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Abstract: Cybersecurity is a challenge in the utilization of IoT devices. One of the main security
functions that we need for IoT devices is authentication. In this work, we used physical unclonable
function (PUF) technology to propose a lightweight authentication protocol for IoT devices with
long lifetimes. Our focus in this project is a solution for FPGA-based IoT devices. We evaluated the
resiliency of our solution against state-of-the-art machine learning attacks.
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1. Introduction

The Internet of Things (IoT) has become a critical infrastructure of our modern world.
It pervades private homes and cities, industrial complexes and offices, farms, hospitals and
shopping malls. Due to their critical role, IoT devices have become attractive targets for
cyberattacks, which intend to form large-scale bot networks, damage supply chains or even
harm users. Hence, cybersecurity is a crucial feature for IoT devices, which, however, is a
particularly hard problem, especially due to their (i) low price and (ii) long lifetimes.

IoT devices intrinsically need to be cheap, and thus often use low-cost processing units.
Limited resources in these low-cost devices introduce difficulties in modern cybersecurity
functions needed for authentication which require cryptographic functions and hence high
computational power. To address this issue, scientists in [1,2] introduced a solution based
on physically uncloneable functions (PUFs). In this lightweight solution, the design of each
hardware module is used to generate a unique fingerprint for each device.

IoT devices—once deployed—must also be usable for many years and always need to
have state-of-the-art security measures. If, for example, an IoT device is embedded into
a smart vehicle, it must operate for at least 15 years and may even be used for the next
30 years and upwards. In this time, new attacks will be developed, and cryptographic
functions considered secure during the design phase of the device may become insecure.
PUFs also address this issue, since the security does not depend on characteristics of the
function but instead the unique fingerprint of the IoT device.

One solution for providing up-to-date hardware security measures is using FPGA-
based designs [3,4]. field programmable gate arrays (FPGAs) are special integrated circuits
that can simulate other hardware components, while being re-programmable in the field.
Thus, we can use them to implement security measures—like a PUF—very efficiently
without losing the ability to update them at any time. This is especially interesting, since
many modern devices integrate an FPGA already for complex computations, e.g., for image
processing or AI applications [5]. We can use part of the available FPGA space to add a PUF,
leaving the rest available for the device’s core functions. Of course, it is important to use up
as little space on the FPGA as possible, to minimize our impact on the device’s operation.
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The goal of our research is to provide PUF-based lightweight cybersecurity for IoT
devices with integrated FPGAs. We extended the Spatial PUF construction of [6], which
builds on the dynamic reconfigurability of FPGAs, to provide more challenge response
pairs and thereby increase the number of authentication cycles and secure lifetimes of
IoT devices. We outline how the Spatial PUF construction can serve as a building block
to realize two lightweight authentication protocols, called RESA-P and RESA-PC, which
provide security against machine-learning attacks (ML attacks).

Research Goal Summary

To summarize, we narrow down our research goals to the following points:

1. The authentication procedure based on PUF shall have enough CRPs for IoT product
lifetimes. This approach shall not increase the size of the PUF circuit on the chip.

2. The solution shall be compatible with modular system designs on FPGAs (as discussed
in Section 2.1).

3. The solution shall have resiliency against machine learning attacks.
4. The proposed solution shall follow the initial promise of PUFs to provide a lightweight

security solution without cryptographic primitives.

The paper is structured as follows. In Section 2, we first discuss the concept of PUFs
and analyze potential challenges for them, e.g., machine learning attacks. In Section 3,
we propose our PUF architecture, which increases the number of CRPs and hence ex-
tends the utilization of the PUF for longer product lifetimes. In Section 4, we present
our authentication protocols, which we evaluate in Section 5. We conclude the paper in
Section 6.

2. Background and Related Work

In this section, we give the background on FPGAs and PUFs, evaluate security chal-
lenges when implementing PUFs and discuss related work in the respective sections.

2.1. FPGAs in IoT Devices

IoT devices are very heterogeneous and require different hardware modules for their
operation, including special purpose chips for security and communication. To cope with
this, embedded FPGAs can instantiate modular systems on chips (SoCs) that are tailor-
made for each specific device type. This is shown in Figure 1. In this model there are
different processing units instantiated on the FPGA that communicate via an onboard
communication bus. Modules can be placed arbitrarily, moved to different positions and
updated and replaced with other modules as needed. This can be done offline (using
normal FPGA reconfiguration) or online (using dynamic partial reconfiguration [7]). We
propose to use a PUF as one module of such a design and to change its placement on the
FPGA during system operation.

Figure 1. Modular architecture for FPGA-based IoT devices.
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2.2. What Is a PUF?

Due to inaccuracies in the process of manufacturing or assembling, chips of the
same product line have small differences in their properties. While these inaccuracies are
normally considered an undesirably property, since they lead to inconsistent behavior
between devices, we can utilize them in the context of security to achieve individual chip
fingerprints. To exploit these, we add a particular circuit design to the hardware, which
is known as a PUF circuit (see Figure 2) or PUF for short. PUFs take a chain of bits as an
input, namely, a challenge, and create a succession of bits as an output, called the response.
For a given challenge, two identical PUFs on different chips produce different responses.
We define a challenge–response pair (CRP) as the pair of a challenge and its associated
response. A chip’s fingerprint can then be defined as a set of CRPs produced by its PUF.

Figure 2. Two identical PUF circuits on two different chips generate different responses.

There are two main types of PUFs, namely, weak and strong PUFs [1], which mainly
differ with respect to their relationship between PUF size and the number of available
CRPs. In general, a bigger PUF, i.e., a PUF which consumes a bigger area on the die, is
able to generate more CRPs. Strong PUFs increase the number of CRPs exponentially with
their size. Weak PUFs increase the number of CRPs linearly. As a result, weak PUFs have
very limited numbers of CRPs [8] or even only a single CRP, whereas powerful PUFs have
massive amounts of CRPs [1]. The focus on our work is on strong PUFs, since we require a
high number of CRPs for devices with greatly limited space.

2.3. PUF Architecture Selection

As initially discussed, our goal was to develop an authentication procedure that does
not require cryptographic primitives. It must be possible to update it, it must fit properly
onto an FPGA, and it must be aligned with FPGA characteristics.

The first challenge toward this goal was selecting a PUF architecture that can fit our
purposes. Previous work [9] performed an investigation regarding compatibility of PUF
architectures on FPGA, and found that ring oscillator (RO) PUFs were the best fit. They
are easy to implement on an FPGA, are not path sensitive (as opposed to, e.g., Arbiter
PUFs), and can also be used as true random number generators (TRNGs) [10]. Therefore,
we selected RO PUFs as the base architecture for our authentication procedure. However,
the drawback of the RO PUF architecture is that it has an intrinsic vulnerability [11], to
which the authors also provided a solution.

For more details on RO PUFs, we refer the reader to [6,9]. A broader discussion of
current FPGA-based PUF architectures can be found in [3].

2.4. PUF Applications

PUFs can be used for key generation and authentication purposes. Our main focus is
on authentication of the device towards the server, which is illustrated in Figure 3.
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Figure 3. Basic protocol to authenticate a device towards a server using PUFs.

The basic authentication protocol based on a PUF has two operation phases, (1) the
enrollment phase and (2) the authentication phase. In the enrollment phase, a server and
the device containing the PUF communicate directly in a secure environment. All CRPs
are read out and stored securely in the server. Then, later in the authentication phase, the
server sends a challenge to the device. The device uses its PUF to generate the response
that corresponds to the received challenge and sends it back to the server. If the generated
response is identical to the response stored earlier on the server, the device is authenticated.

This is a basic authentication protocol for authenticating the device that is based on a
PUF. It does not require any cryptographic primitives (e.g., hashing or encryption) and is
lightweight, as only two messages are needed. It should be noted that for each authentica-
tion, one unique CRP is required and CRPs cannot be reused. Otherwise, the adversary can
simply collect old CRPs and can apply a replay attack on the device. Consequently, weak
PUFs cannot be used effectively for this protocol, since they have a rather small number of
CRPs. Strong PUFs are better candidates for this application of PUFs [12].

In theory, this basic protocol would be perfect if the CRPs of a PUF are unpredictable.
However, in reality, PUFs do not provide the expected resiliency [13] due to various attacks
that we review in the following.

2.5. PUF Attack Overview

Previous work [9] outlined the cybersecurity challenges in PUFs regarding IoT ap-
plication. Here we will give an overview to the reader regarding these challenges. In
general, there are two types of attacks that are applicable to PUFs. The most effective one
are invasive and semi-invasive attacks [9]. In these cases [14], side channel attacks (e.g.,
electromagnetic analysis, timing, optical, power analysis, etc.) are used to break the PUF
security [2]. These attacks are highly effective but require physical access to the attacked
device and dedicated equipment.

The second types of attacks are ML attacks [8,15]. These attacks are cost efficient and
effective. The attack works by gathering CRPs and modeling them using a ML algorithm
such as linear regression in order to predict responses to given challenges. Instead of
physical access, an attacker only requires knowledge of some valid CRPs. Currently, ML
attacks are the most efficient attacks against IoT devices that use PUF for their authentication
process [15]. There are PUF-based protocols and PUF architectures which tackle this
challenge. In the following, we will give an overview of them and discuss their applicability
to our initially proposed goal, which is to utilize PUFs for FPGA-based devices.

The third types of attacks on PUFs are combinations of side channel attacks with
machine learning (ML) attacks [16–18]. This attack type is less complex than the previous
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type but still requires laboratory equipment and physical access to the device, and still
might not be cost efficient and applicable for all IoT devices.

2.6. PUF Resiliency against ML Attacks

Extensive research has been done to address the vulnerability of PUFs against ML
attacks [9]. The first and most straightforward scenario to address ML attacks in is to use
hash algorithms to either transmit hashed response values or sign CRPs when transferring
them [8,19–21]. This is effective but goes against the initial promise of PUFs not to utilize
cryptographic primitives.

Researchers also tried to provide resiliency against ML attacks on the hardware level.
XOR arbiter PUFs [13] were some of the initially proposed PUF architectures that showed
resiliency against ML attacks. Successor architectures, such as [22], also showed resiliency
against these types of attacks. Other solutions [23,24] proposed PUF-based authentication
protocols that show resiliency against ML attacks. While these solutions provide resilience
against ML attacks, they are not available on off-the-shelf hardware. In contrast, our work
focuses on providing solutions for resilience against ML attacks based on readily available
(embedded) FPGAs on IoT devices.

2.7. CRPs vs. Lifetime

One additional challenge remains to be discussed: can PUFs provide secure authen-
tication for the full lifetime of an IoT product? As discussed before, each authentication
phase requires (at least) one unique CRP. Thus, we need at least as many CRPs as there are
required authentication events during the whole product lifetime. If after some time we
run out of CRPs, then we cannot guarantee secure operation anymore. As a consequence,
the number of supported CRPs should be as high as possible for a given PUF.

A classic method to increase the number of CRPs is to increase the size of the PUF.
By doubling the size of a (strong) PUF, its number of CRPs increases exponentially [6].
However, this approach goes against the original promise of PUFs as a very lightweight
security solution. A bigger PUF has a bigger overhead with respect to the consumed chip
area and computational power.

The spatial PUF construction [6] increases the number of CRPs by using multiple PUFs
deployed at different clock regions in the FPGA (see Figure 4). The generated CRPs are
unique and uncorrelated due to the separation into different clock regions. The original
Spatial PUF construction uses a Xilinx XC7A35-T FPGA, which is a tiny FPGA (in term
of computational resources) and has six clock regions, which allows increasing the total
number of CRPs by a factor of six. Since the goal of our work is to achieve a high number
of CRPs without increasing the PUF size, the Spatial PUF approach [6] seems most suitable
for our work. We will show in Section 3 how the Spatial PUF construction can be extended
to further increase the number of CRPs that can be utilized.

Figure 4. Placing an RO PUF in two different clock regions.
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3. Extended Spatial PUF

In this paper, we extend the Spatial PUF approach of [6] with additional placements.
As shown in Figure 5, in addition to placing the PUF in a single clock region, we placed
our PUF on the border between two or four different clock regions, leading to 15 different
placements. In a border placement between two regions (see Figure 4), the first half of the
PUF is placed in clock region A. The second part is placed in clock region B. Our hypothesis
is that the difference between clocks in the two clock regions causes different resonating
periods of ring oscillators. As a consequence, the resulting PUF will behave differently to
PUFs in each of the two clock regions with respect to uniqueness and uniformity.

Figure 5. By changing the position of a PUF on an FPGA, we can generate different PUFs with unique
and uncorrelated CRPs [6].

To examine our hypothesis, we generated all 15 PUF placements, instantiated them on
a Xilinx XC7A35-T FPGA (the same FPGA as was used in [6]) and computed the uniformity
and uniqueness of the generated CRPs.

Uniformity measures whether the distribution of 0 and 1 bits in responses of a single
PUF is normalized or not. The optimum value for this measurement is 50%; i.e., the 0 and
1 bits will occur equally often. Therefore, we cannot increase our chances to guess the
correct response by favoring either 0s or 1s. The response uniformity at region “l” can be
calculated as follows:

Uni f ormity =
1
n

n

∑
i=1

(ri,l) ∗ 100% (1)

In this formula i is the index corresponding to the number of CRPs which is between
1 < i < n. We computed this value for all PUFs in the different border regions. The results
are presented in Table 1 as distances from the optimal value (50%). The worst case is the
PUF in Region BC with 8% distance. The best PUF is the one in Region BCEF with 2%
distance. These results are similar to the uniformity rates that were measured for PUFs in
single regions in [6].

Table 1. Distribution of 0s and 1s in response bits at each border region and their distances from the
optimal value.

Region
AB

Region
AD

Region
ABDE

Region
BE

Region
BC

Region
BCEF

Region
CF

Region
EF

Region
DE

Distance from Opt. Value 5% 3% 4.5% 6% 8% 2% 7% 3.5% 4%

The other criteria we need to investigate is uniqueness. Uniqueness specifies the likeli-
hood of responses of PUFs that are placed in different regions of the FPGA, e.g., comparing
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the responses of the PUF in Regions D and E with the ones of the PUF in Region DE. We ex-
pect that each deployment of our PUF behaves independently. We measure the uniqueness
by computing the inter-hamming distance between two deployments l1 and l2 as follows:

HDinter =
k−1

∑
l1=1

k

∑
l2=l1+1

HD(rl1, rl2)

n
∗ 100 (2)

In this this formula, k is the number of regions, in our case 15. Again, the optimal value
is 50%, and we show the distance from the optimum in Table 2. The maximum distance is
9%. This is in the acceptable boundary of 10% [1].

Table 2. Distance from HDinter optimum value between i and j border regions or clock regions
of FPGA.

Region A Region B Region C Region D Region E Region F Region AB

Region A

Region B 1%

Region C 0% 2%

Region D 8% 8% 2%

Region E 4% 3% 1% 6%

Region F 1% 5% 1% 5% 3%

Region AB 6% 7% 5% 3% 2% 4%

Region AD 5% 3% 1% 4% 7% 2% 6%

Region ABDE 7% 4% 8% 2% 5% 1% 3%

Region BE 2% 3% 5% 0% 4% 7% 1%

Region BC 1% 1% 7% 9% 4% 5% 5%

Region BCEF 4% 4% 9% 4% 2% 8% 3%

Region CF 8% 5% 3% 2% 4% 1% 5%

Region EF 3% 7% 8% 2% 6% 8% 5%

Region DE 4% 2% 0% 7% 8% 5% 6%

Region AD Region ABDE Region BE Region BC Region BCEF Region CF Region EF

Region AD

Region ABDE 7%

Region BE 3% 6%

Region BC 7% 3% 9%

Region BCEF 6% 8% 1% 6%

Region CF 3% 2% 1% 7% 5%

Region EF 6% 5% 4% 8% 3% 9%

Region DE 7% 4% 1% 8% 5% 6% 1%

In summary, our results confirm our hypothesis that clock regions and border regions
act like distinguishable FPGAs with respect to a PUF deployed in them. The generated
CRPs are uniform and unique. This allows us to increase the number of CRPs without
increasing the size of the PUF on the FPGA, fulfilling our first research goal (see Section 1).
The approach is compatible with a modular system design on an FPGA, using the fact that
in such a design we can change the placement of the PUF. Thus, we argue that it also fulfills
our second research goal. The number of CRPs of a RO PUF with k ROs can be calculated
as follows:
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NCRP =
k(k− 1)

2
(3)

Thus, a typical RO PUF with k = 128 can generate 8128 CRPs. Such a PUF roughly
occupies 10% of the used FPGA’s (Xilinx XC7a35T) logic cells. Our technique can increase
the number of CRPs by a factor of 15 to 121,920 CRPs, while still only occupying 10% of the
FPGA. If we wanted to use a conventional PUF that generates the same amount of CRPs,
we would need 512 ROs. This PUF would occupy roughly 40% of the used FPGA.

In the next section, we use our extended Spatial PUF to propose an authentication
protocol based on dynamic partial reconfiguration (DPR) technology [7]. This protocol
will provide resiliency against ML attacks while providing a lightweight solution, thereby
fulfilling our two remaining research goals.

4. The RESA PUF Protocols

We now describe how to utilize the Spatial PUF construction to realize lightweight
authentication protocols called the Reconfigurable Security Architecture-Based PUF pro-
tocols, or RESA for short. We developed two protocol variants that differ with respect
to the potential number of CRPs that can be used for authentication and with respect to
the security provided. The first protocol, RESA-P, hides the PUF placement in order to
allow a full utilization of the CRPs that are accessible from the the Spatial PUF construction.
The second protocol, RESA-PC hides the PUF placement and challenge in order to further
extend the number of CRPs at the cost of decreasing security over time. Before we present
both protocols, we first clarify our underlying assumptions and notations and discuss
why an application of the basic authentication protocol from Section 2.4 in the Spatial PUF
approach only provides limited security against ML attacks.

4.1. Underlying Assumptions and Notation

Our RESA protocols use the Spatial PUF, and we assume that a Spatial PUF is present
on the local FPGA of the IoT device that wants to authenticate itself with the server. We
further assume that the FPGA supports dynamic partial reconfiguration, as is the case for
Xilinx FPGAs [7]. Thus, it can switch between PUF locations without re-configuring the
whole FPGA. Our Spatial PUF consists of M strong ring oscillator PUFs. We divide the
available RO PUFs into two sets: one of static and globally defined RO PUFs, denoted
as SPUFini, and M− 1 PUF architectures, denoted as SPUFm with m = 1 . . . M− 1. We
denote the total number of CRPs for the Spatial PUF with a RO PUF with k paths as
D = M · k · (k−1)

2 . For common variables between device and server, we distinguish between
variables of the client using subscript d and variables of the server using subscript s.

To avoid an attacker fully profiling the device by querying the device with all possible
challenges, we assume that the authentication process is time-gated (e.g., only one authen-
tication per day, resulting in 3650 authentications for a span of 10 years). Furthermore, we
assume that there is direct physical contact between the device and the server during the
authentication, such that man-in-the-middle attacks cannot be performed. Finally, we will
omit in our protocol descriptions the handling of the device serial number (denoted id in
the basic protocol in Figure 3), since it is identical for all protocols and makes the protocol
more complex to read.

4.2. A Straightforward Solution

As done in [6], one can directly use the Spatial PUF in combination with the basic
authentication protocol shown in Figure 3. This is done by reading out all CRPs for all
placements in the enrollment phase. In the authentication phase, the server sends the
challenge and the placement it wishes to query the challenge on. Thereby, the server
can cycle through all challenges and placements in the authentication phase to utilize all
available CRPs.



Sensors 2022, 22, 5577 9 of 20

However, as we discussed earlier and as we will show in Section 5.3, PUFs are vulnera-
ble to ML attacks in which the adversary gathers CRPs and uses them to model the PUF and
predict responses to unused challenges. These ML attacks carry over to the straightforward
authentication protocol for the Spatial PUF construction, since the attacker can infer the
placement from the message sent from server to device and treat each placement as a
different PUF that he can attack in isolation. Hence, even tough each placement will be
secure for some authentication cycles, it is only a question of time until the attacker gathers
sufficient CRPs to create an accurate model. The exact number of CRPs that is needed for
this depends on the concrete ML technique that is used in the attack.

A simple fix to counter this attack is to not use all CRPs for each placement, but instead
to avoid invoking the PUF placement once a certain threshold of CRPs has been used. This
simple fix, however, has several drawbacks:

• Research on ML attacks continuously reduces the numbers of CRPs required to ac-
curately model a PUF [25]. Hence, once a threshold is set in practice, there is no
guarantee that this threshold will remain secure in the future.

• If we select the threshold to a low value, we would lose many of the available CRPs
and would thereby greatly reduce the operational lifetimes of the devices.

• An attacker may query the device on certain placements to model the PUF indepen-
dently of genuine authentication requests by the server. While the impact of such a
scenario could be reduced by time gating mechanisms, the attacker would still be able
to perform some queries and thereby bypass the threshold.

Thus, we require a more sophisticated authentication protocol that provides protection
against ML attacks.

4.3. RESA-P Authentication Protocol

As we have discussed, utilizing the Spatial-PUF architecture in a straightforward
authentication protocol does not provide security against ML attacks, since each PUF
architecture can be modeled independently. The key aspect that allows an attacker to
model the PUFs independently is that the server sends the placement in its query towards
the device. By hiding the placement from the attacker, we could prevent the attacker
from modeling the PUFs independently, and hence increase the problem of learning the
underlying PUF model to a multi-dimensional problem that is harder to solve for ML
attacks. There are several possibilities for hiding the placement which we ruled out due to
our context of long-term authentication for IoT devices with low resources:

• Encrypting the placement: Not possible, since we want to avoid cryptographic func-
tions, which may become insecure over time.

• Fixing an order during enrollment: Not possible, since the order (e.g., a seed of a
PRNG or sequential list of placements) is confidential and needs to be stored in a
dedicated secure memory, which may not be available on low resource devices.

Instead, in order to hide the placement, we make use of the resources that we have
available on the device, namely, PUFs. More concretely, the server hides the placement m
by sending a challenge Cm that is evaluated on a fixed PUF placement SPUFini as m =
SPUFini(Cm). Since the attacker does not know the model of SPUFini or receive the resulting
placement m, it is not possible for them to correlate the CRPs used for authentication to the
individual PUF placements. In the following, we describe our protocol RESA-P for hiding
the placement, which is displayed in Figure 6, in more detail.



Sensors 2022, 22, 5577 10 of 20

Figure 6. Our RESA-P authentication protocol, which hides the PUF architecture m, from which the
CRP (Ci, R) for authentication is used.

4.3.1. Enrollment Phase

The enrollment phase is analogous to the straightforward protocol in Figure 3, except
that the server queries the device for all CRPs of all M PUF architectures.

4.3.2. Authentication Phase

In the authentication phase, the server randomly selects a CRP with challenge Ci from
an architecture m, which together have not already been used for authentication. In the
next step, the server needs to hide the selected architecture m using a challenge Cm that
will be evaluated on the fixed architecture SPUFini with m = SPUFini(Cm). Observe that
we require a reverse lookup, since we fix m and choose Cm adequately. We argue that this
step is possible, since the CRPs of SPUFini are known to the server, and it can build the
challenge Cm bit-wise using single CRPs. In addition, since the 0s and 1s in the responses
of the Spatial PUFs are uniformly distributed, there exist, with high probability, sufficient
CRPs from SPUFini that can be used to build the challenge Cm.

The server then sends both challenges Ci and Cm to the device. The device queries
the initial PUF SPUFini on the architecture challenge Cm to obtain the architecture to be
loaded md = SPUFini(Cm). It then partially re-configures itself to load the architecture
SPUFmd , which it queries on Ci to obtain the response for the authentication process Rd =
SPUFmd(Ci), which it sends to the server. The server verifies the authentication response
by looking up from memory the stored response Rs for challenge Ci and architecture m
as Rs = MemorySPUFm(Ci). The device is successfully authenticated if Rd equals Rs, and
otherwise, the server aborts the protocol.

4.3.3. Security Proof

The goal of our RESA-P protocol is to authenticate the device towards the server.
We assume that an attacker is able to eavesdrop on all messages Ci, Cm and Rd used for
all previous genuine authentication protocols, but does not know the models SPUFm or
SPUFini which were used to calculate the responses. In addition, the attacker is able to
query the device on a limited number of challenges Ci and Cm for which it receives the
response Rd. The goal of the attacker is to authenticate himself better than with probability
2−`R (which the attacker can always do by guessing Rd) by providing the correct response
Rd = Rs for challenges chosen by the server Ci and Cm.
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We first consider the information that an attacker can learn from observing a genuine
protocol execution. The attacker learns the CRP (Ci, Rd) and Cm but does not learn the
architecture m of the CRP. This is due to (1) the PUF architecture SPUFini being unknown to
the attacker, (2) the challenge Cm never being re-used and (3) the architecture m not being
communicated outside of the device or server. Modeling the internal PUF SPUFini is not
possible for an attacker, since he never receives the response m = SPUFini(Cm) for a given
challenge Cm. Finally, performing a ML attack on only the CRPs, without distinguishing
them by architecture, is not possible, as we will demonstrate empirically in Section 5.4.

Next, we consider the case in which the attacker replays for a specific challenge the
response Rd. Observe that the server chooses the challenges from unused CRPs and archi-
tectures, and hence, the server cannot replay responses from genuine protocol executions.
Other than from genuine protocol executions, the attacker could have the device’s gen-
erate valid responses Rd by querying on the respective challenges Ci, Cm. Note that the
attacker is only able to generate these valid responses for a limited number, t, of challenges.
Hence, with D CRPs remaining, there is only a chance of t× 2−D that the attacker correctly
pre-generated the corresponding response. While this chance may be high when few
authentication requests have been performed by the server, it gradually decreases with
the number of authentication requests performed. In this worst case, namely, when only
one CRP on one architecture is available to the server, the attacker may pre-generate the
response with probability 1

M−1 , since the architecture is unknown to him.
There are several strategies with which to avoid this attack. Firstly, one could not

utilize all CRPs to reduce the probability that an attacker successfully will pre-generate the
correct response. Alternatively, one could count the number of authentication requests on
the device and stop giving a response once a certain threshold has been reached. Finally, we
point out that our protocol could be extended similar to PUF protocol constructions of [23],
where the server provides some form of proof to obtain the response from the device.

4.3.4. Re-Using CRPs

Based on the fact that the PUF architecture m of a CRP remains hidden, the question
arises of whether it is possible to re-use CRPs in combination with different architecture
challenges Cm in order to extend the number of authentication processes. We answer this
question in the negative, as re-using CRPs drastically reduces the security of our RESA-P
protocol.

Consider the case where all challenges Ci have been used and are known to the
attacker but the architecture challenges Cm are not re-used. Hence, for each challenge Ci, the
attacker knows all M possible responses Ri for each of the architectures, but cannot assign
these responses to a particular architecture. When a new authentication process is then
triggered, the attacker can guess the architecture m and authenticate himself successfully
with probability 1

M−1 .
Next, consider the case where the architecture challenge is re-used Cm between two

authentication processes with CRPs (Ci, Rd) and (Ci′ , Ri′). In this case, the attacker knows
that both CRPs, (Ci, Rd) and (Ci′ , Ri′), were from the same PUF architecture m. This allows
an attacker to train a ML model for a PUF m, rendering the protocol insecure. We will show
in the next section on our RESA-PC protocol, how CRPs can be re-used without sacrificing
too much security.

4.4. RESA-PC Authentication Protocol

Our RESA-P protocol does not allow the re-use of CRPs, since CRPs can be distin-
guished by their architectures, and already observed responses can be replayed. These
downsides are due to two problems:

1. The challenge Ci of the CRP is communicated in the open;
2. There can only be 2D possible CRPs, which the attacker can infer by observing the

challenges communicated by the server.
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In the following, we will describe how to solve these two problems, which led to the
design of our RESA-PC protocol (RESA with hidden placement and challenge), described
in Figure 7.

Figure 7. Our RESA-PC authentication protocol, which hides the PUF architecture m and challenge
Ci, which is used for authentication.

For the solution to the first problem, the challenges being communicated in the open,
notice that we can apply the same insight as in the design of our RESA-P protocol. Con-
cretely, we can hide the challenge of the CRP by applying the challenge Ci to the initial PUF
SPUFini, thereby gaining an intermediate challenge Cd = SPUFini, which is hidden from
the attacker. This yields the advantage that the attacker is not able to correlate the challenge
Cd and corresponding response Rd. However, this also brings the disadvantage that we
require many CRPs from SPUFini to generate the intermediate challenge Cd in addition
to the architecture m. To reach a high number of authentication attempts, we would need
to re-use CRPs from SPUFini. An attacker could thereby observe the re-use of CRPs and
exploit them by inferring information on internal values Cd and m.

Next we show how to solve this and the second problem, namely, that a re-use of
internal CRPs can be observed from the challenges sent by the server. Informally, a re-use
of CRPs is difficult to prevent, since the possible combinations for the challenges sent by the
server are capped by the maximum number of CRPs. This maximum number is difficult to
increase, since it is bound by physical properties of our device. To overcome this problem,
we introduce two additional random values, ∆1 and ∆2, which are used to decouple the
values of the internal challenge Cd and the architecture m from the challenge Ci sent by the
server. In the following, we describe our RESA-PC protocol in more detail.

4.4.1. Enrollment Phase

The enrollment phase is the same as RESA-P.

4.4.2. Authentication Phase

The server first generates the challenge Ci and two values, ∆1 and ∆2, using a
true-random number generator (TRNG), checks that they have not been used for an
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authentication attempt before and sends them to the device. In the next step, the de-
vice evaluates SPUFini using the received challenge Ci to obtain its internal response
Rdi = SPUFini(Ci). This internal response Rdi is used as base to calculate the architecture
md = PRNG(Rdi ⊕ ∆1) and the internal challenge Cd = PRNG(Rdi ⊕ ∆2). The PRNG can
be instantiated using a non-linear PRNG construction with uniform distribution to avoid
the exploitation of linear correlations. The device then proceeds as in the RESA-P protocol:
It partially re-configures itself to load SPUFmd , calculates Rd = SPUFmd(Cd) and sends Rd
to the server. The server then mirrors the steps of the device using its internal memory,
resulting in Rs, authenticates the client if Rs is equal to Rd and aborts otherwise.

4.4.3. Security Proof

We sketch the security proof of the RESA-PC protocol in the same model as the RESA-P
protocol. We assume that an attacker wants to impersonate the device, and can eavesdrop
the messages Ci, ∆1, ∆2 and Rd of all genuine authentication protocol executions but does
not know the models SPUFm and SPUFini. In addition, the attacker can query the device
on a limited number of challenges Ci, ∆1, ∆2 for which he receives the response Rd.

From a genuine protocol execution, the attacker learns Ci, ∆1, ∆2 and Rd, but does not
get information on the internal response Rdi, the PUF architecture for the challenge md
or the internal challenge Cd. The attacker cannot learn information on Rdi, since he does
not know the PUF model SPUFini, based on which it is calculated. Furthermore, since
the values Rdi of other protocol executions are not leaked to the attacker, he is not able to
correctly model SPUFini. The values md and Cd are not known to the attacker, since (1) the
value Rdi, based on which they are calculated, is also not known to the attacker and (2) it is
not possible to infer the challenge Cd from the response Rd due to the security features of
the PUF. Hence, the only values that an attacker can correlate are Ci, ∆1, ∆2 against Rd. The
attacker is only able to guess the correct response Rd, in case he has already recorded an
authentication execution for the same triple Ci, ∆1, ∆2, since changing either of these three
values will likely result in a different Rd (note that the response Rd only “likely” changes,
since changes in ∆2 result in the same architecture being chosen with probability 1

M−1 ).
We require the PRNG to be non-linear and produce a uniformly distributed output

in order to avoid an attacker exploiting linear correlations between inputs or tendencies
towards certain outputs. Learning the underlying models using ML attacks is also difficult,
as we empirically verify in Section 5.4, since there are two PUF architectures involved in
computing the response Rd, from which one is randomized and unknown to the attacker.

Other than observing protocol executions, the attacker could input its own choice of
Ci, ∆1, ∆2 that are specifically chosen to learn information on the internal models SPUFm
or SPUFini. For instance, he could fix two values from Ci, ∆1, ∆2 and iterate over the third.
By fixing ∆1 and ∆2 and iterating over Ci, he could classify different challenges Ci by their
internal responses Rdi, albeit not being able to learn the actual value of Rdi. This can be
exploited by an attacker as follows. An attacker that has classified two challenges, Ca

i and
Cb

i , with Ca
i 6= Cb

i as having the same internal Rdi could exploit this knowledge if he has
recorded an authentication execution on Ca

i , ∆a
1, ∆a

2, Ra
d. In case the server sends the values

Cb
i , ∆b

1, ∆b
2 with ∆a

1 = ∆b
1 and ∆a

2 = ∆b
2, which is an unused value, since Ca

i 6= Ci, the attacker
can reply with a correct Rd. Varying the value ∆1 (or ∆2) and fixing the respective other
two, provides similar potential for classifying the results based on the architecture (or the
challenges). In order to protect against these types of classification attacks, we need to
choose values Ci, ∆1, ∆2 which are sufficiently large to decrease the probability that two
values of Ci, ∆1, ∆2 between different protocol executions are actually chosen to be the same.
By choosing the size of each value as 40 bit, one could reduce this chance to 2−80.

4.4.4. Re-Using CRPs

Other than for our RESA-P protocol, we argue that it is possible in our RESA-PC
protocol to re-use CRPs. Consider the case where all CRPs have been used for authentication
once and the attacker knows the responses Rd of all CRPs. We argue that an attacker is
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not able to take advantage of this knowledge, as long as he does not have information on
the internal SPUF models. The reason is that the response Rd depends on all three values
Ci, ∆1 and ∆2, and for unused combinations of these values, the attacker is not able to infer
additional information from already observed executions (except with some negligible
probability in the bit-length of Ci, ∆1, ∆2, as discussed previously).

Note, however, that this argumentation only holds as long as the attacker is not able
to derive information on the internal SPUF models. We stress that it is possible for an
attacker to infer internal information in a case where, e.g., the same Rd is observed. In this
case, the attacker can infer that the same architecture m and internal challenge Cdi were
used. These information leaks, as minor as they may seem, allow an attacker to model
the internal SPUF models and hence break the security of the protocol. Quantifying the
theoretical information leak exactly, however, is a challenging task that is outside of the
scope of this paper. Instead, we utilize empirical measures in the following to obtain an
understanding on the level of this information leak.

5. Evaluation

The main reason behind developing the RESA protocols was to provide resiliency
against ML attacks for PUF-based authentication. In this section, we evaluate to what
extent our RESA protocols fulfill this, i.e., how resilient they are against state-of-the-art ML
attacks. To do so, we introduce our test strategy for the empirical evaluation, validate it
and present the evaluation results.

5.1. Test Strategy

Our initial approach to evaluate our protocol’s resiliency against ML attacks was to
develop and apply a set of existing ML attacks and then analyze whether our protocol
is resilient against them or not. However, this way we could only prove whether the
developed protocol is resilient against the specific set of ML attacks we use. We could not
perform an assessment of its general resiliency against ML attacks. An alternative approach
would be to evaluate measurable quantified factors of the protocol that define the resiliency
of the protocol against ML attacks. This approach is provided by PUFmeter, which we
decided to use for our evaluation.

PUFmeter is an open source toolbox for evaluating the resiliency of real-world PUFs
against ML attacks with no focus on any specific PUF architecture [25]. It was developed
by Fatemeh Ganji [25] and can be found on the Trust-Hub platform (https://trust-hub.
org/home, accessed on 20 June 2022). PUFmeter has to be fed a large number of CRPs to
create a model to assess the quality of a PUF in terms of learnability. A point to note is that
PUFmeter sees a PUF simply as mapping from a set of challenges (i.e., inputs of the PUF) C
to a set of responses R which are the outputs of the PUF, i.e., fPUF(C) = R.

The idea behind the tool is to represent a PUF by Boolean equations over a finite field
and attempt to derive information about the challenge–response behavior of a PUF. This
mapping is determined by the inherent physical characteristics of the device embodying
the PUF [25]. The PUFmeter can address the question of to what degree a PUF can be
modeled by applying ML attacks.

PUFmeter employs provable techniques rather than relying on trial and error, allowing
a user to decide how accurate the results should be and with what level of certainty the
results should be produced. The details of this implementation are discussed in [25].

5.2. PUFmeter Testing Procedure

The whole testing procedure used by PUFmeter is illustrated in Figure 8. The algorithm
first reads in configuration data, e.g., the number of bits n in a challenge (which reflects the
maximum possible number of CRPs) and the desired confidence level of the test. The latter
can be used to specify how many of the possible CRPs are actually tested.

https://trust-hub.org/home
https://trust-hub.org/home
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Figure 8. The workflow of PUFmeter [25].

After this step, PUFmeter generates challenges according to the received inputs. These
challenges will be applied to the PUF, and the PUF will generate its responses. Note that
PUF CRPs are noisy. To cope with this, PUFmeter applies each challenge multiple times
to the PUF and uses majority voting on the results to generate CRPs. We skipped this
noise-reduction step by including the technique of [2] in our PUF implementation, which
reduced the noise level of CRPs.

The next step is to compute the “average sensitivity”. Average sensitivity determines
the influence of challenge bits on the responses. If the value of the average sensitivity
decreases, the probability that a ML attack will be able to predict responses increases.

Let us consider the following real-valued Boolean function f on the domain : {−1, 1}n

→ R. The ith influence of a function is given by Infi[ f ] = Pr[ f (C) 6= f (C⊕i)], where C⊕i is
obtained by flipping the ith bit of C.

If f is Boolean, then Infi[ f ], or the ith influence of a Boolean function is the probability
that flipping the ith coordinate flips the value of the function. If In f i[ f ] = 0, then f does
not depend on the ith coordinate. The total influence of f is the sum of all of its influences:

In f [ f ] =
n

∑
i=1

In f i[ f ]

The next factor that PUFmeter computes is “noise sensitivity”. This determines the
effect of flipping a bit in the challenge on the response. This “noise sensitivity” should not
be confused with noisy CRPs, which we discussed previously.

In the case of noise sensitivity, given the Boolean function

f : {−1,+1}n → {−1,+1},
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if we assume C to be a string chosen randomly and uniformly, then by flipping each bit of
C independently with a probability of ε between 0 and 1 (0 ≤ ε ≤ 1), we obtain the flipped
string C

′
. The noise sensitivity of the Boolean function f at that probability ε is given by

NSε( f ) := (Pr[ f (c) 6= f (c
′
)])

The next step in PUFmeter is “K-junta Testing”. K-junta testing algorithms are well-
studied algorithms for property testing. Generally, an ML algorithm learns a class of target
functions, and the property tester examines whether the property of a specific function can
be found in the function under test or not. More specifically, in the context of a PUF, the
property testing algorithm examines whether it is possible to approximate the function
f (C) = R with a class of Boolean functions from a specific class. Therefore, PUFmeter can
use K-junta algorithms to figure out whether the function f (C) = R can be approximated
or not.

If K-junta testing is successful, then the final step in the PUFmeter is to compute the
so-called “low coefficients,” a small subset of Boolean variables positioned in the lower
part of a Fourier spectrum. The main idea behind this is that a Fourier transform can
adequately represent a Boolean function. Linial et al. [26] showed the correlation between
a Fourier spectrum and learnability. The main result of their research is that the “low
coefficients” are enough to approximate Boolean functions (e.g., K-junta functions). In
the context of PUFmeter, the low-degree algorithm has been implemented to approximate
the PUF function f (C) = R by determining the most dominant Fourier coefficients of this
function. The output of this part is the low coefficients of the PUF function f (C) = R.

All of the extracted factors and their effects on the learnability of a PUF are shown in
Table 3.

Table 3. Notion and techniques that are introduced and used in PUFmeter.

Metrics &
Techniques Description Interpretation Theoretical Bound

Average sensitivity
(p)

Average influence of
challenge bits on the
responses (over all
challenge bits)

Smaller values
correlate to higher
probability of
learning

I( f ) >> p(ln(n))

Noise Sensitivity
(NSε)

Total impact of
flipping bits (with
probability ε) on
the responses

Smaller values
correlate to higher
probability of
learning

NSε( f ) >> ε1/2

K-junta Testing (k) Number of influential
bits

Smaller values
correlate to higher
probability of
learning

k >> p(ln(n))

LMN Algorithm

Finding a small
portion of the Fourier
spectral determining
the responses

Fewer and smaller
coefficients correlate
to higher probability
of learning

N/A

5.3. PUFmeter Validation

Before evaluating our own approach, we first evaluated whether PUFmeter can reliably
detect that a PUF is vulnerable to ML attacks. To do so, we decided to test PUFmeter with
a ring oscillator (RO) PUF, similarly to the study done by Ganji et al. [25]. This way
we can also compare it to our spatial PUF later, which internally uses RO PUFs, too.
Ruhrmair et al. [8] previously proved that RO PUFs are vulnerable to ML attacks. They
applied empirical ML algorithms to show this.

For our validation, we used an RO PUF with 256 ring oscillators, which generates
8128 CRPs. We configured PUFmeter to use 40% of the CRPs. The result is shown in Table 4.
As can be seen, both the average sensitivity and the noise sensitivity are comparatively
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low. Accordingly, K-junta testing found that the RO PUF only has two influential bits
(K = 2), not enough to be robust against ML attacks. Finally, K-junta testing was successful
and found two low-valued coefficients. Overall, this shows that an RO PUF is vulnerable
to ML attacks. We repeated the test on four different FPGA boards with identical PUF
architectures. In all scenarios, the PUFmeter showed similar results.

Table 4. PUFmeter results on RO PUF vulnerability against ML attacks.

Average
Sensitivity

Noise
Sensitivity

K-Junta Determinant
Variables Coefficients Conclusion

5.694882 0.1961122 2 0.73529, 0.32353 PUF is vulnerable
to K-junta Testing

Our validation test showed that PUFmeter works as expected, and we decided to use
it to evaluate our protocol.

5.4. Evaluating the RESA PUF Authentication Protocol

After validating our testing tool, we used PUFmeter to evaluate the robustness of our
RESA-P and RESA-PC protocols. We decided to check the resiliency of our protocol by
varying the given number of CRPs. More specifically, we wanted to know: “how many
CRPs are required for the ML attack to be effective, such that it can predict the rest of the
CRPs?” For this purpose, we varied the number of CRPs that the PUFmeter used to attack
our approach. In total, we had 48768 CRPs. We applied between 40% and 100% of the CRPs
to find the breaking point of our protocol. The results of this test are shown in Table 5.

Table 5. PUFmeter test results on the resiliency of the RESA authentication protocol.

Percentage
CRP

Number of
CRPs

Average
Sensitivity

Noise
Sensitivity

K-Junta Determinant
Variable

40 19,508 26.292 0.24544 13

50 24,384 25.455 0.24151 13

65 31,700 25.367 0.24539 12

75 36,576 23.337 0.24661 13

90 43,892 20.284 0.2467 13

95 46,330 19.496 0.24738 13

100 48,768 18.804 0.24701 13

As we can see, the average and noise sensitivities are higher than for the RO PUF. The
noise sensitivity remained almost constant at around NF( f ) ≈ 0.24. The average sensitivity
decreased for higher percentages of provided CRPs. To look at this a bit closer, we refer to
(Figure 9). Initially, up until approximately 65% of the CRPs, the average sensitivity was
quite stable. After that, it decreased linearly, until it reached approximately 18.8 for 100%
CRPs. Importantly, for all cases, the K values stayed constant at 13. Thus, although an
attacker can make some potential progress with respect to learning the PUF behavior the
high value of K means that K-junta testing is not successful in modeling the system. This is
why no coefficients are provided.
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Figure 9. Average sensitivity behavior by increasing the number of CRPs.

We repeated this test on four different sets of CRPs which were collected from four
different FPGA boards. In all cases the K-junta algorithm was not successful and LMN
coefficients were not created by PUFmeter. According to the result of our tests, we can
conclude that our RESA PUF authentication protocol is resilient against state-of-the-art
ML attacks, even for cases in which a large percentage of the CRPs are intercepted by
an attacker. Note that this applies only to current ML attacks. We do not claim that our
protocol is resilient against ML attack scenarios that will be developed in the future.

6. Conclusions and Future Work

In this paper, we proposed two authentication protocols, called RESA-P and RESA-PC,
for FPGA-based IoT devices with long lifecycles. Our protocols do not utilize cryptographic
primitives (e.g., hashing or encryption) and are resilient against state-of-the-art machine
learning attacks As a build block, we used the Spatial PUF architecture, which allows us to
co-locate a PUF with other components in a SoC. During run-time, the location of the PUF
is changed dynamically on the FPGA, leading to independent PUFs that we can switch
between. Our design so far is based on a ring oscillator PUF.

The current solution shows resiliency against state-of-the-art machine learning attacks.
These attacks can be made with minimum hardware requirements and remotely. Other
attacks with more complex needs (e.g., a combination of side-channel and machine learning,
hardware-based, DoS, etc.) were out of scope. As the next step for this work, the resiliency
of this protocol needs to be tested against other attack scenarios, and further improvement
might be required to level up the resiliency of the protocol against these attacks.

In future work, we plan to integrate our Spatial PUF into a SoC solution for IoT
devices to evaluate its practical usability in real deployments and application scenarios.
We also want to extend our approach to ensure integrity and confidentiality. As initially
discussed, the RESA-PC protocol that reuses CRPs needs further investigation. The state-
of-the-art ML-attack test platform of [25] was not able to successfully break the protocol.
This may be largely due to non-fitting models of the ML-attacks, which require extensive
and tailor-made adaption towards the RESA-PC protocol.
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