source for climate research and
flood warnings [34,35]. However, the use of satellite precipitation estimation alone does
not yet yield satisfactory results in hydrological and weather forecasting, even though it
has good application potential [36]. Studying their data errors is essential to use satellite
precipitation products better. At this stage, a great deal of work has been done to improve
the numerical intensity of the precipitation. Multimodal data fusion has recently become
a popular method for obtaining more accurate precipitation products [37,38]. In general,
rain gauge data are often used as an additional data source to correct satellite precipitation
estimates [39,40]. Wu improves quantitative precipitation estimation by fusing satellite
precipitation with rain gauge station data using a combination of convolutional neural
network (CNN) and long short-term memory network (LSTM) methods [41]. Zhou pro-
posed an integrated methodology from precipitation to flow simulation in a data-scarce
basin and used a small number of stations to bias-correct six satellite precipitation products
to improve the data accuracy of the satellite precipitation products [42]. Le presented
an efficient approach based on a combination of the convolutional neural network and
the autoencoder architecture to correct the pixel-by-pixel bias for satellite products using
APHRODITE, a gridded precipitation product generated from rain gauge observations
from thousands of stations in Asia [43]. However, in addition to the numerical intensity of
the product, the accuracy of the product’s geographical distribution position information
should also be paid attention. Due to satellite inversion estimation algorithms and remote
sensing observation errors, as well as the inherent high spatial and temporal variability
of continuous moving weather systems such as precipitation, satellite estimates of the
position and shape of precipitation events are prone to errors [44]. In some applications,
such as data assimilation in hydrological models or numerical weather models, Lopez
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claimed that detecting the correct position of precipitation events is just as crucial as de-
tecting their intensity [45]. The position error of the numerical weather prediction model
has been considered in the forecast validation. In order to reduce the position errors,
Hoffman et al. (1996) proposed a feature correction and alignment technique (FCA), which
used a variational approach to solve a nonlinear least squares estimation problem with side
constraints to vary the displacement and amplification errors of the prior background field
until usable observations are available [46]. Based on the FCA method, Grasssortti fused
radar and satellite precipitation estimates and performed the ideal experiment for Typhoon
Andrew, using the precipitation observed by radar to adjust the precipitation estimates
from SSM/I. The adjusted SSM/I precipitation estimates can better fit radar observations
and satisfy other constraints [40]. Besides, FCA is widely used in variational assimilation.
THOMAS applied displacement vectors to the 3D WRF field and improved the prediction
of typhoon position using FCA [47]. To improve data assimilation, Bezley and Mandel
(2008) combined image warping with the Ensemble Kalman Filter (EnKF), established a
wildfire model, and registered two images through the image registration method [48].
This technique can be applied to position corrections to satellite precipitation data. Camille
improved the loss function optimization method and applied it to rainfall events during
the monsoon season in southern Ghana, Africa, with good results [44]. In general, there are
few studies on position correction for precipitation. Many studies about position correction
are directed at improving the data assimilation techniques, while even fewer studies are
conducted on simply improving the satellite precipitation estimates. At present, most of the
studies to improve satellite precipitation estimates are directed to the numerical intensity of
precipitation; so, it is important to study the research on the position correction technique
for satellite precipitation estimates.

Camille only confirmed the usefulness of the position correction method for light
precipitation events due to the sparse observations from rain gauge stations and generally
low precipitation in Africa, and its performance in heavy rainfall events was not proved [49].
In fact, the application of the position correction method is much more critical in heavy
rainfall events. Furthermore, the contribution of the error components to the total error
was not analyzed in Camille’s study, and the mechanism for improving the satellite error
by the position correction method is unclear. In addition, the current mainstream satellite
precipitation products are from TRMM and GPM [1,31], while there are few studies on
the secondary precipitation products (quantitative precipitation estimation, QPE) of the
FY-4A, a new generation of Chinese geostationary meteorological satellite launched in
2016 [33]. As a result, evaluating QPE and comparing it to precipitation products from
GPM are both urgent tasks that must be done. In order to solve the above problems,
in this paper, the observations from surface rain gauge stations are used to correct the
position of satellite precipitation estimates, based on the idea of registration and warping
in image processing [50]. Using the extreme precipitation event ‘720’ in Henan Province
as an example, the performance of the satellite precipitation products FY-4A and IMERG
before and after correction is evaluated. Further, the improvement of the new method on
the errors of different satellite precipitation products in the extreme precipitation event
is investigated. An error decomposition model is used to evaluate and analyze satellite
precipitation data to investigate the contribution of each error component to the total error
reduction after position correction.

The structure of the paper is as follows. Section 2 describes the rain gauge stations
and satellite precipitation products, image registration and warping methods, and error
decomposition models, respectively. Section 3 introduces the characteristics of the satellite
precipitation estimates before and after the correction and analysis of the contribution of
each component error. Section 4 discusses the performance comparison of different satellite
products as a whole and the improved contribution of the error component to the total
error after position correction; it also discusses the shortcomings and limitations of the
method. The conclusions are given in Section 5.
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2. Data and Methods
2.1. Data
2.1.1. Surface Rain Gauge Station

The observation data from surface meteorological stations serve as the primary data
source for some related research projects, including work on climate models, monsoon
variability, and extreme weather disasters. Hourly data from national surface stations in
China include hourly observations of the temperature, pressure, humidity, wind speed, and
precipitation. The measured data recorded by the surface rain gauge stations can genuinely
reflect the basic precipitation situation in the vicinity of the rain gauge stations. Before the
year 2000, rain gauge station data in China were broken down into two categories: artificial
rain gauge regular observation and self-recording tipping bucket or siphon rain gauge
observation. In the 21st century, automatic rain gauge stations gradually replaced the origi-
nal telemetry self-recording precipitation stations in surface meteorological stations across
the country, making it possible to obtain hourly resolution precipitation data. The current
hourly rain gauge station data are derived from the observations of automatic rainfall
sensors [51]. The surface rain gauge data used in this paper come from the hourly observa-
tion data of the National Meteorological Science Data Center of the China Meteorological
Administration, which publishes the hourly observation data for nearly 7 days in real
time with a time resolution of 1 h. After quality control, the actual rate of each element of
data exceeds 99.9% and the correct rate of the data is close to 100% (https://data.cma.cn/)
(accessed on 7 June 2022). The surface rain gauge data used are from 19 July 2021 to 21 July
2021, which is the main impact period of the ‘720’ extreme precipitation event in Henan.
The longitude range of the study area we chose is 110.95–115.95° E and the latitude range
is 31.45–36.45° N, to conform to the satellite grid. The rain gauge data are collected from
179 national surface stations in the region.

2.1.2. IMERG Precipitation Products

IMERG is a new generation of Integrated Multisatellite Retrievals of precipitation data
of the Global Precipitation Measurement Program (GPM). It uses the satellite precipitation
retrieval algorithm to organically fuse the data provided by all satellite sensors on the GPM.
IMERG’s tertiary products have three precipitation products: Early Run, Late Run, and
Final Run. The Early Run product is obtained after the IMERG generation system runs once
in the real-time stage and is generally released 6 h after the observation data. The Late Run
product can be received after rerunning, generally released 16 h after the observation. The
difference is that only the forward propagation algorithm in the cloud vector propagation
algorithm is adopted in the Early Run, while the backward propagation algorithm is also
used in Late Run base on the Early Run. The Final Run product is generated by correcting
the Late Run error using more sensors and monthly average station data from the Global
Precipitation Climate Center (GPCC), which has a 3-month latency [52,53].

This paper intends to use the Late Run product for research and use the Final Run
product as a reference for comparison. Both precipitation products are derived from the
GPM’s third-level V6 product, IMERG, with a temporal resolution of 0.5 h and a spatial
resolution of 0.1° × 0.1°, in mm/h. Data can be downloaded from https://disc.gsfc.nasa.
gov/datasets (accessed on 7 June 2022).

2.1.3. QPE Products of FY-4A

FY-4A is a new generation of geostationary meteorological satellite launched by China
in 2016, carrying a variety of meteorological remote sensing observation instruments, in-
cluding Advanced Geostationary Radiation Imager (AGRI), Geostationary Interferometric
Infrared Sounder (GIIRS), Lightning Mapping Imager (LMI), and Space Environment Mon-
itoring Instrument Package (SEP). The data used in this paper are from AGRI’s secondary-
level product, quantitative precipitation estimation (QPE). The time resolution of QPE is
available in 15 min, 1 h, 3 h, 6 h, and 24 h options. To match the time resolution of surface
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rain gauge stations, QPE with a time resolution of 1 h is selected in this paper. The original
spatial resolution of QPE is 4 km in mm [54].

In this paper, the IMERG and QPE precipitation products are collectively referred to
as satellite precipitation estimates (SPEs).

2.2. Methods
2.2.1. Image Registration and Warping

Image registration is a matching technique in image processing that transforms two
given images into each other by finding a spatial map [50]. The method has flourished
in the field of medical imaging for studying changes in patient lesions [55–57]. It has
recently been used in the matching of remote sensing images [58,59]. The original method,
as implemented, finds a spatial mapping by taking the pixel values of two images to be
registered as input. In meteorology, two fields can also be regarded as images to be matched,
such as the precipitation fields. Define the two fields as fixed image p and moving image q
on the domain D ⊂ R2. A mapping domain φ can be found through image registration,
such that, ∀(x, y) ∈ D,

p(x, y) ≈ q ◦ φ(x, y) (1)

φ : (x, y) ∈ R2 7→ (φx(x, y), φy(x, y)) ∈ R2 is often represented by a warping vector field
M (from now on, referred to as the mapping function). M represents the set of warping
vectors from the pixels of p to the pixels of q. φ = I + M, where I is the identity function,
I : z 7→ z [60]. However, there can be several M satisfying the above equation, especially in
regions without precipitation. Therefore, three weak constraints need to be defined for the
optimal mapping [44]:

M ≈ 0

∇M =

( ∂Mx
∂x

∂Mx
∂y

∂My
∂x

∂My
∂y

)
≈ 0

∇ ·M =
∂Mx

∂x
+

∂My

∂y
≈ 0

(2)

The above constraints indicate the optimal M as small, smooth, and as divergent-free
as possible.

Users need to select points in the two images that should map to each other manually
in classical registration. We use the automatic registration method described by Ref. [48]
that does not require any manual point-by-point input. The objective problem can be
expressed as an optimization problem [61]:

arg min
M
L(p, q, M) = arg min

M
(Lo(p, q ◦ (I + M)) + λLb(M)) (3)

where q ◦ (I + M)) represents the mapping function acting on q and the loss function Lo
represents the similarity of the two images:

Lo(p, q ◦ (I + M)) = ‖p− q ◦ (I + M)‖ (4)

The loss function Lb represents weak constraints on the mapping and λ is the regularization
parameter:

λLb(M) = λ1‖M‖+ λ2‖∇M‖+ λ3‖∇ ·M‖ (5)

where λ1, λ2, and λ3 are regularization parameters for different weak constraints. ‖ · ‖ is
the L2-norm. The solution procedure of the optimization problem (3) using the idea of
Ref. [44] is described with more details in Appendix A. In fact, there are other approaches
to solving the optimization problem as well as the one used in this paper. For example, the
optimization problem was solved by optimizing each node of M in Ref. [48].

When the optimal M is found through the registration method, the warped image
q can be obtained immediately by Formula (1). The registration and warping method
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using rain gauge station data and satellite precipitation estimates is shown schematically in
Figure 1.

Rain gauge

Interpolation 

(Kriging)

Satellite 

precipitation 

estimates

Rain gauge 

(interpolation)

Pre-processing

Registration

Displacement vector field

Warping

Warped satellite 

precipitation estimates

Figure 1. The registration and warping method using rain gauge station data and satellite precipita-
tion estimates.

2.2.2. Satellite Data Evaluation Indicators

In order to evaluate and compare satellite precipitation estimates and quantify the
effect of position correction on their improvement, several indicators are selected in this
paper, which are commonly used in satellite precipitation research [53,54,62]. We evaluate
the precision of satellite precipitation detection, the accuracy of satellite precipitation
estimates, and the correlation between satellite and rain gauge data. The correlation
coefficient (CC), whose ideal value is 1, reflects the degree of linear correlation between
satellite precipitation and gauge observations and is a crucial indicator of how well the two
are fitted. Root mean squared error (RMSE) and mean absolute error (MAE) are used to
express the degree of dispersion between SPEs and rain gauge station data, whose optimal
values are both 0. In comparison with MAE, RMSE gives larger errors more weight, making
it more sensitive to SPE error dispersion [36]. MAE is applied to indicate the mechanism of
improving the satellite precipitation error component by the position correction method.
The relative deviation (RB), which measures the degree of systematic deviation of the
SPE, can be used to analyze the error trend between the SPE and the measured data from
the rain gauge station; its ideal value is 0. The probability of detection (POD) is used to
represent the ability of satellite precipitation data to capture actual precipitation events,
whose optimal value is 1. POD represents the ratio of the estimated hits of the observation
satellite to the hits of the rain gauge. Regarding rain gauge data as the benchmark, the
POD can reflect the detection performance of the satellite precipitation estimation. The



Sensors 2022, 22, 5583 8 of 24

false alarm rate (FAR) is the ratio of the number of false alarms in satellite precipitation
estimates to the total number of detections, whose optimal value is 0; it can reflect the
false alarms of precipitation events in satellite precipitation data. The critical success index
(CSI) comprehensively considers the hits and false alarms of satellite precipitation data and
reflects the true ability of satellite precipitation data to monitor actual precipitation events,
whose optimal value is 1. The above evaluation index formulas are shown in Table 1.

Table 1. The formula for satellite precipitation evaluation indicators.

Indicators Formula Optimal Units

RMSE
√

1
n ∑n

i=1(pi − qi)
2 0 mm/h

MAE 1
n ∑n

i=1|pi − qi| 0 mm/h

RB qi−pi
pi
× 100% 0 %

CC ∑n
i=1(qi−q̄)(pi− p̄)√

∑n
i=1(qi−q̄)2

√
∑n

i=1(pi− p̄)2
1 -

POD H
H+M 1 -

FAR F
H+F ) 0 -

CSI ( H
H+F+M ) 1 -

Note: n represents the total number of samples. p stands for rain gauge station data. q represents the SPEs. H
represents the number of hits for which the satellite precipitation data captures precipitation events. F represents
the number of false alarms for precipitation events from satellite precipitation data. M represents the number of
underreported precipitation events from satellite precipitation data.

2.2.3. Error Decomposition Method

According to the method of Tian [63], an error decomposition model can be established
to analyze the error of satellite precipitation estimation and the contribution of warping
methods to error improvement. The total error (TE) of satellite precipitation estimation is
decomposed into three components by the model, which are the biases of hit precipitation
(HB), missed precipitation (MP), and false precipitation (FP); these come from hit pre-
cipitation events, missed precipitation events, and false precipitation events, respectively.
A hit precipitation event indicates that the satellite and the ground station detected a
precipitation event simultaneously. A missed precipitation event indicates that the satellite
did not detect a precipitation event, but the surface station has a good precipitation record.
A false precipitation event indicates that precipitation is detected by the satellite but not by
the surface rain gauge stations [64].

Given a precipitation field R(~x, t), one can derive a binary-valued precipitation event
mask P(~x, t):

P(~x, t) =

{
1 if R(~x, t) > 0
0 if R(~x, t) = 0 or null

(6)

We consider less than 0.1 mm/h to be no precipitation because light precipitation is difficult
to detect.

We set P1 as the precipitation event mask with event 1 and P1 as the Boolean comple-
ment of the binary masks P1, which means P1 is 0 when P1 is 1. Event 1 is the surface rain
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gauge station data and event 2 is the satellite precipitation estimation in this section. We
can define hit mask P12, miss mask P12, and false mask P12, respectively, as

P12 = P1 × P2
P12 = P1 × P2
P12 = P1 × P2

(7)

It is easy to find that the above 3 masks are independent and orthogonal to each other:

P12 × P12 = P12 × P12 = P12 × P12 = 0 (8)

Then, TE, HB, MP, and FP can be defined:
TE = R2 − R1
HB = (R2 − R1)× P12 = HB2 − HB1
MP = −R1 × P12
FP = R2 × P12

(9)

where HB2 and HB1 denote the precipitation events hit in satellite precipitation estima-
tion and rain gauge station, respectively. Since the three error components are relatively
independent,

TE = HB + MP + FP (10)

3. Results and Analysis
3.1. Precipitation Field Image Registration and Warping

The position correction method based on the idea of image registration and warping
is studied in this paper using the ‘720’ extreme precipitation in Henan as an example. The
maximum precipitation time point for this extreme weather process, according to statistics,
is at 14:00 on 20 July. Figure 2 shows that, in comparison to the stations, the precipitation
fields of the three SPEs are distributed eastward; especially, the main precipitation area
of FY-4A is 1° eastward. It can be seen that the SPEs have apparent positional deviations
relative to the surface rain gauge data. In addition, there is also a significant error in SPEs
in terms of the numerical intensity of the precipitation. In the vicinity of (113.5° E, 35° N),
there are many precipitation stations with precipitation within 1 mm/h, but the SPEs
do not detect it because it is difficult for satellites to observe light precipitation and the
inversion algorithm is difficult to deal with light precipitation during extreme precipitation.
The maximum of the precipitation observed from stations is 103.4 mm/h at the Kaifeng
station, but there is little distribution over 50 mm/h in SPEs. The overall distribution of the
IMERG final run product best fits the observed distribution of precipitation at the station
and its maximum precipitation is the highest of the three SPEs, with several precipitation
areas exceeding 50 mm/h. The IMERG late run is not much different from the final run
but the numerical intensity is smaller, with the maximum value below 50 mm/h. The
final run is gauge-adjusted at a monthly scale with the GPCC gauge product, whose
performance is the best in terms of accuracy. The fit of FY-4A performs the worst among the
three, with low and high precipitation values that are not accurately inverted. In general,
satellite precipitation estimates have significant numerical inaccuracies and positional
biases, resulting in significant non-Gaussianity in the data. Satellite data errors can affect
climate studies and make numerical weather forecasts unreliable. We perform registration
and warping processing on all three satellite products to obtain more accurate SPEs. For
the registration at different moments of this example, Equation (3) can be extended as

arg min
Mi

L




p1, q1, M1

p2, q2, M2

. . .
pt, qt, Mt


 = arg min

Mi


∥∥∥∥∥∥∥∥∥


p̃1 − q̃1 ◦ (I + M1)

p̃2 − q̃2 ◦ (I + M2)

. . .
ṽt − ũt ◦ (I + Mt)


∥∥∥∥∥∥∥∥∥+ λ1

∥∥∥∥∥∥∥∥∥


M1

M2

. . .
Mt


∥∥∥∥∥∥∥∥∥+ λ2

∥∥∥∥∥∥∥∥∥


∇M1

∇M2

. . .
∇Mt


∥∥∥∥∥∥∥∥∥+ λ3

∥∥∥∥∥∥∥∥∥


∇ ·M1

∇ ·M2

· · ·
∇ ·Mt


∥∥∥∥∥∥∥∥∥

 (11)
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where λ1 , λ2, and λ3 in this paper are 0.1, 1, and 1, respectively [65].
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Figure 2. The rain gauge stations (circles) and SPEs (or stations kriged) distribution map at 14:00
on 20 July 2021. (a) The precipitation field after interpolating 179 surface rain gauge stations to
the satellite grid using kriging interpolation [66–69]; (b–d) The precipitation distributions of FY-4A,
IMERG final run, and IMERG late run, respectively.

We treat interpolated surface rain gauges (Figure 2a) as the fixed image p and three
SPEs (Figure 2b–d) as the moving image q, respectively. Taking p and q as input to the
automatic registration algorithm, the image warping vector field is obtained through
iterative processing. The warping vector field is defined on the warping mesh Di, which is
applied to the image q to obtain the moved image. Data preprocessing is required before
image registration. Firstly, light precipitation less than 0.1 mm/h needs to be removed
because it is difficult to observe and can lead to significant uncertainties. In the second
step, zero precipitation regions need to be added around the input images q and p. The
original 50 × 50 grid is expanded into a 65 × 65 grid, with zero precipitation in the expanded
portion. The problem of nearby minimization constraints is avoided by adding a zone of
zero precipitation at the boundary. The longitude range of Di is currently 110.25–116.75° E,
with a latitude range of 30.75–37.25° N.

After preprocessing, Figure 3 is obtained by satellite precipitation estimation after
image registration and warping processing. The precipitation area of the IMERG final
run after warping moves westward, as can be seen in the first row of Figure 3, and the
precipitation center coincides with the rain gauge stations. The fit between SPEs and rain
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gauge stations has improved dramatically. The main direction of the warping vector is
from southeast to west, as shown in the diagram. The situation for the IMERG late run
is similar to that of the final run, with the precipitation area moving westward. FY-4A’s
condition has improved slightly, with the precipitation area covering more stations and
the precipitation center being closer to the center of precipitation observations from the
stations. In general, image registration and warping techniques correct the position of SPEs
to bring them closer to rain gauge stations.
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Figure 3. The columns show the distribution of three SPEs before and after image registration,
warping processing, and warping vector fields. The rows are IMERG final run, IMERG late run, and
FY-4A precipitation products, respectively.

3.2. Statistical Analysis

The ‘720’ extreme rainstorm event in Henan is mainly concentrated from 19 July to 21
July 2021. We performed hour-by-hour image registration and warping of SPEs for this
period. To reduce the error in the analysis, we evaluated the SPEs’ error using rain gauge
station data as the actual value. We used nearest-neighbor interpolation to interpolate
satellite precipitation estimates before and after position correction to rain gauge stations
to avoid errors caused by light precipitation in areas without precipitation caused by
linear interpolation.

The maximum precipitation period of the ‘720’ Henan extreme precipitation event
is from 14:00 to 21:00 on 20 July, as shown in Figure 4, with the maximum value at 14:00.
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Furthermore, the IMERG SPEs’ time series curve fits the station curve better. FY-4A was
poorly fitted to the station curve with significant errors, especially during the period of
8:00–14:00 on the 21st. In addition, it can be found that the location correction does not
significantly improve the numerical intensity of the precipitation.
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Figure 4. Time series of the average precipitation from 0:00 on 19 July to 23:00 on 21 July. The solid
and dashed lines are the time series of average precipitation when the satellite precipitation estimates
are interpolated to the station before and after position correction, respectively.

Table 2 shows that after position correction by the warping technique, the RMSE, MAE,
RMSE_gird, and RMSE_gird of the three SPEs are significantly reduced, demonstrating
that position correction can reduce the SPEs’ error. It is worth noting that, while position
correction can help reduce the FY-4A’s error to some extent, it still has a high error. FY-4A
cannot accurately invert the light precipitation value or the high precipitation value in
extreme precipitation. Surprisingly, the final run’s RMSE is lower than the late run before
position correction but higher than the late run after position correction. This means that
image warping has better correction performance for the late run. We believe this is because
the final run product used more sensors and GPCC’s monthly average station data for error
correction, resulting in the rain gauge stations having a limited effect on it. The correlation
coefficient (CC), average position error (APE), and regression coefficient (RC) for SPEs can
all be interpreted in the same way.

Table 2. Satellite precipitation evaluation indicators before and after position correction.

RMSE RMSE_gird MAE MAE_grid CC CC_grid APE (km) RC

final Before 5.23 3.30 2.15 1.46 0.53 0.61 129.83 0.71
After 4.97 2.70 1.84 1.08 0.58 0.72 86.74 0.81

late Before 5.32 3.32 2.12 1.39 0.50 0.58 133.61 0.68
After 4.49 2.70 1.78 1.03 0.58 0.71 72.17 0.83

FY-4A Before 6.50 4.70 2.79 2.14 0.27 0.30 161.88 0.29
After 5.67 3.56 2.13 1.37 0.44 0.55 98.47 0.56

Note: xx_grid represents the error statistic between SPEs and the station after interpolation to the satellite grid.
APE and RC are the average position error and regression coefficient of SPEs and stations, respectively.
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To study the distance relationship between SPEs and rain gauge stations, we define the
distance between the positions of the precipitation center (maximum precipitation) as the
position error. Firstly, SPEs are linearly interpolated to each rain gauge station. Then, select
the maximum value at each time. The distance error index in this paper is the distance
between this point and the maximum value of the rain gauge stations at the same time.

Table 2 and Figure 5 show that FY-4A has the most significant position error, while
the final run has the smallest. The maximum errors of the three are concentrated between
5:00 and 12:00 on the 21st. Their position errors are significantly reduced after position
correction. Table 2 shows that the late run satellite precipitation product has the smallest
average position error after position correction, with an improvement of 46%.
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Figure 5. The solid and dashed lines are the time series of the position error before and after position
correction from 0:00 on 19 July to 23:00 on 21 July, respectively.

Table 2 and Figure 6 show that the final run has the best fitting degree with a CC of
0.53 and an RC of 0.71 before position correction. FY-4A, on the other hand, has the worst
fitting degree, with a CC of 0.27 and an RC of 0.29. As the position errors of the three SPEs
decreased after position correction, the RC and CC between the SPEs and the rain gauge
station data samples increase significantly. This means they better fit and correlate with
rain gauge data. The regression coefficient of the late run is the highest at this point, at
0.83. FY-4A is the most improved, with a 63% increase in correlation coefficient and a 93.8%
increase in regression coefficient.

The relative bias of SPEs with rain gauge stations needs to be studied to verify the
improvement of the systematic bias degree of satellite precipitation data by the position
correction method. Before position correction, the RB of the final run is the largest and the
FY-4A is the smallest, as shown in Figure 7. This is because the final run has the highest
precipitation value, which means that if there is a position deviation, the relative bias will
be higher; FY-4A has the lowest precipitation value, so even if there is a position bias, the
relative bias will be smaller. It also demonstrates that the warping vector field from the
automatic registration algorithm significantly impacts the position correction of satellite
precipitation estimates. The quantification of the relative bias changes is described with
more details in Appendix B.1.
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Figure 6. Scatter plots of SPEs and the rain gauge stations before and after position correction. The
dashed line is a reference line with a slope of 1, and the solid line is a linear regression fit of the SPEs
and the rain gauge stations.
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Figure 7. Box plot of relative bias of SPEs with respect to rain gauge stations. The mild outliers are
omitted here.

3.3. Error Decomposition

POD, FAR, and CSI are commonly used to quantify the evaluation and analysis of
satellite precipitation products. We conducted a graded precipitation test for the three
satellite precipitation estimates to investigate the satellite identification of different pre-
cipitation intensities. We set the graded test threshold below 15 mm/h due to less than
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5% of the frequencies being greater than 15 mm/h at each station in the study area from
19 July to 21 July. Figure 8 shows that as the precipitation threshold is raised, POD and
CSI both have a significant downward trend, whereas FAR has a significant upward trend.
Before position correction, IMERG’s POD and CSI are higher than FY-4A’s, while FY-4A’s
FAR is lower, indicating that IMERG’s satellite precipitation products have better detection
accuracy. After position correction, the FAR decreases significantly, the CSI improves, the
POD of IMERG remains largely unchanged, and the POD and CSI of FY-4A both show
significant improvement. The position correction method has a better improvement effect
on FY-4A, as this result once again demonstrates. The quantitative analysis of POD, FAR,
and CSI of SPEs are described with more details in Appendix B.2.
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Figure 8. The curves of POD, FAR, and CSI of SPEs before and after correction with thresholds. The
solid and dashed lines are the curves before and after position correction, respectively.

The errors in satellite precipitation estimation result from false alarms, missed reports,
and numerical intensity errors of satellite precipitation. Therefore, the total error of SPEs is
decomposed into three components: HB, MP, and FP. We calculate the MAE for the TE,
HB, MP, and FP to avoid the mutual cancellation of positive and negative errors. It can be
found from Table 3 that

MAE(TE) = MAE(HB) + MAE(MP) + MAE(FP). (12)

The analysis above shows that the position correction method has a significant improvement
effect on the error of SPEs.

Table 3. Changes in the mean absolute error of the error components HB, MP, and FP after position
correction.

MAE (TE)
mm/h

MAE (HB)
mm/h

MAE (MP)
mm/h

MAE (FP)
mm/h

Before 2.17 1.81 0.09 0.27
final After 1.84 1.52 0.13 0.18

After–Before −0.34 −0.29 0.04 −0.09

Before 2.14 1.77 0.12 0.25
late After 1.78 1.48 0.13 0.16

After–Before −0.36 −0.29 0.01 −0.09

Before 2.79 1.60 0.59 0.59
FY-4A After 2.13 1.56 0.33 0.23

After–Before −0.66 −0.04 −0.26 −0.36
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For the IMERG precipitation product, we find that HB and FP decrease while MP
increases. As marked in the lower-left corner of Figure 3, the precipitation area in the
southwest of the satellite precipitation becomes smaller after position correction. The area
that covered the precipitation of the rain gauge station before becomes uncovered, and
similar situations will increase the false alarm error. The reduction of the number of false
alarms directly affects the reduction of the false alarm error. Interestingly, Table 3 shows that
after position correction, the number of hits of the IMERG precipitation products is reduced,
but the hit bias is significantly reduced. The number of hits only represents the ability
of the precipitation detected by the satellite, not the accuracy in detecting precipitation.
Detecting precipitation in the wrong place, such as data from the precipitation center when
it should be detected but detecting other precipitation data around the precipitation center,
will increase the hit bias in a large precipitation area. The precipitation center detected by
the satellite will be more consistent with the actual position after position correction, and
the hit bias will be reduced. The change in total error is consistent with the hit bias, as
shown in Figure 9, and the reduction of the hit bias accounts for the majority of the total
error reduction contribution. The maximum IMERG total error interval is concentrated
between 12:00 and 18:00 on the 20th, and the maximum contribution of hit bias is also
concentrated during this time. As the precipitation is at its highest during this time, the hit
bias caused by position error is also at its highest.
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Figure 9. The first two columns show the time series of mean absolute errors of the error components
of IMERG final run, IMERG late run, and FY-4A before and after position correction, respectively.
The last column is the difference between the absolute mean error of the error components before
and after position correction.

We found a significant reduction in FP and MP for the FY-4A precipitation product,
related to fewer false alarms and missed reports. The number of false alarms has decreased
by 44%, making FP reduction the most significant contributor to TE reduction. In extreme
precipitation, as shown in Figure 3, the precipitation in the FY-4A inversion is average, and
the precipitation center is not visible or distinguishable from the surrounding precipitation.
As a result, even though the precipitation hit by the satellite is closer to the actual position,
HB is not significantly reduced after position correction. We observe that the reduction of
FY-4A precipitation error depends on the decrease in FP from Figure 9, which is consistent
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with our analysis. Interestingly, we notice that the change in the MP tends to be opposite to
the change in the HB, which will cancel each other out in TE. This is consistent with Tang’s
study [63].

4. Discussion
4.1. Effectiveness and Sensitivity of the Method

The registration and warping techniques in image processing are used for position
correction of satellite precipitation estimates and the performance of satellite precipitation
products of FY-4A and IMERG in the ‘720’ extreme precipitation event in Henan Province
is evaluated in this paper. The performance and errors of various satellite precipitation
products are compared carefully, and the improvement of satellite precipitation products
before and after position correction is investigated thoroughly. According to the experi-
mental results, all satellite precipitation estimates have errors resulting from numerical
intensity errors and position bias. Both IMERG products perform similarly to FY-4A and
are superior to it. According to the observations from surface rain gauge stations, the final
run product, error-corrected with more sensors and monthly average station data from
GPCC, has the best numerical intensity. However, its overall performance is inferior to
that of the late run after position correction. In extreme precipitation events, FY-4A has
difficulty inversely performing light and high-value precipitation, making it difficult for the
registration method to obtain image features to generate vector warping fields, resulting
in the longest convergence time of its minimization loss function L(p, q, M). The FY-4A
product has the highest RMSE, MAE, and average position error compared with the IMERG
product, as well as the lowest correlation with station precipitation data and fit. However,
FY-4A has the smallest relative bias with concentrated distribution relative to stations due
to its little difference in precipitation distribution data. Position correction significantly
impacts FY-4A’s performance improvement, and the improvement ratio is the highest of
the three, with a 63% improvement in the correlation coefficient and a 93.8% improvement
in the regression coefficient, especially in the improvement of the fit to station precipitation.

Additionally, we conducted a sensitivity analysis using the light precipitation event
that occurred in Anhui Province, China on 22 March 2022 from 0:00 to 15:00. The hourly
average precipitation for this event was less than 0.5 mm/h. The rain gauge data are
provided by 67 national surface rainfall stations in Anhui. IMERG late run is selected as the
satellite precipitation estimation for testing. Before position correction, the RMSE, MAE,
CC, and APE of the IMERG late run were 0.65 mm/h, 0.28 mm/h, 0.62, and 135.87 km,
respectively. After position correction, the RMSE, MAE, CC, and APE of the IMERG late
run are 0.47 mm/h, 0.19 mm/h, 0.75, and 89.26 km, respectively. The corresponding
improvements of RMSE, MAE, CC, and APE are 28%, 32%, 21%, and 34%, respectively. The
study shows that the technique still has a positive impact on light precipitation events across
various regions, which demonstrates the broad applicability of the method. Combined
with Camille’s [44] research, we believe that the density of rainfall stations will affect the
registration results, resulting in differences in the improvement effect of the precipitation
field, because the position correction method can better capture the characteristics of the
precipitation field through the high density of rain gauge stations.

Camille [44] used image registration and warping methods to correct precipitation
errors, but there has been no analysis of their error reduction mechanisms. In this paper, an
error decomposition model is used to evaluate the error components of satellite precipi-
tation data and investigate how each error component contributes to the total error after
position correction. For extreme precipitation events, satellite precipitation covers a large
area. Although the IMERG precipitation products have a high POD and CSI, and low FAR,
the precipitation intensity values are appropriate and the errors are still significant. This
is due to the precipitation centers not being aligned to the proper positions. The IMERG
precipitation product primarily benefits from position correction in terms of hit bias. The
improvement in hit bias after position correction is not significant for the FY-4A due to
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its detection inversion mechanism, and it reduces the total error chiefly by decreasing the
number of false alarms.

4.2. Limitations and Prospects

Although the position correction method through image registration and warping
processing can make the SPEs better match the actual precipitation position to reduce the
error, it still has some shortcomings. The technique is limited to extracting large-scale
features in image processing, focusing on matching the precipitation center but ignoring
the surrounding precipitation. As marked in Figure 3, the precipitation distribution from
the satellites that initially covered the ground stations may become uncovered after position
correction, increasing MP. Image registration requires a certain level of similarity in the
input; otherwise, registration failure or a long convergence iteration process may occur. In
addition, the method mainly improves SPEs’ position rather than the numerical intensity.
This aspect can be improved in the research work in the future.

Satellite remote sensing of a weather system with motion characteristics such as pre-
cipitation often has significant position errors limited by sensors and inversion algorithms.
This increases the non-Gaussian nature of data errors, affecting climate research and leading
to unreliable numerical weather forecasting. In addition, the observation field after position
correction can be used as a better initial field for data assimilation and numerical prediction.
Therefore, the research on position correction has great significance and broad prospects.

5. Conclusions

In this paper, the satellite precipitation products of IMERG and FY-4A during the
‘720’ Henan extreme precipitation event are corrected based on the image registration and
warping methods. Then, the error decomposition model is used to study the contribution
of each component of different satellite precipitation data errors to the total error after
position correction. The main conclusions are given as follows:

1. Evaluations of SPEs: Compared with rain gauge stations, the distribution of satellite
precipitation estimates in Henan extreme precipitation events has an easterly distri-
bution position error. Among the three satellite precipitation products, IMERG final
run has the highest numerical accuracy but FY-4A has the lowest because FY-4A has
difficulty inverting very light and very high precipitation values accurately during
extreme precipitation events.

2. Method effects: The position correction method based on image registration and
warping method can effectively reduce the error of satellite precipitation products
and FAR, as well as improve POD, CSI, and the fit to the rain gauge stations. The
improvement in the final run is limited, with a mean absolute error improvement
of only 14%, while the improvement in FY-4A is the most significant, with a mean
absolute error improvement of 23% and, in particular, a 63% improvement in its
correlation coefficient with rain gauge station data. The improved late run had the
best performance and the lowest error. The stability of the position correction method
is good and it is also suitable for light precipitation.

3. Error component improvement contributions: The IMERG precipitation product
primarily benefits from position correction in terms of hit bias, with the biases of hit
precipitation improving more than 81%. For the FY-4A, position correction mainly
reduces the total error by reducing the number of false alarms, which accounts for
55%, and its improvement on the hit bias is not significant because of the detection
inversion mechanisms of the FY-4A.

4. Limitations: The registration algorithm is more sensitive to the precipitation center
with a high value and will preferentially register the precipitation center. If the
precipitation distribution is discontinuous or there are multiple precipitation centers,
it may cause instability and failure in the registration process or a long convergence
iteration process.
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Overall, position corrections for satellite precipitation estimates have some advantages
over conventional intensity-only correction techniques. However, the method itself is
dependent on the similarity of the two fields. The computational cost of the registration
increases with the complexity of the distortion between the fields. The technique can also
be used to correct for precipitation as well as weather systems such as hurricanes that have
distinct movement characteristics. It is crucial for the application of studies on climate
change and weather forecasting to reduce the non-Gaussianity of the geographic data by
fusing exact position information with it.
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Appendix A

The loss function L is usually not a convex function for M and may have local minima.
We use the method of iterative solution on increasingly fine grids as in Ref. [44] to solve the
optimization problem of minimizing the loss function L. Firstly, the images p and q are
taken into consideration on a fixed regular fine grid D f , and the study area chosen in this
paper is regarded as a regular grid D f of 50 × 50. Then, a set of coarse grids Di (i = 1, 2, . . . ,
I) is defined, which has a size of (2i + 1)(2i + 1) = mi. The mapping of M discretized onto
the coarse grids Di with different resolutions is denoted as Mi. Since I = 4 in this paper, the
coarse grid fineness of Di is smaller than D f but its coverage is larger than that of D f . The
loss function Lo is discretized on D f , while the loss function Lb is discretized on Di, which
achieves the separated solution of the loss function. In the numerical solution process, the
second-order central format is used except at the boundary where the first-order backward
or forward format is used. The iterative solution process starts from the coarsest grid D1
and continues to the finest grid DI . The computational cost of solving the minimization
problem on the coarse grids Di is much less than on D f .

The solution process for each iteration is divided into three main steps as follows.

1. Smoothing and normalization: The images p and q are smoothed by a two-dimensional
Gaussian convolution; then, the two smoothed fields are normalized to be at the same
magnitude. Since the Gaussian width becomes narrower as the grid gets finer, the
large-scale features on the coarse grid can be captured and the more detailed small-scale
features of the image on the fine grid can be complemented through the registration
method in this step. Iterating over different resolutions of the grid Di can achieve a
balance between registration goals and computational efficiency, greatly reducing the
computational cost. In addition, the nonconvexity of the loss function may lead to local
minima, while the large-scale sampling of the smoothed image on the coarse grid can
effectively reduce the local minima problem.

http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx
https://disc.gsfc.nasa.gov/datasets
https://disc.gsfc.nasa.gov/datasets
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2. Initialization: In the iterative process, the mapping function M needs to be initial-
ized. In this paper, we adopt the method of Ref. [44], given an initial guess Mguess,
when i = 1, Mguess

i is set to 0, representing no warping. The optimal M∗i in Di is
obtained through updating Mguess

i by solving the optimization problem; then, M∗i is
interpolated to Di+1 as the initial guess Mguess

i+1 of Di+1.
3. Optimization: The loss function Lo is discretized on the grid D f , while Lb is dis-

cretized on Di. The main contributing part of the loss function L is Lo. In this
paper, the iterative barrier method is used to transform the constrained minimiza-
tion problem into an unconstrained problem by combining the methods of Refer-
ences [44,48,70,71].

Appendix B

Appendix B.1

Combined with Figure 7, it can be found that, after position correction, the median,
upper quartile, and upper whisker of the RB of the SPEs are all closer to 0. Their RB has
less dispersion and a more concentrated distribution, with a balanced distribution at both
ends of 0. The rise in RB suggests that the data fit between SPEs and rain gauge stations is
improving. At the same time, it can be found that their mild outliers were all reduced to
different degrees, indicating that the positional correction improved data reliability and
stability. The rise of RB indicates that the data fit between SPEs and rain gauge stations
is improving.

Table A1. Relative bias statistics of SPEs with respect to rain gauge stations. Q1, Q2, and Q3 represent
the first quartile, the second quartile, and the third quartile, respectively.

Lower
Whisker Q1 Q2 Q3 Upper

Whisker
Mild

Outlier

final Before −100% −67.2% 41.5% 314.4% 886.4% 641
After −100% −86.7% −17.6% 138.1% 473% 611

late Before −100% −74.2% 23.7% 284.2% 821.4% 657
After −100% −88.6% −27% 118.3% 427.7% 589

FY-4A Before −100% −100% −54.5% 190.4% 625% 907
After −100% −100% −66.7% 77.5% 343.1% 775

Appendix B.2

Before the position correction, the POD and CSI of IMERG are higher than those of
FY-4A, as shown in Figure 8 and Table A2. POD and CSI of the final run are the highest
at 92% and 60%, respectively; POD of FY-4A is the lowest at 60% but it has the best FAR
performance. Table A3 shows that the final run has the most hits, while FY-4A has fewer
hits and false alarms but more missed reports. This is due to FY-4A’s poor inversion of
light precipitation and heavy precipitation in extreme precipitation, resulting in numerous
missed reports, as shown in Figure 2. The POD of IMERG precipitation products decreases
after position correction, but the FAR also decreases; this is because, after position correction,
the number of hits and false alarms decreased, but the number of missed reports increased.
In general, all of FY-4A’s indicators have improved. The number of false alarms was
significantly reduced in FY-4A, as shown in Table A3.

Figure 8 and Table A2 show that in graded precipitation test, as the precipitation
threshold is raised, POD and CSI both have a significant downward trend, whereas FAR
has a significant upward trend. Table A3 shows that when the threshold value is set to
7.5 mm/h, the number of hits is reduced to less than 1/10 of the original number, but
the number of false alarms and missed reports does not change significantly. It is clear
from the previous analysis that the satellite has difficulty inverting the very high and very
low values in extreme precipitation, resulting in low POD and high FAR for areas with
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high precipitation. The number of missed and false alarms can be effectively reduced
after position correction, which has a significant impact on improving POD and CSI and
lowering FAR. In comparison, FY-4A has the best improvement after position correction,
but it is inferior to the IMERG precipitation product.

Table A2. POD, FAR, and CSI of IMERG late run, IMERG final run, and FY-4A before and after
correction with different thresholds.

Threshold POD FAR CSI

mm/h Late Final FY-4A Late Final FY-4A Late Final FY-4A

0 Before 90% 92% 60% 38% 37% 31% 58% 60% 48%
After 85% 85% 61% 35% 35% 20% 58% 58% 53%

7.5 Before 46% 47% 28% 58% 59% 76% 28% 28% 15%
After 47% 49% 37% 49% 51% 65% 32% 32% 22%

15 Before 21% 27% 16% 69% 68% 80% 14% 17% 10%
After 25% 30% 21% 59% 60% 72% 19% 21% 14%

Table A3. The number of H, M, and F of IMERG late run, IMERG final run, and FY-4A before and
after correction with different thresholds.

Threshold H F M

mm/h Late Final FY-4A Late Final FY-4A Late Final FY-4A

0 Before 5390 5512 3616 3284 3224 1596 408 486 2382
After 5102 5101 3679 2787 2725 897 896 897 2319

7.5 Before 499 504 309 673 715 964 562 557 752
After 513 527 400 464 521 712 548 534 661

15 Before 91 115 69 202 250 280 339 315 361
After 109 129 92 157 191 237 321 301 338

Note: H, M, and F are the number of hits, the number of missed reports, and the number of false alarms,
respectively.
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