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Abstract: Medical audio classification for lung abnormality diagnosis is a challenging problem owing
to comparatively unstructured audio signals present in the respiratory sound clips. To tackle such
challenges, we propose an ensemble model by incorporating diverse deep neural networks with
attention mechanisms for undertaking lung abnormality and COVID-19 diagnosis using respiratory,
speech, and coughing audio inputs. Specifically, four base deep networks are proposed, which
include attention-based Convolutional Recurrent Neural Network (A-CRNN), attention-based bidi-
rectional Long Short-Term Memory (A-BiLSTM), attention-based bidirectional Gated Recurrent Unit
(A-BiGRU), as well as Convolutional Neural Network (CNN). A Particle Swarm Optimization (PSO)
algorithm is used to optimize the training parameters of each network. An ensemble mechanism
is used to integrate the outputs of these base networks by averaging the probability predictions of
each class. Evaluated using respiratory ICBHI, Coswara breathing, speech, and cough datasets, as
well as a combination of ICBHI and Coswara breathing databases, our ensemble model and base
networks achieve ICBHI scores ranging from 0.920 to 0.9766. Most importantly, the empirical results
indicate that a positive COVID-19 diagnosis can be distinguished to a high degree from other more
common respiratory diseases using audio recordings, based on the combined ICBHI and Coswara
breathing datasets.

Keywords: Long Short-Term Memory; Gated Recurrent Unit; bidirectional Recurrent Neural
Network; Convolutional Neural Network; attention mechanism; ensemble model; audio lung
abnormality classification

1. Introduction

Deep learning has emerged as one of the most popular techniques for video and signal
processing tasks, owing to its recent breakthrough and advancement [1]. A significant num-
ber of deep architectures have been proposed for medical diagnosis with respect to diabetic
retinopathy screening, brain tumor, and leukemia diagnosis. Deep Neural Networks have
also shown significantly improved performance for medical sound classification [2]. As an
example, Convolutional Neural Networks (CNNs) have been used for the classification of
cardiovascular phonocardiograms (PCG) pertaining to heart abnormality identification,
based on the extraction of Mel-frequency cepstral coefficients (MFCC) features [3]. Such
deep networks showed much enhanced capabilities for heart abnormality classification in
comparison with traditional machine learning methods such as Support Vector Machine
(SVM) and Multilayer Perceptron (MLP). Recurrent Neural Networks (RNNs) have also
shown effectiveness for temporal feature extraction with respect to language generation
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and audio classification. As two popular types of RNNs, Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) have been widely adopted in signal classification and time
series forecasting [1,4]. These networks are similar in functionality, with the primary differ-
ence being that the GRU combines the “forget” and “input” gates into an “update” gate, as
well as having a “reset” gate, instead of an “output” gate as in LSTM. This difference in
architecture results in the GRU model having a simpler topology with fewer parameters
than those of an LSTM unit [5]. Both LSTM and GRU have been used in recent studies for
medical audio classification. For instance, Kochetov et al. [4] proposed a Noise-Masking
Recurrent Neural Network (NMRNN) for respiratory abnormality classification based on
the MFCC features. Besides using both LSTM and GRU networks, their model applied a
noise classifier to distinguish and eliminate any redundant noise in the audio files, simul-
taneously. Their work was evaluated using the ICBHI dataset [6] for the classification of
normal, wheeze, crackle, and both crackle and wheeze cases. A GRU network was also
exploited for audio scene classification in [7]. Their findings indicated the growing potential
of using GRU networks for audio classification, owing to the fact that the network achieved
an F1-score of 97.7% for the classification of 19 scenes using the LITIS-Rouen dataset.

Motivated by the above studies, in this research, we employ LSTM and GRU networks
for the identification of diverse lung diseases and COVID-19 conditions using respiratory,
coughing, and speech datasets. In addition, we employ five medical audio datasets in
this research, i.e., ICBHI [6], Coswara breathing [8], Coswara speech [8], Coswara cough-
ing [8], and the combination of ICBHI and Coswara breathing, to distinguish between
different types of commonly seen lung diseases as well as between such lung conditions
and COVID-19. Specifically, the ICBHI dataset contains audio respiratory recordings of
six lung conditions, i.e., healthy, chronic obstructive pulmonary disease (COPD), pneu-
monia, bronchiectasis, bronchiolitis, and upper respiratory tract infection (URTI). The
Coswara dataset contains coughing, speech, and breathing audio samples associated with
COVID-19 conditions. In other words, these Coswara datasets can be used to identify
positive and negative COVID-19 cases through coughing, speech, and respiratory record-
ings, respectively. In addition, we also combine ICBHI and Coswara breathing datasets to
distinguish COVID-19 from other respiratory diseases (e.g., COPD and pneumonia) based
on breathing clips.

However, owing to the intermit characteristics of respiratory/coughing sound record-
ings, different recording mechanisms, and background and white noise, medical audio
classification performance can be hindered using the above datasets. In addition, for the
Coswara speech dataset, a range of accents and dialects are also present, which could
affect network performance with respect to positive and negative COVID-19 classification
through speech alone.

To tackle the above challenges and ascertain a reliable diagnosis, we propose a set of
deep networks, i.e., 1D CNN, attention-based Convolutional Recurrent Neural Network
(A-CRNN), attention-based bidirectional LSTM (A-BiLSTM), and attention-based bidirec-
tional GRU (A-BiGRU), as well as an ensemble model embedding the above networks for
classifying a variety of lung conditions. Evolutionary algorithms such as Particle Swarm
Optimization (PSO) are also used to identify the optimal hyper-parameters of the above
base deep networks. The ensemble model incorporates various base networks with distinc-
tive learning behaviors and hyper-parameter settings to increase model diversity. Figure 1
shows the proposed system dataflow. The contributions of this research are summarized
as follows.

• We propose a PSO-based evolving ensemble model for lung abnormality classification,
which integrates four types of deep networks, i.e., A-CRNN, A-BiLSTM, A-BiGRU, and
1D CNN, with the attempt to generate diverse discriminative acoustic representations
to enhance classification performance. Specifically, the A-CRNN model comprises
1D convolutional and BiLSTM layers to diversify feature learning mechanisms, while
A-BiLSTM exploits bidirectional LSTM layers to learn feature representations from
both forward and backward directions. A-BiGRU adopts similar bidirectional RNN
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layers (i.e., BiGRU layers) but with different gating mechanisms to explore network
feature learning capabilities in tackling disease diagnosis. A 1D CNN model is also
proposed which embeds a set of 1D convolutional layers with scalar multiplication and
addition operations for extracting sequential temporal cues. On top of this, attention
mechanisms are also exploited in A-CRNN, A-BiLSTM, and A-BiGRU for extracting
more discriminative signal dynamics.

• To maximize network performance and diversify model learning behaviors, a PSO
model is used to optimize the learning rate, batch size, and the number of training
epochs for A-CRNN, A-BiLSTM, A-BiGRU, and CNN. The devised networks with
distinctive learning configurations illustrate more diversified learning behaviors to
enhance ensemble model robustness. The resulting ensemble model utilizes an average
probability method to integrate the outputs of these optimized base networks.

• Evaluated using several challenging medical sound datasets, the proposed ensemble
model outperforms existing methods for abnormal respiratory, coughing, and speech
sound classification with respect to diverse lung disease and COVID-19 cases. In
particular, the proposed base and ensemble models show great efficiency in distin-
guishing common respiratory diseases from COVID-19 using respiratory audio clips.
To the best of our knowledge, we are also the first study to explore the classification of
COVID-19 against diverse other commonly seen lung conditions.
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Figure 1. The proposed ensemble model comprising four base networks for diverse lung abnormality
and COVID-19 diagnosis.

The paper is organized as follows. Section 2 presents state-of-the-art existing studies
for audio classification. The proposed audio classification networks with optimal hyper-
parameter selection as well as ensemble model construction are depicted in Section 3. A
comprehensive evaluation is presented in Section 4. We conclude this research and identify
future directions in Section 5.

2. Related Work
2.1. General Audio Classification

There has been a wide range of studies using deep learning techniques for audio
classification. As an example, Choi et al. [9] proposed a Convolutional Recurrent Neural
Network (CRNN) for music classification. Their work described how the CRNN model
was used to train on the Million Song dataset, which consisted of numerous song clips
from categories such as genre, mood, era, and music instrument [10]. As efficient assets for
classifying audio datasets, MFCC features were firstly extracted from the dataset using the
python package Librosa [11]. The MFCC features presented the logarithmic measure of the
Mel magnitude spectrum and contained sufficient discriminating properties. Their studies
indicated that the CRNN model, which consisted of four conv2d layers and two RNN



Sensors 2022, 22, 5566 4 of 25

layers, performed better than the three baseline CNN models, with the only downside
being the higher number of parameters, leading to higher computational costs.

Chen and Li [12] proposed a multi-feature combined network by combining two streams,
i.e., CNN-BiLSTM and 1D DNN, for song emotion classification using audio inputs. An-
other 1D network with several fully connected layers was also used to detect emotions
in lyrics text inputs. An ensemble stacking method was used to combine the emotion
detection outputs from both audio and text inputs. The Million Song dataset consisting
of 500 music samples with each of the 4 emotion classes: anger, sadness, relaxation, and
happiness, was used to investigate model efficiency. Their hybrid network obtained an
average accuracy rate of 68% for classifying four emotion classes, whereas the three base-
line models, i.e., CNN-LSTM, CNN, and LSTM, obtained accuracy rates of 63%, 59%, and
50%, respectively. This ascertained that using a BiLSTM layer may have a strong positive
influence on improving classification performance, making it a worthy addition to the
experimental studies in this research.

2.2. Related Studies Using the ICBHI Dataset

Perna and Tagarelli [13] implemented RNN models (i.e., BiLSTM, LSTM, and GRU)
to train and classify the respiratory dataset, i.e., ICBHI, on both pathology and anomaly
levels. The pathology-level classification includes two different tasks, i.e., the binary
classification of healthy and unhealthy cases, and one ternary classification of healthy,
chronic, or non-chronic conditions. On the other hand, the four-class-driven anomaly-level
prediction focused on the identification of normal, wheeze, crackle, and the presence
of both conditions. Their work employed BiLSTM, LSTM, and GRU networks, where
seven different model configurations were considered. These configurations differed by
several experimental settings, such as window size and step, frame size, and extracted
audio features. The results from the study showed several notable observations. The first
observation was that for the four-class anomaly-driven prediction, all seven settings had
a similar performance with respect to each network, with the ICBHI scores ranging from
0.71 to 0.74, while for the pathology-driven predictions, the ICBHI scores ranged from 0.86
to 0.91. This indicated the strong and robust performance of the RNN models, regardless
of the configuration settings chosen. In particular, their experiments demonstrated that
the LSTM model performed the strongest over the range of experiments, while the GRU
model generally performed the worst. Additionally, the BiLSTM model performed very
inconsistently, having the strongest results for some of the experiments, while also having
the weakest results for others, as well as being the most computationally intensive.

2.3. Related Studies Using the Coswara Dataset

Concerning the Coswara dataset, although the dataset is new and the audio samples
in the dataset are recorded from mobile devices, there are several studies that demonstrate
strong classification performance using different machine learning methods. For instance,
Pahar et al. [14] demonstrated the use of both the Coswara dataset and the SARS-CoV-2
South Africa (Sarcos) dataset. Their work adopted a range of machine learning models,
such as Resnet50, LSTM, CNN, MLP, SVM, and logistic regression (LR), for the classification
of different lung abnormalities. MFCC features were also adopted in their studies. Two
evaluation strategies were employed in their experiments, one being both trained and tested
on the Coswara dataset, and the other being trained on the Coswara dataset and tested on
the Sarcos dataset, with the attempt to determine if the data in the Coswara dataset would
be suitable for classification on audio files outside of its specific recording conditions. The
classes for both datasets were coughing recordings from subjects with either a positive
or a negative diagnosis for COVID-19. For the first set of evaluations where the Coswara
dataset was used for training and testing, it was found that Resnet50 and LSTM recorded
the highest accuracy performances, with accuracy rates of at least 93.65% and 95.3%,
respectively. Meanwhile, the MLP, LR, and SVM all performed significantly worse. For
the second set of evaluations, where the Coswara and Sarcos datasets were employed for
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training and testing, respectively, the empirical results indicated that LSTM in conjunction
with the greedy search algorithm, i.e., Sequential Forward Selection (SFS) [15], was the best-
performing network, with an accuracy rate of 92.91% on the test set, whereas other baseline
models demonstrated results of 73.02–74.58%. As revealed by both studies, the most
performant model for audio classification on the Coswara dataset was the LSTM network.

Muguli et al. [16] presented a challenge in which 29 teams performed binary audio
classification on the Coswara dataset, i.e., using subjects who have a positive or a negative
COVID-19 diagnosis. Unlike the previous works, this study featured two tracks, Track-1
being the primary track, focusing on cough sounds, and Track-2, focusing on a collection
of breathing and speech sounds, with the latter including vowel phonation and number
counting recordings. A range of feature extraction choices were made across the 29 teams,
including MFCC, spectrograms, and feature embeddings. Similarly, there was also a
range of model choices including comparatively more traditional methods such as an
LR, MLP, and Random Forest (RF), as well as state-of-the-art deep networks such as
CNN (e.g., ResNet) and LSTM models. Following the 22-day period of the challenge,
it was found that for the primary Track-1, the best team showcased an AUC of 87.07%,
which far outperformed the baseline RF model with an AUC of 70.63%, for classifying
positive/negative COVID-19 conditions. All the aforementioned studies indicate that there
is vast potential for developing a high-performing model for the use of audio classification
on both the ICBHI and Coswara datasets.

2.4. Attention Mechanisms

A notable state-of-the-art addition to the investigation in this research is the attention
mechanism, which has been extensively examined in numerous studies as part of RNN
architectures. Such attention schemes have demonstrated promising results in areas such as
speech recognition, natural language processing (NLP), and image description generation.
The attention mechanism has the adaptive capacity to learn the relationship between each
of the input features over numerous time steps to predict the current timeframe [17,18].

Zhang et al. [18] introduced a CRNN architecture incorporating an attention mech-
anism, with the attempt to identify diverse environmental sound signals. Their model
was tested using the ambient audio datasets, i.e., ESC-50 and ESC-10, with 50 and 10 en-
vironmental sound categories, respectively [19]. According to the empirical results from
the study, the attention mechanism produced a considerable boost in accuracy, with an
average increase of more than 2% for both environmental sound datasets. The potential
boost in classification accuracy, and the ability to determine if such a boost exists, are the
two primary reasons why the attention mechanism has been chosen to be included for the
investigation in our research studies.

Moreover, Wall et al. [20] utilized BiLSTM and BiGRU with attention mechanisms for
lung abnormality classification using the ICBHI and Coswara cough datasets. Sait et al. [21]
employed transfer learning based on Inception-v3 combined with MLP for COVID-19 diag-
nosis using breathing and chest X-ray image inputs, while Wall et al. [22] and Perna [23]
studied BiLSTM and CNN for common lung abnormality diagnosis using breathing audio
inputs, respectively. García-Ordás et al. [24] studied a 2D CNN in combination with data
augmentation and oversampling techniques, such as Variational Convolutional Autoen-
coder, for respiratory abnormality classification.

Besides the above, a variety of other existing studies have also been exploited for
undertaking respiratory, heart, and environmental sound classification. For example,
Boddapati et al. [25] conducted environmental sound identification using AlexNet and
GoogLeNet. Zhang et al. [26] exploited an ensemble of CRNN models with hyper-
parameter selection for respiratory, heart, and environmental sound classification, while 1D
CNNs were utilized by Li et al. [27] and Xiao et al. [28] for heart abnormality classification
using audio inputs. We summarize the aforementioned studies in Table 1. In comparison
with these existing studies, we propose an evolving ensemble model integrating four dif-
ferent types of CNN and RNN networks (i.e., CRNN, BiLSTM, BiGRU, and 1D CNN) with
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attention mechanisms and PSO-based hyper-parameter identification to generate diverse
discriminative acoustic representations and increase model robustness.

Table 1. The summary of existing studies for sound classification.

Related Studies Methodologies Novel Strategies

Choi et al. [9] CRNN with four conv2d layers and two GRU layers for
music classification using the Million Song dataset -

Chen and Li [12]

(1) CNN-BiLSTM and 1D DNN for audio emotion
classification, and (2) 1D DNN for lyrics emotion
classification, using the Million Song dataset. (3) A stacking
ensemble used to combine emotion classification results
from both audio and text inputs.

(1) CNN-BiLSTM and 1D DNN for audio emotion
classification, and (2) 1D DNN for lyrics emotion
classification, using the Million Song dataset. (3) A
stacking ensemble used to combine emotion
classification results from both audio and text inputs.

Perna [23] 2D CNN -

Perna and Tagarelli [13]

LSTM to train and classify the respiratory ICBHI dataset on
both pathology and anomaly levels. The pathology-driven
classification includes two tasks, i.e., binary
(healthy/unhealthy) and 3-class
(healthy/chronic/non-chronic) classification. On the other
hand, for anomaly-driven diagnosis, a 4-class prediction is
performed to detect normal/wheeze/crackle/both crackle
and wheeze conditions.

Using different sliding window settings for
data preparation

Pahar et al. [14]

Resnet50, LSTM, CNN, MLP, SVM, and LR for the
classification of different lung abnormalities using the
Coswara dataset and the SARS-CoV-2 South Africa
(Sarcos) dataset.

-

Zhang et al. [18] CRNN with attention mechanisms for environmental
sound classification using ESC-10 and ESC-50 datasets. CRNN with attention mechanisms

Wall et al. [20] BiLSTM and BiGRU with attention mechanisms for
respiratory and coughing sound classification BiLSTM and BiGRU with attention mechanisms

Wall et al. [22] BiLSTM for 2-class (health/unhealthy) respiratory
sound classification -

Zhang et al. [26]

An evolving ensemble of CRNNs for respiratory
abnormality (healthy/chronic/non-chronic) classification,
as well as heart sound and environmental
sound classification.

Hyper-parameter fine-tuning using PSO (but for
3-class respiratory abnormality detection)

García-Ordás et al. [24]
2D CNN with two convolutional layers in combination
with different data augmentation and oversampling
techniques for respiratory abnormality classification

Adopting different oversampling techniques

Li et al. [27] 1D CNN with three convolutional layers for heart
sound classification -

Xiao et al. [28] 1D CNN with clique and transition blocks for heart
sound classification 1D CNN with clique and transition blocks

Boddapati et al. [25] AlexNet and GoogLeNet for environmental
sound classification -

Sait et al. [21]
Transfer learning based on Inception-v3 combined with
MLP for COVID-19 diagnosis using breathing and chest
X-ray image inputs

Transfer learning based on Inception-v3 combined with
MLP for multimodal COVID-19 diagnosis

Zhang et al. [29] 2D CNN combined with sound mix-up Sound mix-up for model training

This research
An evolving ensemble of A-CRNN, A-BiLSTM, A-BiGRU,
and 1D CNN, with PSO-based
hyper-parameter optimization

(1) CRNN, BiLSTM, and BiGRU with attention
mechanisms (i.e., A-CRNN, A-BiLSTM, and A-BiGRU),
as well as 1D CNN for audio classification. (2)
PSO-based hyper-parameter tuning, and (3) an
ensemble model combining the devised A-CRNN,
A-BiLSTM, A-BiGRU, and 1D CNN.

2.5. Particle Swarm Optimization

PSO is a widely exploited population-based heuristic optimization algorithm inspired
by the bird flocking and fish schooling. PSO has illustrated great capabilities in solving
global optimization problems owing to its effective search strategies, model scalability, and
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robustness [30,31]. This enables the PSO algorithm to be highly suitable for the purpose
of optimizing hyper-parameters of deep learning models, e.g., learning rate, momentum,
and batch size. Existing studies [32] showed a comparison of PSO and a grid search, for
optimizing the number of hidden layers and the number of neurons in each hidden layer in
several shallow and deep architectures. Their studies indicated that not only did the PSO
algorithm obtain superior classification performance but it also decreased training times by
77–85%, in comparison with those of the grid search algorithm.

Improving classification results and decreasing training costs [33] are the two primary
reasons for the inclusion of the PSO algorithm in this research. In particular, the PSO
algorithm is used for optimizing hyper-parameters, i.e., the learning rate, batch size, and
the number of training epochs, when training each base deep network in the ensemble
model. We introduce each proposed deep network with attention mechanisms and the
resulting ensemble model in detail below.

3. Methodology

In this research, we propose an ensemble model comprising four base deep networks
for various lung abnormality and COVID-19 diagnoses. Firstly, four base deep networks
were proposed, i.e., A-CRNN, A-BiLSTM, A-BiGRU, and 1D CNN. A PSO algorithm was
used to optimize the learning rate, batch size, and the number of training epochs of each
of the above networks to improve performance. The yielded optimized settings were
used to train the respective base networks. The mean result of the prediction probabilities
produced by the base networks was subsequently calculated and used to determine the final
prediction in the ensemble model. Evaluated using the five audio datasets, the proposed
ensemble model showed reliable performances in comparison with those of existing studies
for diverse lung abnormality and COVID-19 diagnoses using respiratory, speech, and
cough audio inputs. We first introduce the construction of several customized datasets in
our studies.

3.1. Dataset Preprocessing

As previously mentioned, the two datasets employed in our experimental studies
were ICBHI and Coswara. However, we decided to utilize these two databases to create
five customized datasets, labeled as D1–D5. D1 is the standalone ICBHI dataset, D2 is a
Coswara dataset consisting of only coughing sounds, D3 is a Coswara dataset consisting of
only speech sounds, D4 is a Coswara dataset consisting of only breathing sounds, and D5
is a combination of the ICBHI and Coswara breathing sounds datasets.

In particular, for the combined dataset D5, one major aspect is that as the recordings
from the ICBHI dataset are of breathing sounds, any COVID-19 recordings used must also
contain breathing sounds of the same nature, as built in this study by using the Coswara
breathing dataset. It is also crucial that sufficient recordings are provided, as well as being
balanced with the other classes included.

In particular, with respect to using the Coswara cough, speech, and breathing datasets
for COVID-19 diagnosis, we have decided that these would be the suitable evaluation
strategies for the following reasons. One reason is that classifying respiratory diseases on a
range of sounds, i.e., speech, breathing, and coughing, would be beneficial for the primary
reason of determining the most effective channel for respiratory disease diagnosis. It may
also be used as a reference to advise future audio sample collection for dataset construction
and audio classification.

In addition, the creation of a separate dataset (D5) that consists of ICBHI and Coswara
breathing sounds clips would allow for distinguishing a range of respiratory diseases from
a positive COVID-19 diagnosis. To the best of our knowledge, we are the first to exploit the
diagnosis of COVID-19 against other common lung conditions.

Table 2 outlines the contents of each of the five datasets, including the respiratory
disease classes and number of audio files within each of the classes.
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Table 2. Dataset properties.

Dataset Dataset Name Class No. of Files

D1 ICBHI COPD 793
Healthy 35
Bronchiectasis 16
Bronchiolitis 13
URTI 23
Pneumonia 37
Asthma 1
LRTI 2

D2 Coswara Cough COVID-19 Positive 110
COVID-19 Negative 107

D3 Coswara Speech COVID-19 Positive 103
COVID-19 Negative 104

D4 Coswara Breathing COVID-19 Positive 101
COVID-19 Negative 103

D5 ICBHI + Coswara Breathing COPD 793
Healthy 35
Bronchiectasis 16
Bronchiolitis 13
URTI 23
Pneumonia 37
COVID-19 101

3.1.1. Pre-Processing for the ICBHI Dataset (D1)

The ICBHI dataset [6] has 920 annotated respiratory recordings from 126 subjects.
For each subject, different chest positions are used for the recording of respiratory audio
clips. The dataset provides samples with the following respiratory diseases, i.e., COPD
(793), lower respiratory tract infection (LRTI) (2), URTI (23), asthma (1), bronchiectasis (16),
bronchiolitis (13), pneumonia (37), and healthy (35) cases. Although the ICBHI dataset
originally includes eight classes, there are only one and two audio samples for asthma and
LRTI classes, respectively. Therefore, they were not used in our experiments. We employed
an 80–20 subject-independent train–test split in our experiments by mainly following the
official train–test split provided by the ICBHI dataset. To be specific, in our experiments,
the samples from training and test sets are subject-independent, i.e., there is no overlapping
of the subjects in the training and test sets. We followed the official train and test splits for
all the classes except for COPD to form the training and test sets. For COPD, the official
split uses a 56–44 subject-independent train–test split. We moved some test samples to the
training set but still maintained a subject-independent division for this class. In this way,
we achieved an 80–20 subject-independent train–test split for the overall dataset. Table 3
illustrates the detailed training and test sample sizes used in our experiments.

Table 3. The subject-independent train–test split for ICBHI used in our experiments.

Training Set Augmented Training Set Test Set

Bronchiectasis 14 672 2
Bronchiolitis 7 672 6
URTI 16 672 7
Healthy 18 672 17
Pneumonia 30 660 7
COPD 648 648 145
Total 733 3996 184

As indicated in Table 3, the training sample size (i.e., 648) of COPD is comparatively
much larger than those of other classes. Thus, the training set is severely imbalanced. To
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tackle such problems, audio augmentation techniques such as noise addition and pitch and
time shifting have been performed, but as indicated in the existing studies [24,34], such
low-level augmentation strategies alone are not able to make a significant impact on the
classification boundaries, owing to the unstructured challenging nature of such respiratory
audio data. As recommended by existing studies [34], data duplication has been performed
to increase sample sizes of the minority classes. For example, we duplicated the 30 training
instances for pneumonia 22 times to generate a new training set of 660 recordings. A similar
case was applied to other classes. Such strategies were used in conjunction with audio
augmentation operations to strengthen respiratory audio signal patterns (especially for
minority classes) and balance data distribution. Moreover, the above data duplication and
augmentation methods were only applied for the training set, while the test set remained
intact. The second column in Table 3 shows the augmented training sizes for different
classes. Overall, a total of 3996 audios were used for training, with the unseen 184 clips
contributed by different subjects for testing.

3.1.2. Pre-Processing for the Coswara Cough, Speech, and Breathing Datasets

With respect to Coswara cough (D2), speech (D3), and breathing (D4) datasets, as
seen in Table 2, balanced positive and negative sample sizes were extracted to safeguard
against any potential issues arising due to imbalanced sample distributions. In our experi-
ments, a random 80–20 split was used to divide the training and test sets for each class in
each dataset.

3.1.3. Pre-Processing for the Combined Dataset (D5) Based on ICBHI and Coswara
Breathing Databases

To further test model efficiency, we constructed the combined dataset D5 by integrating
the ICBHI and Coswara breathing datasets, with the attempt to classify COVID-19 against
a number of other lung abnormalities. We used all the positive COVID-19 samples, i.e.,
101 clips, from D4 to combine with D1 (the ICBHI dataset). Since the ICBHI dataset uses a
subject-independent split, we also used an 80–20 subject-independent split for the positive
COVID-19 class instances from D4, where 80% of the samples (i.e., 81 clips) were used
for training and 20% of the samples (i.e., 20 recordings) from unseen subjects were used
for testing.

As mentioned earlier, as indicated in Table 3, ICBHI is severely imbalanced across
all the disease cases, with COPD having the largest dominating training sample size
(i.e., 648). To balance class distributions, we duplicated the 81 positive training clips
from D4 8 times to yield 648 training instances for the positive COVID-19 class. Each
network was trained using these augmented positive COVID-19 cases along with the
augmented training samples from the ICBHI dataset for six other lung conditions. The
training set of the combined dataset D5 is illustrated in Table 4. Again, the data duplication
and augmentation procedures were only utilized for the training set. The unseen test
set contributed by different subjects with respect to COVID-19 and six other respiratory
conditions remained unchanged and was used for testing.

Table 4. The subject-independent train–test split for the combined dataset (D5) based on ICBHI and
Coswara breathing databases.

Training Set Augmented Training Set Test Set

ICBHI (D1)

Bronchiectasis 14 672 2
Bronchiolitis 7 672 6
URTI 16 672 7
Healthy 18 672 17
Pneumonia 30 660 7
COPD 648 648 145

Coswara Breathing (D4) COVID-19 81 648 20

Total 814 4644 204
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3.2. Feature Extraction

We subsequently elaborated feature extraction from audio signals. As in existing stud-
ies, we also extracted MFCC features from audio inputs for lung abnormality identification.
As previously stated, MFCC properties possess sufficient discriminative characteristics for
describing audio signals, leading to a high classification performance of numerous audio
recognition tasks. In our experiment, MFCC features were extracted using the python
package Librosa.

During the pre-processing step, numerous factors must be considered. The first step is
to decide how to ensure the model has adequate input features. We addressed this issue by
segmenting audio samples. Specifically, each audio input was divided into segments based
on the sample rate and duration of the audio clip.

After splitting the audio clips into segments, all the MFCC features from each segment
were retrieved and appended to a dictionary with their class label. Factors, such as the
parameters for Fast Fourier Transform (FFT) and hop length, must be determined to
generate the MFCC features.

The FFT algorithm is typically used to transform a signal from its native domain,
which in this case is time, to a target frequency domain representation. In the context
of MFCC, FFT is applied to each frame to determine the frequency spectrum. This was
achieved by using a technique known as the Short-Time Fourier-Transform (STFT), from
which the power spectrum was generated.

After calculating the power spectrum, triangular filters on the Mel-scale were applied
to the power spectrum to extract frequency bands. Next, using these frequency bands, the
Mel frequency was calculated using Equation (1) [18]:

Mel(f) = 1127 × ln
(

1 +
f

700

)
(1)

The formula in Equation (1) converts the audio input to the Mel frequency in hertz,
i.e., Mel(f). Specifically, it is calculated by multiplying 1127 with the natural logarithm (ln),
where a constant value of 1 plus the frequency in hertz(f) divided by the corner frequency
of 700 is used.

The hop length values, together with the FFT algorithm, determine how many frames
are taken from each segment. The default values used are 2048 for FFT and 512 for hop
length, which were utilized for this study. Following the extraction of the MFCC feature
from the audio recordings, each was added to a JSON file, which served as the input file
for training the model architectures.

Once the JSON file consisting of the MFCC features was generated, the features were
then split into training, validation, and testing sets based on the settings of each experiment.
The use of a validation dataset is predominantly for the purpose of helping ensure that
the training process is as robust as possible, as well as providing the ability to tune the
hyper-parameters more accurately.

3.3. The Proposed Models
3.3.1. A-CRNN

The first proposed model in this research is a CRNN with an attention mechanism
(A-CRNN). It incorporates a variety of layers, such as 1D convolutional and max pooling
layers, bidirectional and unidirectional LSTM layers, dense layers, and an attention layer.
Table 5 outlines the specific layer architecture with respect to the A-CRNN model.
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Table 5. Model 1—The proposed A-CRNN model architecture.

Layer# Layer Description Unit Setting Kernel Size

L1 Conv1D 512 3
L2 Conv1D 256 3
L3 MaxPooling1D N/A N/A
L4 BiLSTM 512 N/A
L5 Attention Mechanism N/A N/A
L6 LSTM 256 N/A
L7 Dense 128 N/A
L8 FC Dense (Softmax) Number of classes N/A

3.3.2. LSTM

The second exploited architecture is the BiLSTM network with attention mechanism
(A-BiLSTM). This model is composed of bidirectional and unidirectional LSTM layers,
dense layers, and an attention layer.

Moreover, a BiLSTM layer contains two RNN layers of the same kind, such as two
LSTM layers. These two layers ensure that input features may be processed in both forward
and backward time series. This allows the model to better determine the relationships
between components in the input sequence by using information in both forward and
backward directions [35,36]. Therefore, BiLSTM layers were adopted in our network. In
addition, the regularization parameter (i.e., weight decay) and a dropout layer were also
determined in trial-and-error in this model. The primary reason for selecting optimal
settings of these parameters is owing to the efficiency of such techniques in reducing the
amount of overfitting that may occur during the training of neural networks [37].

Moreover, to determine if the convolutional layers used in the aforementioned A-CRNN
model have a positive effect on performance, the A-BiLSTM model does not implement
such CNN layers. This will be used as means of comparison. Table 6 below outlines the
specific layer architecture for the A-BiLSTM model.

Table 6. Model 2—The proposed A-BiLSTM network architecture.

Layer# Layer Description Unit Setting

L1 BiLSTM 512
L2 LSTM 256
L3 Attention Mechanism N/A
L4 Dense 128
L5 Dropout 0.6
L6 Dense 64
L7 FC Dense (Softmax) Number of classes

3.3.3. A-BiGRU

The third employed network is the BiGRU model with an attention mechanism
(A-BiGRU). This model is similar in architecture to the A-BiLSTM network, with the
only differing aspect being the implementation of bidirectional and unidirectional GRU
layers in place of the bidirectional and unidirectional LSTM layers. Table 7 outlines the
specific architecture for the A-BiGRU network.

Table 7. Model 3—The proposed A-BiGRU network architecture.

Layer# Layer Description Unit Setting

L1 BiGRU 512
L2 GRU 256
L3 Attention Mechanism N/A
L4 Dense 128
L5 Dropout 0.6
L6 Dense 64
L7 FC Dense (Softmax) Number of classes
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3.3.4. CNN

The fourth model adopted in this research is a CNN. This model is the most unique
of the four models, using only a 1D convolutional layer, as opposed to the other models
which incorporate RNN layers in combination with attention mechanisms. Table 8 shows
the CNN architecture.

Table 8. Model 4—The proposed CNN architecture.

Layer# Layer Description Unit Setting Kernel Size

L1 Conv1D 128 3
L2 Conv1D 128 3
L3 Conv1D 128 3
L4 MaxPooling1D N/A N/A
L5 Conv1D 256 3
L6 Conv1D 256 3
L7 Conv1D 256 3
L8 MaxPooling1D N/A N/A
L9 Conv1D 512 3
L10 Conv1D 512 1
L11 Conv1D 2 1
L12 GlobalAveragePooling1D N/A N/A
L13 Activation N/A N/A

3.3.5. PSO-Based Hyper-Parameter Selection

We conducted optimal hyper-parameter selection using the PSO model to optimize the
learning configurations of each network. Such optimized settings equip the network with
distinctive learning behaviors and help prevent the network from overfitting. In addition,
the PSO algorithm is widely adopted for solving diverse optimization problems, such as
ensemble classifier reduction [38], feature selection [39], deep architecture generation [40],
hyper-parameter identification [41], and job scheduling [42]. In comparison with other
swarm intelligence algorithms, such as the Firefly Algorithm and Simulated Annealing,
it searches for the most optimal solution by following both personal and global best
experiences. The search process of PSO is defined in Equations (2) and (3):

vt+1
id = w × vt

id + c1 × r1 ×
(

pid − xt
id
)
+ c2 × r2 ×

(
pgd − xt

id

)
(2)

xt+1
id = xt

id + vt+1
id (3)

where xt+1
id and vt+1

id represent the position and velocity of the i-th particle in the d-th
dimension and the t + 1-th iteration, respectively, with w as the inertia weight which
adjusts the contribution of the previous velocity, vt

id. c1 and c2 are acceleration coefficients
which determine the influence of the cognitive and social components, with pid and pgd
denoting the personal and global best solutions, respectively. Moreover, r1 and r2 are
random coefficients, with each element randomly generated in the range of [0, 1]. As
indicated in Equation (2), the search process of the PSO algorithm is guided by the personal
and global best solutions, simultaneously. In other words, each particle learns from both
personal and global best experiences to balance between diversification and intensification.
We adopted the PSO algorithm for hyper-parameter identification for each proposed
network to increase network robustness and diversity.

Specifically, the search of the optimal learning configurations was conducted as fol-
lows. Firstly, a swarm was initialized with random particle positions. Each particle position
has three dimensions which represents the three optimized elements, i.e., the learning
rate, batch size, and maximum number of epochs. Such a configuration embedded in
each particle was used to setup each network training option. The fitness of the particle
is obtained using the accuracy rate of the validation set. The PSO algorithm employs
the personal and global best solutions to guide the search of optimal hyper-parameter



Sensors 2022, 22, 5566 13 of 25

configurations. The most optimal three hyper-parameters recommended by the global best
solution were used to setup the final network. The devised network was trained using the
combined training and validation sets and tested using the unseen instances in the test set.
We adopted the following experimental settings for PSO-based optimal hyper-parameter
selection, i.e., dimension = 3, trial = 10, and a maximum number of function evaluations
(population × a maximum number of iterations) = 450. Such a setting was applied for
optimizing hyper-parameters for each base network. The optimized networks were sub-
sequently used to construct the ensemble model, where a mean probability method was
exploited to incorporate all the results from the base networks.

3.3.6. The Ensemble Model

After the construction of the four optimized base networks, we subsequently devel-
oped an ensemble model that incorporates the four proposed base networks.

The ensemble strategy is a broad term to describe methods that combine multiple base
learners to generate a joint decision [43]. These learners can be any types of classification
algorithms. The ensemble learning scheme is to ensure that any errors from any single
learner would then be compensated by the other learners as part of the ensemble, which
overall would theoretically lead to a stronger classification performance [44].

There are several ensemble learning approaches, such as majority voting, bagging,
and stacking [45]. In this research, we employed the majority voting strategy. The majority
voting approach is one of the simplest and most effective methods to implement, of which
there are two implementations, namely ‘hard’ and ‘soft’.

The ‘soft approach’ was the method chosen for this investigation and involves deter-
mining which prediction to make by looking at the predictions made by each classifier and
calculating the average probability across each class. The class with the highest average
probability across the classifiers is then the ensemble prediction decision [46].

Overall, from the inspection of the aforementioned model architectures in Tables 5–8,
various state-of-the-art deep learning techniques have been incorporated in the proposed
base networks. Each of the four models adopts separate unique neural network imple-
mentations, with the main components, i.e., LSTM, GRU, and CNN layers, all showing
increasing promise in recent literature for audio classification proficiency. We subsequently
introduce the construction of the ensemble model for audio classification.

Ensemble Model Training

As each base model consists of different deep learning techniques, it was imperative
that during the training process, there was a level of flexibility for model training to ensure
no overfitting occurred. This meant several precautions were required to be implemented
to achieve this.

The first of which was the callback technique, i.e., early stopping. Early stopping is
a validation method that can be used to determine when overfitting is starting to occur
while the model is training. This can be carried out through the inclusion of a validation set
and a validation metric, of which there are several that can be chosen [47]. The validation
metric used in this research is the validation loss, which is calculated during the training
process for each epoch. A ‘patience’ setting is also needed, which is a value used with the
early stopping method to analyze whether validation loss has decreased within the said
value of epochs. If the validation loss has not decreased within a predefined number of
epochs, then the training will stop. This ultimately helps prevent any overfitting that may
occur during the training process. We set the ‘patience’ value to 5 epochs for each of the
models during the training for each dataset. Other hyper-parameters such as weight decay
and recurrent dropout layers were also identified through trial-and-error to prevent the
network from learning too closely from the training set to avoid overfitting.

The second strategy used for model training to avoid overfitting and optimize per-
formance was to create different hyper-parameter settings for each separate model in the
ensemble. As each model has a different number of parameters, as well as its own unique
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learning mechanism, ensuring that each model has its own optimal hyper-parameter set-
tings was imperative. Therefore, the identification of optimal learning hyper-parameters
(i.e., the learning rate, batch size, and the maximum number of learning epochs) was also
conducted using the PSO model to increase model robustness and avoid overfitting.

The determination of the hyper-parameter settings, i.e., the learning rate, training
epoch, and batch size, could potentially be found through an optimization method such as a
grid search. However, such an exhaustive search process is time-consuming. In some cases,
it is even infeasible. Therefore, in this research, we employed PSO for hyper-parameter
fine-tuning. The following settings were used for hyper-parameter selection, i.e., popula-
tion size = 15, dimension = 3, and a maximum number of iterations = 30. We performed
10 trials for optimizing each network. The detailed identified mean hyper-parameters for
each base network over 10 runs are presented in Section 4.

4. Evaluation

To test model efficiency, we employed the five generated datasets for performance
comparison. Following the extensive and rigorous training process, results were recorded
from each of the experiments for the proposed base and ensemble networks.

The most proficient hyper-parameters identified using the PSO algorithm during the
training stage for all the five datasets are illustrated in Tables 9–13. They were used to setup
each optimized network, which were subsequently trained using the training set and tested
using the unseen audio clips in the test set.

Table 9. Optimized hyper-parameter settings with respect to D1.

Model Hyper-Parameter Setting

A-CRNN Learning Rate 0.00159
Batch Size 128
Epoch 37

A-BiLSTM Learning Rate 0.00095
Batch Size 128
Epoch 105

A-BiGRU Learning Rate 0.00193
Batch Size 128
Epoch 45

CNN
Learning Rate 0.00019
Batch Size 128
Epoch 53

Table 10. Optimized hyper-parameter settings with respect to D2.

Model Hyper-Parameter Setting

A-CRNN Learning Rate 0.000106
Batch Size 64
Epoch 26

A-BiLSTM Learning Rate 0.000101
Batch Size 64
Epoch 15

A-BiGRU Learning Rate 0.00909
Batch Size 64
Epoch 16

CNN
Learning Rate 0.00013
Batch Size 64
Epoch 23
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Table 11. Optimized hyper-parameter settings with respect to D3.

Model Hyper-Parameter Setting

A-CRNN Learning Rate 0.000143
Batch Size 512
Epoch 48

A-BiLSTM Learning Rate 0.000099
Batch Size 512
Epoch 96

A-BiGRU Learning Rate 0.00187
Batch Size 512
Epoch 33

CNN
Learning Rate 0.000122
Batch Size 512
Epoch 130

Table 12. Optimized hyper-parameter settings with respect to D4.

Model Hyper-Parameter Setting

A-CRNN Learning Rate 0.000163
Batch Size 512
Epoch 48

A-BiLSTM Learning Rate 0.000098
Batch Size 512
Epoch 96

A-BiGRU Learning Rate 0.00083
Batch Size 512
Epoch 33

CNN
Learning Rate 0.000103
Batch Size 512
Epoch 130

Table 13. Optimized hyper-parameter settings with respect to D5.

Model Hyper-Parameter Setting

A-CRNN Learning Rate 0.000157
Batch Size 128
Epoch 42

A-BiLSTM Learning Rate 0.000197
Batch Size 128
Epoch 30

A-BiGRU Learning Rate 0.00192
Batch Size 128
Epoch 38

CNN
Learning Rate 0.000083
Batch Size 128
Epoch 43

Regarding medical diagnoses, the metrics such as sensitivity and specificity are widely
used as a standard for measuring the performance of a diagnostic method, with sensitivity
referring to the rate of true positive, and specificity referring to the rate of true negative [48].

One reason for selecting sensitivity and specificity is that using a simple test accuracy
metric can be misleading, as a high test accuracy could potentially still include a high
percentage of false positives and false negatives, indicating that the method of diagnosis is
less useful than the high test accuracy implies.
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In this research, we used four metrics, i.e., sensitivity, specificity, the ICBHI score, and
accuracy rate, for performance comparison using the five datasets, where the ICBHI score
refers to an average of the sensitivity and specificity results.

The ICBHI score metric has previously been used in studies regarding the lung and
heart abnormality detection [13,27]. Its inclusion in this study was to both compare the
ensemble results with these related studies regarding the ICBHI dataset, and to provide
a metric for comparing the results from the Coswara datasets, as well as the combined
Coswara and ICBHI dataset. We discuss the detailed evaluation results using D1–D5 below.

4.1. Evaluation Results for D1 (ICBHI) Using a Subject-Independent Split

As discussed earlier, we used an 80–20 subject-independent train–test split for the
evaluation of the ICBHI dataset. Results of the optimized base and ensemble models
for the ICBHI dataset using the subject-independent split are illustrated in Table 14. The
optimized A-CRNN model achieved the best ICBHI score and accuracy rate, followed
by those of A-BiLSTM and CNN, with A-BiGRU as the least performant network. The
devised A-CRNN model with optimized learning settings showed significant capabilities
in extracting distinctive temporal dynamics using both 1D convolutional and BiLSTM
layers with attention mechanisms, whereas other networks such as CNN, A-BiLSTM,
and A-BiGRU employed either 1D convolutional or BiLSTM/BiGRU layers for sequential
feature extraction, resulting in less efficient audio representations. The resulting ensemble
model integrating these different types of optimized networks with different learning
behaviors embeds sufficient diversity and complementary properties to further improve
base model performance. Table 15 illustrates the detailed confusion matrix of our devised
ensemble network.

Table 14. Results of base and ensemble models using a subject-independent train–test split for D1,
i.e., the ICBHI dataset.

Models Sensitivity Specificity ICBHI Score Accuracy

A-CRNN 0.8947 1 0.9474 0.8989
A-BiLSTM 0.8947 0.8571 0.8759 0.8933
A-BiGRU 0.8655 0.8571 0.8613 0.8652

CNN 0.883 0.8571 0.8701 0.882
Ensemble 0.9532 1 0.9766 0.9551

Table 15. Confusion matrix of the proposed ensemble model for D1, i.e., the ICBHI dataset.

Bronchiectasis Bronchiolitis COPD Healthy Pneumonia URTI

Bronchiectasis 1 0 0 0 0 0

Bronchiolitis 0 1 0 0 0 0

COPD 0.0261 0 0.9673 0.0065 0 0

Healthy 0 0 0 1 0 0

Pneumonia 0 0 0.2 0 0.8 0

URTI 0 0 0 0.4 0 0.6

4.2. Evaluation Results for Coswara Cough (D2), Speech (D3), and Breathing (D4) Datasets Using
Random Splits

We subsequently evaluated the Coswara cough (D2), speech (D3), and breathing (D4)
datasets. To compare with existing studies [20], a random 80–20 split was performed for
each of these Coswara datasets for model evaluation. Tables 16–21 show the detailed
evaluation results and the confusion matrices of the ensemble model for the Coswara
cough, speech, and breathing datasets, respectively.
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Table 16. Results of base and ensemble models for D2, i.e., the Coswara cough dataset.

Models Sensitivity Specificity ICBHI Score Accuracy

A-CRNN 0.9231 0.8846 0.9038 0.9060
A-BiLSTM 1 0.9391 0.9700 0.9754
A-BiGRU 1 0.9600 0.9800 0.9825

CNN 0.9524 0.9077 0.9300 0.9297
Ensemble 1 0.9420 0.9710 0.9750

Table 17. Confusion matrix of the proposed ensemble model for D2, i.e., the Coswara cough dataset.

Positive Negative

Positive 1 0

Negative 0.058 0.942

Table 18. Results of base and ensemble models for D3, i.e., the Coswara speech dataset.

Models Sensitivity Specificity ICBHI Score Accuracy

A-CRNN 0.9289 0.8747 0.9018 0.9023
A-BiLSTM 0.9422 0.8410 0.8916 0.8894
A-BiGRU 0.8344 0.8258 0.8300 0.8304

CNN 0.8965 0.8795 0.8880 0.8881
Ensemble 0.9480 0.8920 0.9200 0.9240

Table 19. Confusion matrix of the proposed ensemble model for D3, i.e., the Coswara speech dataset.

Positive Negative

Positive 0.9480 0.0520

Negative 0.1080 0.8920

Table 20. Results of base and ensemble models for D4, i.e., the Coswara breathing dataset.

Models Sensitivity Specificity ICBHI Score Accuracy

A-CRNN 0.9073 0.8746 0.8909 0.8936
A-BiLSTM 0.9909 0.9530 0.9720 0.9724
A-BiGRU 0.8654 0.8069 0.8362 0.8320

CNN 0.9497 0.8562 0.9030 0.9066
Ensemble 0.9810 0.8770 0.9290 0.9300

Table 21. Confusion matrix of the proposed ensemble model for D4, i.e., the Coswara breath-
ing dataset.

Positive Negative

Positive 0.9810 0.019

Negative 0.1230 0.8770

As indicated in Tables 16 and 17, for the Coswara cough dataset (D2), among the base
classifiers, A-BiLSTM and A-BiGRU obtained the ICBHI scores of 0.97 and 0.98, respectively,
and showed better performances than those of the A-CRNN and CNN networks. The
resulting ensemble model combining these base networks under an average probability
scheme achieved an ICBHI score of 0.9710 for the identification of positive and negative
COVID-19 cases using the coughing signals. In particular, owing to the small size of the
Coswara cough dataset (D2) compared to that of ICBHI (D1), but with comparatively more
clear audio coughing patterns, A-BiLSTM and A-BiGRU work better than other networks.
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Table 18 depicts the performances of the base networks with optimized learning
settings for the Coswara speech dataset (D3). A-CRNN achieved the best ICBHI score
of 0.9018, followed by A-BiLSTM and CNN with the ICBHI scores of 0.8916 and 0.888,
respectively. In this Coswara speech dataset, the same speech was recorded across different
subjects, and the disease-related voice symptoms are hidden inside the speech signals.
Therefore, the identification of the respiratory abnormalities embedded in such speech
signals is comparatively more difficult in comparison with using purely the coughing
samples. The detection of subtle abnormal and healthy respiratory conditions requires
the extraction of effective sequential temporal dynamics. The A-CRNN model equipped
with 1D convolutional and BiLSTM layers is able to extract more diversified acoustic
features than those obtained by other RNN or CNN models with homogenous layers
(either BiLSTM/BiGRU or 1D convolutional layers). The PSO-based learning configuration
selection and attention mechanisms further enhanced the feature learning capabilities of
A-CRNN. Moreover, the diversified base networks with optimized distinctive learning
settings also contributed to the superior performance of the resulting ensemble model
for COVID-19 identification via speech, as evidenced in the confusion matrix shown in
Table 19.

As indicated in existing studies [13,18], the detection of respiratory diseases using
breathing data is a difficult task, in comparison with using coughing samples, which
contain less obvious structural characteristics. As shown in Table 20, for the Coswara
breathing dataset, A-BiLSTM and CNN achieved the best ICBHI scores, i.e., 0.9720 and
0.9030, respectively, for detecting COVID-19 using breathing instances. In particular,
A-BiLSTM recognizes both positive and negative cases equally well, with high sensitivity
and specificity scores. The least efficient model was A-BiGRU, with an ICBHI score of
0.8362. This is probably because of the comparatively simpler structures of the BiGRU/GRU
layers embedded in A-BiGRU, in comparison with the BiLSTM/LSTM layers included in
A-BiLSTM and A-CRNN. Table 21 shows the confusion matrix of the resulting ensemble
model combining all four base networks for COVID-19 diagnosis using breathing samples.

4.3. Evaluation Results for the Combined Dataset D5 (ICBHI + Coswara Breathing) Using a
Subject-Independent Split

As discussed earlier, we performed an 80–20 subject-independent train–test split for
the combined ICBHI and Coswara breathing dataset (D5). Table 22 shows the detailed
performance of the base and ensemble networks for the classification of a number of respi-
ratory abnormalities against COVID-19 using the combined dataset. A-CRNN showed the
best ICBHI score of 0.9555 for the 7-class lung condition diagnosis. Since A-BiLSTM and
CNN extract purely homogenous features using monotonous layer structures, instead of
diversified properties extracted using different types of layer topologies, they showed less
competitive performances, with ICBHI scores of 0.8893 and 0.8867, respectively. Owing to
its comparatively simpler network layer structures, A-BiGRU obtained the lowest ICBHI
score of 0.8657. Moreover, because of the robust performance of the base networks, the
ensemble model combining these distinctive base learners possesses sufficient complemen-
tary characteristics and achieved an ICBHI score of 0.9712. As indicated in the confusion
matrix in Table 23, our ensemble model obtained high accuracy scores (0.8 or above) for the
classification of nearly all lung conditions, except for URTI.

Table 22. Results of the base and ensemble models using a subject-independent train–test split for
D5, i.e., the combination of ICBHI and Coswara breathing datasets.

Models Sensitivity Specificity ICBHI Score Accuracy

A-CRNN 0.911 1 0.9555 0.9141
A-BiLSTM 0.9215 0.8571 0.8893 0.9192
A-BiGRU 0.8743 0.8571 0.8657 0.8737

CNN 0.9162 0.8571 0.8867 0.9141
Ensemble 0.9424 1 0.9712 0.9444
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Table 23. Confusion matrix of the proposed ensemble model for D5, i.e., the combination of ICBHI
and Coswara breathing datasets.

Bronchiectasis Bronchiolitis COPD Healthy Pneumonia URTI COVID-19

Bronchiectasis 1 0 0 0 0 0 0

Bronchiolitis 0 0.8333 0 0.1667 0 0 0

COPD 0.0261 0 0.9542 0.0196 0 0 0

Healthy 0 0 0 1 0 0 0

Pneumonia 0 0 0 0 0.8 0.2 0

URTI 0 0 0 0.4 0 0.6 0

COVID-19 0 0 0 0 0 0 1

4.4. Discussions

In this section, we further analyze the results of the ensemble networks for all the test
datasets. The advantages and disadvantages of each proposed network are also elaborated.

4.4.1. Result Analysis

We summarize the ensemble model performance for different datasets in Table 24. As
indicated in Table 24, evaluated using four metric measurements, i.e., sensitivity, specificity,
the ICBHI score, and the accuracy rate, the ensemble model performed exceptionally well
across all five datasets. In particular, the ensemble model achieved ICBHI scores of 0.920
or above for all the test sets. For datasets D1 (ICBHI) and D5 (the combination of ICBHI
and Coswara breathing), it achieved high ICBHI scores of 0.9766 and 0.9712, respectively,
indicating a high level of robustness and reliability for multi-class lung abnormality clas-
sification. Especially, we employed D5, i.e., the customized combined dataset, with the
intention to identify COVID-19 from other respiratory diseases such as COPD and bronchi-
olitis. The obtained high ICBHI score for this combined dataset, as shown in Table 24 and
the confusion matrix in Table 23, indicates the great efficiency of the proposed model for
diagnosing different lung diseases to help tackle the current pandemic. In other words, the
empirical results indicate that it is indeed possible to make a reliable distinction between
COVID-19 and other chronic and non-chronic conditions on a pathological level using the
proposed ensemble model consisting of diverse distinctive base networks.

Table 24. Ensemble results for the five test datasets.

Dataset Sensitivity Specificity ICBHI Score Accuracy

D1 0.9532 1 0.9766 0.9551
D2 1 0.942 0.971 0.975
D3 0.948 0.892 0.920 0.924
D4 0.981 0.877 0.929 0.930
D5 0.9424 1 0.9712 0.9444

With respect to the Coswara datasets, Table 24 shows that our ensemble model
achieved the ICBHI scores of 0.971, 0.920, and 0.929, for the coughing (D2), speech (D3),
and breathing (D4) subsets, respectively. The above results indicate that for coughing
recordings from D2, which embeds structural characteristics of the sound signals, more
effective MFCC features were extracted for audio classification. A possible explanation
for this observation is that the nature of COVID-19, having major symptoms related to
coughing, would thus likely result in providing more distinctive audio characteristics than
those obtained from breathing or speech audio samples [49].

In addition to the reliable performance achieved using the coughing samples, the
scores for speech and breathing recordings also indicate a high level of precision. The
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above results demonstrate that on a pathological level, a positive COVID-19 diagnosis can
be classified to a high level of accuracy by all three channels.

4.4.2. Advantages and Disadvantages of the Proposed Base and Ensemble Networks

Based on the observations of the experimental results for all the datasets, all four base
networks performed consistently well on each dataset, with the A-CRNN and A-BiLSTM
models achieving the best mean ICBHI scores in most test cases, followed by those of the
CNN model. A-BiGRU was the least effective network. We analyze the advantages and
disadvantages of each base network and the ensemble model below.

Both A-CRNN and A-BiLSTM models demonstrated consistent and reliable perfor-
mances across the range of audio recordings. In particular, when tackling complex audio
classification tasks (e.g., using multi-class ICBHI (D1) and the combined (D5) datasets),
A-CRNN performed better than A-BiLSTM. The robustness of the A-CRNN model is at-
tributed to the model topology and the efficient learning parameters. A-CRNN is composed
of core layers such as 1D convolutional, BiLSTM, LSTM, and attention layers. The combina-
tion of 1D convolutional and BiLSTM layers is able to extract more diversified sequential
cues than those obtained by A-BiLSTM and A-BiGRU consisting purely of the BiLSTM or
BiGRU layers. In other words, the feature representations extracted by A-CRNN are more
diversified in comparison with the homogenous attributes extracted by CNN, A-BiLSTM,
and A-BiGRU. Moreover, the exploitation of the attention layer and PSO-optimized learning
configurations in the A-CRNN model enables the network to extract more discriminative
features to further enhance signal representations. The potential limitation of the network
is that it requires comparatively larger training sets to demonstrate its full efficiency against
other networks.

A-BiLSTM showed better efficiency than A-BiGRU and CNN in most test cases. The
model applies bidirectional LSTM layers to extract temporal information from both forward
and backward directions, which is further enhanced using the attention operations. In
addition, the gating mechanisms in BiLSTM and LSTM layers are more complex than
those embedded in the BiGRU and GRU layers. Specifically, a LSTM unit contains three
gates, i.e., input, output, and forget gates, while a GRU only has two gates, i.e., reset and
update gates [50]. Therefore, A-BiGRU has simpler layer structures with fewer param-
eters [51]. When tested using smaller datasets with comparatively more clear acoustic
patterns, e.g., the Coswara cough dataset, both A-BiLSTM and A-BiGRU showed great
efficiency in lung abnormality classification and achieved similar performances. However,
when tackling complex multi-class audio classification tasks, e.g., using the ICBHI (D1)
and combined (D5) datasets, A-BiLSTM shows better performance than those of A-BiGRU,
owing to more complex gating mechanisms and layer topologies in A-BiLSTM. In addi-
tion, in comparison with A-CRNN, where both 1D convolutional and BiLSTM layers are
used for feature extraction, the limitation of A-BiLSTM and A-BiGRU is the adoption of
homogenous BiLSTM or BiGRU layers for feature learning.

As the variant of 2D CNNs, a 1D CNN model with a set of 1D convolutional layers
was also proposed in our studies. It performs scalar multiplication and addition operations
in the 1D convolution for feature learning, with MaxPooling and AveragePooling layers
used for feature dimension reduction. In comparison with a 2D CNN, the 1D CNN model
can be applied to tackle audio signal classification using sequential audio feature inputs
directly, without the requirement of converting waveforms to spectrograms as in 2D CNN
to reduce costs. As a lightweight network, our 1D CNN model is compact and easier to
train, with minimal computational costs. It showed efficiency in tackling classification tasks
with data sparsity and achieved comparable performance across datasets, in comparison
with the RNN models (e.g., A-BiLSTM). The limitation of the CNN model is the adoption
of the same neuron type across different stages of the convolutional operations [52], which
may limit its performance.

Moreover, an ensemble strategy was used to combine the results of the aforementioned
networks. The four types of base networks embedding different learning mechanisms
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showed diverse learning behaviors to enhance ensemble diversity. On top of this, owing to
PSO-based learning configuration optimization of different networks, the diversity and
complementary characteristics of these base networks were further enhanced to boost
ensemble performance. The empirical results indicate that the ensemble model combining
four different optimized networks in a ‘majority voting’ mechanism for the classification of
several audio datasets has proven to produce a reliable performance. The confusion matri-
ces for all the test datasets shown in Sections 4.1–4.3 also indicate that on a class-by-class
basis, the ensemble model can predict exceedingly confidently.

Table 25 illustrates the comparison with existing studies with respect to the ICBHI and
Coswara cough datasets. Since different existing studies performed different classification
tasks (e.g., binary, three-class, and six-class for the ICBHI dataset) and employed different
training and test instances as well as evaluation methods (e.g., hold-out and cross-validation
with random subject-dependent or subject-independent data splits), Table 25 serves as a
loose performance comparison with related studies.

Table 25. Performance comparison with existing studies.

Existing Studies Methodology No. of Classes Evaluation Strategies Results

ICBHI

Wall et al. [20] BiLSTM with
attention mechanisms 6 90–10 (random) Accuracy rate—0.962

Zhang et al. [26] An evolving ensemble
of CRNNs

3 (healthy, chronic, and
non-chronic)

80–20
(subject-independent) ICBHI score—0.9803

Wall et al. [22] BiLSTM 2 (healthy and
unhealthy) 80–20 (random) ICBHI score—0.957

Perna [23] 2D CNN 3 (healthy, chronic, and
non-chronic) 80–20 (random) ICBHI score—0.83

Perna and Tagarelli [13] LSTM with 50% overlapping
between windows

3 (healthy, chronic, and
non-chronic) 80–20 (random) ICBHI score—0.9

Perna and Tagarelli [13] LSTM without overlapping 3 (healthy, chronic, and
non-chronic) 80–20 (random) ICBHI score—0.89

García-Ordás et al. [24]
2D CNN with Synthetic
Minority Oversampling

Technique

3 (healthy, chronic, and
non-chronic) 10-fold (random) ICBHI score—0.558

García-Ordás et al. [24] 2D CNN with Adaptive
Synthetic Sampling Method

3 (healthy, crohnic, and
non-crohnic) 10-fold (random) ICBHI score—0.911

García-Ordás et al. [24] 2D CNN with dataset
weighted

3 (healthy, chronic, and
non-chronic) 10-fold (random) ICBHI score—0.476

This research
Ensemble of optimized
A-CRNN, A-BiLSTM,

A-BiGRU, and 1D CNN
6 80–20

(subject-independent)
ICBHI score—0.9766

Acccuracy rate—0.9551

Coswara (cough)

Wall et al. [20] BiLSTM with
attention mechanisms 2 90–10 (random) Accuracy rate—0.968

This research
Ensemble of optimized
A-CRNN, A-BiLSTM,

A-BiGRU, and 1D CNN
2 80–20 (random) ICBHI score—0.971

Acccuracy rate—0.975

For the ICBHI dataset, as indicated in Table 25, most existing studies, e.g., [13,22–24,26],
categorized the six disease classes into healthy/unhealthy (two-class) or healthy/chronic/non-
chronic (three-class) cases and performed binary or three-class predictions. In comparison
with such classification tasks, our ensemble model performed a comparatively more chal-
lenging task for the identification of six respiratory abnormalities and achieved competitive
performances. Moreover, most of the existing studies, such as [13,20,22,23], employed a
random train–test split, instead of a subject-independent split, which may have audio clips
from the same subjects allocated in both training and test sets, although the recordings
were collected from different chest locations. In contrast, Zhang et al. [26] utilized a subject-
independent split as those used in this research but their work conducted a three-class
classification to identify healthy/chronic/non-chronic cases. García-Ordás et al. [24] also
classified healthy/chronic/non-chronic cases using a 10-fold cross-validation with a ran-
dom split. Such three-class lung condition detection is comparatively less challenging in
comparison with the recognition of six different lung abnormalities. Similar to our studies,
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Wall et al. [20] performed a 6-class classification task but with a random 90–10 train–test
split, instead of an 80–20 subject-independent split.

In addition, most studies for the ICBHI dataset, such as Perna and Tagarelli [13],
Wall et al. [20], and Wall et al. [22], adopted RNN models, e.g., LSTM, BiLSTM, or Bi-
GRU, for lung abnormality detection, while a CNN with five convolutional layers and a
CRNN model were used by García-Ordás et al. [24] and Zhang et al. [26], respectively. In
comparison with these works, our ensemble model incorporates all the above different
types of networks (i.e., BiLSTM, BiGRU, CNN, and CRNN), each with PSO-optimized
learning hyper-parameters. Therefore, these base classifiers possess different learning
behaviors and illustrate significantly complementary characteristics to enhance ensemble
model performance.

Furthermore, with respect to COVID-19 diagnosis using the Coswara cough dataset,
the related work, i.e., Wall et al. [20], used a random 90–10 train–test split, while our
studies employed a random 80–20 train–test split. As discussed above, our ensemble model
integrating four types of base networks showed better performance than the single BiLSTM
classifier used in [20].

In summary, our ensemble model embedding different optimized base networks
showed sufficient capabilities and robustness for the identification of diverse lung abnor-
malities, in comparison with those of existing studies, and can be used as an effective
alternative approach for lung abnormality classification.

5. Conclusions

In this research, we have proposed an ensemble model consisting of four deep net-
works, i.e., A-CRNN, A-BiLSTM, A-GRU, and CNN, for diverse lung abnormality clas-
sification using audio inputs. Our experimental results indicate that not only was audio
classification of respiratory diseases possible, but also a high level of performance was
attained. In addition, the ensemble majority voting scheme took advantage of diverse
optimized base learners with different learning settings to deliver high levels of audio
classification ICBHI scores. It could potentially be used as a competitive solution for
clinical diagnosis.

With the ICBHI scores ranging from 0.920 to 0.9766 over the five datasets, the ensemble
model demonstrated great flexibility, consistency, and an overall exceedingly high level of
performance in terms of sensitivity and specificity. Additionally, a novel dataset combining
breathing recordings from ICBHI and Coswara datasets was also constructed with the aim
of discovering if comparatively more common respiratory diseases could be distinguished
from a positive COVID-19 diagnosis. It was found that not only could this be achieved, but
again reliable metrics results were obtained using the proposed ensemble model.

In future work, it would be worthwhile to expand the experiments to a wider range of
medical audio datasets, potentially beyond respiratory diseases, to assess other conditions,
such as neurological (e.g., Parkinson’s) diseases, since speech impairment is present in
Parkinson’s and other neurological diseases. Additionally, it would also be worthwhile to
deploy the proposed model to resource-constrained lightweight smartphone devices [53] to
test its performance in real-world cases to help tackle Long-COVID-19 condition monitoring
and rehabilitation.
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