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Abstract: The unmanned aerial vehicle (UAV) industry is moving toward beyond visual line of
sight (BVLOS) operations to unlock future internet of drones applications, including unmanned
environmental monitoring and long-range delivery services. A reliable and ubiquitous mobile
communication link plays a vital role in ensuring flight safety. Cellular networks are considered one
of the main enablers of BVLOS operations. However, the existing cellular networks are designed
and optimized for terrestrial use cases. To investigate the reliability of provided aerial coverage by
the terrestrial cellular base stations (BSs), this article proposes six machine learning-based models to
predict reference signal received power (RSRP) and reference signal received quality (RSRQ) based
on the multiple linear regression, polynomial, and logarithmic methods. In this regard, first, a UAV-
to-BS measurement campaign was conducted in a 4G LTE network within a suburban environment.
Then, the aerial coverage was statistically analyzed and the prediction methods were developed
as a function of distance and elevation angle. The results reveal the capability of terrestrial BSs in
providing aerial coverage under some circumstances, which mainly depends on the distance between
the UAV and BS and flight height. The performance evaluation shows that the proposed RSRP and
RSRQ models achieved RMSE of 4.37 dBm and 2.71 dB for testing samples, respectively.

Keywords: UAV; drone; cellular connected; cellular communications; machine learning; channel
modeling; RSRP; RSRQ

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, are one of the fastest emerg-
ing technologies. Recently, low-altitude UAVs have remarkably received tremendous
attention for civil applications, such as surveillance, transportation, environmental moni-
toring, industrial monitoring, agriculture services, disaster rescue, and goods and medical
delivery [1–6].

Currently, in most parts of the world, drone applications are limited to operating
within pilots’ visual line of sight [7]. However, for applications such as package delivery,
drones are expected to operate autonomously in a long distance, where there is no visual
line of sight as no pilot is observing drones during their missions. Hence, the next step in
drone technology is to allow the drone to fly beyond visual line of sight (BVLOS).

On the other hand, to ensure a safe flight, drones need stable and reliable wireless
connectivity for payload and control and command (CC) communications [7]. Generally,
four wireless technologies can be considered for UAV communications: direct link, satellite,
ad hoc network, and cellular network [8]. Each has its advantages and disadvantages.
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Conventionally, most drones operate on the license-free industrial, scientific, and
medical (ISM) radio band (2.4 GHz) as a direct link. Although establishing this link is low
cost and simple, it suffers from low range, low data rate, and vulnerability to interference.
Hence it is not suitable for BVLOS applications. Although satellite links can provide glob-al
coverage, their equipment is costly, heavy, and energy-consuming. In addition, a satellite
link suffers from high latency and large signal attenuation, where these features make
satellite communication unsuitable for most drone use cases. An ad hoc network, on the
other hand, is considered a robust and adaptable wireless technology. Nevertheless, it
suffers from technical issues such as low spectrum efficiency, intermitted connectivity, and
complex routing protocols [8].

Among the existing wireless technologies, the cellular network has recently been
considered one of the main enablers for large-scale UAV communications [9]. In addition,
the terrestrial cellular networks already exist; hence, there is no need to develop a new
dedicated infrastructure for UAV wireless communications.

The main question is whether a cellular network can provide a reliable communication
link to ensure that UAVs can fly BVLOS safely. In general, the existing 4G and 5G cellular
networks provide ubiquitous coverage with low latency and a high-speed data rate for
terrestrial users [10], whereas, at the altitudes below base stations’ (BSs) heights, the existing
cellular networks can meet the CC and payload communication requirements to provide
safe mobile connectivity for UAVs [11].

However, existing cellular networks are designed for terrestrial users and providing
connectivity to the flying drone is challenging. On the one hand, with increasing height
above the ground, the radio environment changes, and some problems arise, such as
handover (HO) and mobility management [12] and severe interference between aerial users
(UAVs) and terrestrial users [13]. On the other hand, the transmitting antennas are tilted
down; therefore, there is a severe reduction in the antenna gain at higher altitudes, leading
to lower link reliability and data rate [14].

Figure 1 illustrates a scenario when a low-altitude UAV flies over the terrestrial BSs. By
enhancing the flight height, the probability of line-of-sight (LoS) communications in-creases.
Although attenuation factors, such as path loss and large-scale fading, are lower in LoS
communications, in altitudes above the BS antennas’ height, the drone communications
suffer from both uplink and downlink interferences [15], as in higher altitudes, the drone is
in LoS of adjacent/interfering cells as well.
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On the other hand, cellular networks are optimized for terrestrial UEs, e.g., BS antennas
are tilted downward to prevent inter-cell interference and provide service for the UEs via
antennas’ main lobes [16]. Meanwhile, by increasing the drone flight height, the probability
of being served by the antennas’ sidelobes will increase, causing severe challenges, such as
degradation of the received signal strength and quality [14], and increasing the frequency
of HO and outage probability [9].

To further study the performance and quality of the communication link between
the terrestrial BSs and UAVs, this article aims to propose machine learning (ML)-based
models for predicting reference signal received power (RSRP) and reference signal received
quality (RSRQ) in UAV-to-BS communications. It should be noted that, in this study, it
was decided to use RSRP and RSRQ instead of path loss to manifest the final output in
a more meaningful way. Both RSRP and RSRQ are key parameters directly representing
the state of network signal level and quality at the UE location in 4G/LTE and 5G NR
networks [17]. Additionally, modeling path loss requires knowledge about eNB parameters,
including antenna gain, azimuth, feeder loss, power, etc. The latter are mostly difficult to
obtain because of several technical and security concerns. Accordingly, a measurements
campaign was conducted in a suburban environment to measure RSRP, RSRQ, and other
important network parameters under different distances and flight heights. Then, the
collected data were preprocessed and analyzed to investigate the cellular-connected UAV
system’s performance under different considered scenarios. Finally, ML techniques have
been used to develop the prediction models for RSRP and RSRQ.

The key contributions of this study are summarized as follows:

• A comprehensive measurement campaign has been conducted in a 4G LTE network
within a suburban environment, consisting of about 28,000 physical layer samples.
The performed aerial drive test focused on mobile link reliability between UAV
and terrestrial BS. Hence, parameters such as RSRP, RSRQ, latency, and handover
were measured.

• An open-source dataset has been provided, which is publicly accessible at [18]. The
dataset contains about six hours of aerial drive tests under different measurement
scenarios such as routes, BS, BSs’ heights, and UAV’s height in a harsh tropical
suburban environment.

• Performance of the cellular-connected UAV system in the commercial LTE network has
been investigated in a 3D form, under different distances and flight heights, in terms
of RSRP and RSRQ. The statistical analysis reveals the performance of terrestrial BS in
providing aerial coverage under different distances and flight heights. The output of
this stage can be extended for other UAV mobile connectivity research, such as UAV
path planning optimization.

• Six ML-based models have been considered and evaluated for an accurate RSRP
and RSRQ prediction for LTE networks in suburban environments. Multiple linear
regression, polynomial, and logarithmic methods were utilized to estimate the level of
RSRP and RSRQ based on the 2D distance between the drone and serving BS, elevation
angle, and flight height.

The rest of the paper is organized as follows:
A review of recent related works is presented in Section 2. Section 3 describes the

materials and methods used in this research, including measurement methodology, meth-
ods to analyze and assess the collected data, and the utilized method and steps toward
developing RSRP and RSRQ prediction models. Measurement and simulation results are
presented and discussed in Section 4. Finally, the paper ends with a conclusion in Section 5.

2. Related Works

Recently, plenty of studies have been conducted to investigate the performance of
existing 4G/LTE networks for UAV operations. One of the most precise and significant
studies was performed by the 3rd Generation Partnership Project (3GPP), as reported in [17]
and summarized in [19]. 3GPP formed a team in the “Radio Access Network studying
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Enhanced LTE Support for Aerial Vehicles” and performed numerous flight tests and
simulations to evaluate the use of 4G LTE as a potential communication solution for UAV
operation. Accordingly, the researchers verified the system performance level and identified
the density of supportable heights, speeds, and UAVs. In addition, air-to-ground channel
models were developed for different scenarios, and performance-enhancing solutions were
studied for interference detection and mitigation, handover, and positioning.

In addition, some recent works in [13,15,20,21] investigated the performance of cellular-
connected drones in simulation environments under different flight heights and drone
speed scenarios. Accordingly, different measurement metrics were considered, including
signal-to-interference plus noise ratio (SINR), RSRP, and HO. The results showed that the
probability of LoS communication links increases by increasing the flight altitude, which,
on the one hand, reduces the destructive effects such as penetration loss and shadowing
and, on the other hand, enhances the inter-cell interference level, especially on the uplink.
In addition, the papers demonstrated how drones are served by BS antennas’ sidelobes and
revealed the issue of HO when drones move to the BS antenna sidelobe nulls. However,
the conducted studies were limited to simulation results and therefore did not fully reflect
real-world scenarios’ technical challenges and constraints.

Other research works, such as [12,13], performed field measurements to investigate
the performance of cellular-connected drones in different scenarios. The performance
of drone connectivity in an LTE network was investigated in terms of coverage, data-
rate, interference, and latency. Results showed that existing LTE networks could provide
communication links for low-altitude drones. However, the results were limited to specific
scenarios, such as remote or rural environments. The authors in [22] performed a set
of aerial drive tests in a suburban area to investigate the performance of LTE for UAV
communications. It was found that the existing LTE network can provide aerial coverage
under some circumstances, which mainly depends on the position of the UAV to the BS.

The authors in [23] conducted a measurement campaign in the 4G network and the
result evaluation shows the weakness of the existing cellular networks in providing areal
coverage, compared to terrestrial applications. In addition, the authors proposed a long-
range multi-link communication system for UAVs, in which the developed communication
module leverages multiple LTE modems and networks together with a multipath trans-
mission control protocol for multi-link aggregation. The results show that the pro-posed
system can considerably increase the communication link availability in maritime scenarios
and provide smooth handover between different networks.

Besides performance evaluation, recently, the topic of UAV-to-BSs channel modeling
has attracted the attention of researchers and, thereby, plenty of works have been con-
ducted on this domain. For instance, ref. [24] reviewed the recently developed state-of-
the-art air-to-ground channel models for different wireless communication technologies,
including cellular-connected UAVs. Meanwhile, ref. [25] developed an empirical channel
model for the UAV-to-BS scenario based on path loss and shadowing effects in the LTE
network. The results showed that the path loss exponents decrease by increasing the flight
height. The research findings also revealed the need for a height-based channel model for
describing the propagation channel between UAVs and BSs.

It should be noted that based on the antenna radiation pattern, the gain of the antenna
degrades by moving from the center of the main lobe to its boundaries. The amount of
degradation depends on the design characteristics of the antenna. Hence, conventional
2D channel models, which are mainly based on the distance between transmitter and
receiver, are not anymore suitable for aerial mobile communications, especially for UAV
communications where the drones fly at different heights and, in the case of cellular-based
communications, mainly receive signals from the boundaries of the main lobe or side lobes.
Therefore, the development of 3D channel models for describing the propagation channel
between UAVs and BSs is highly vital and demanding.

Authors in [26] provided an insight into the propagation characteristics of the UAV-
to-BS channel and proposed a statistical path loss model for suburban environments. The
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proposed path loss model is a function of the depression angle and the terrestrial coverage
beneath the UAV. In contrast, ref. [27] followed a different approach by proposing an
ML-based channel model for the UAV-to-BS scenario. The model was developed based on
the received signal strength (RSS) and an unsupervised clustering algorithm, in which the
drone can identify the status of the current channel without relying on statistical channel
models. However, the proposed method was simply a function of distance only and did
not consider the effect of the UAV’s height or elevation angle.

In contrast, ref. [28–30] trained different ML models for predicting either the RSS or
RSRP of UAV-to-BS using a total of nine features. These features included the latitude and
longitude of the UAV and the nearest BS, the ground elevation and altitude of the UAV,
the ground elevation and building height of the BS, and the antenna mast height of the
BS. In [29], the authors utilized multiple ensemble learning methods to predict the RSS at
several heights (up to 350 m) in an urban environment. In addition, they presented a new
ensemble method based on five base learners: support vector machine (SVM), Gaussian
processes (GP), artificial neural network (ANN), least-squares boosting (LSBoost), and
bagging. The Salp swarm algorithm (SSA) was used to integrate base learners into the new
method. Results showed that the proposed ensemble method was the best, with root mean
squared error (RMSE) of 6.26 dB, mean absolute error (MAE) of 3.54 dB, and mean absolute
percentage error (MAPE) of 3.92%.

Similarly, ref. [30] evaluated k-nearest neighbors (kNN), support vector regression
(SVR), random forest (RF), AdaBoost, and gradient tree boosting (GTB) models for pre-
dicting RSRP at different UAV heights in an LTE network operating at 1800 MHz in urban
and suburban environments. They introduced a new ensemble method that combines the
latter base ML learners in an ensemble learning method termed voting regression (VR). The
outcomes showed that the VR model outperformed the original base learners, achieving
MAE of 3.227 dB, RMSE of 6.674 dB, and MAPE of 3.357%. Meanwhile, in [28], the authors
presented a UAV-to-BS RSRP prediction model based on ANN for LTE networks operating
at 1800 MHz frequency band in an urban environment, concerning UAV heights of up
to 350 m. Combining the Levenberg–Marquardt (LM) backpropagation algorithm with
self-adaptive differential evolution (DE) techniques led to the development of two novel
hybrid training methods, namely the jDE and the composite DE (CoDE) algorithms. Both
methods showed favorable outcomes, with CoDE-LM achieving the best.

In [31], a deep ANN was used to predict RSRP and RSRQ for the UAV-to-BS commu-
nication scenario in a rural LTE network based on the spatial positioning of a UAV flying
up to 180 m in altitude. This approach takes the UAV’s position as input and maps them
to seven training features, including latitude, longitude, altitude, azimuth, elevation, and
radius. Results showed that the model performed decently with a cost function of 0.3 dB
for training data and 0.4 dB for validation data when predicting RSRP. However, there are
major limitations that are mainly due to considering one BS in a rural environment, lacking
other communication scenarios, and using limited training/testing datasets.

Finally, we summarize the reviewed studies in Table 1 with a detailed description of
the research focus, modeling approaches, key findings, and limitations of each study. In
conclusion, it can be noted that most of the conducted studies tend to be limited to specific
study areas and use positional data, latitude and longitude, as input features to the models.
The latter, in turn, makes these models site-specific, i.e., they perform poorly when used
in areas different than the study area, thereby not being reusable for other deployment
environments/scenarios. Hence, we believe that still more research needs to be conducted
to identify the radio propagation characteristics of a UAV-to-BS channel under different
scenarios and use cases.
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Table 1. A summary of the reviewed UAV-to-BS channel modeling and characterization studies.

Ref. Study Focus Modeling Approach Key Findings/Contributions Limitations

[13,15,20,21]
Performance evaluation of
cellular-connected drones

N/A
Demonstrated how drones are served by BS antenna
sidelobes and revealed the issue of HO when drones

move to the BS antenna sidelobe nulls.

Simulation-based and do not fully reflect real-world
technical challenges and constraints.

[12,22,23] N/A
The evaluation was based on field measurements.

Showed that existing 4G LTE networks could provide
communication links for low-altitude drones.

The evaluations were limited to specific communication
scenarios, such as remote or rural environments.

[24] Investigate LTE performance for UAV N/A
Found that the existing LTE network can provide aerial
coverage, constrained to the position of the UAV to the

serving BS.

Limited to performance evaluation in
suburban environments.

[25] Survey existing and recently developed
channel models N/A

Reviewed recent state-of-the-art air-to-ground channel
models for different technologies, including

cellular-connected UAVs.

Limited to surveying existing models and recent
developments for channel modeling.

[26]

UAV-to-BS channel modeling

Empirical path loss modeling for
UAV-to-BS scenario.

The path loss exponents decrease by increasing the
flight height, approximating free space propagation.

Limited to certain communication scenarios, utilizing
conventional modeling techniques.

[27] Statistical path loss modeling
UAV-to-BS scenario.

The proposed path loss model is a function of the
depression angle and the terrestrial coverage beneath

the UAV.
Limited for suburban environments.

[28] UAV-to-BS RSS modeling ML-based modeling for
RSS prediction. -

The proposed method was simply a distance function,
neglecting the effect of parameters such as the UAV’s

height or elevation angle.

[29] UAV-to-BS RSS modeling
ML-based (ensemble) modeling for
RSS or RSRP prediction. Using nine

input features.

They have utilized multiple ensemble learning methods
to predict the RSS at several heights and presented a
new ensemble method based on five base learners.

Limited to RSS prediction and uses latitude and
longitude as input features to the models, making it a

site-specific model.

[30] UAV-to-BS RSRP modeling ANN for RSRP prediction
Developed two hybrid training methods, the jDE and

the CoDE algorithms. Both methods showed favorable
outcomes, with CoDE-LM achieving the best.

Uses latitude and longitude as input features, making
the proposed model site-specific.

[31] UAV-to-BS RSRP and RSRQ modeling Deep ANN for RSRP and
RSRQ prediction.

Results showed that the model performed decently
with a cost function of 0.3 dB for training data and
0.4dB for validation data when predicting RSRP.

Limited to one BS in a rural environment, lacking other
communication scenarios and using limited

training/testing datasets. Uses latitude and longitude
as input features, making the proposed

model site-specific.
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3. Methodology

The following subsections describe in detail each of the methods used in this study.

3.1. Field Trial Measurement

To develop realistic prediction models that reflect the real mobile radio propagation
characteristics, we first conducted a set of aerial drive tests and then used the measurements
to evaluate the cellular link performance in a UAV-to-BS communication scenario. The
following describes the measurement setup/methods, study area, and validation strategies
for the results.

Figure 2 depicts the general concept of the utilized measurement method. The de-
veloped multirotor drone in [24] has been used to perform the drive-test. For measuring
cellular key performance indicators (KPIs), a smartphone with an installed drive-test ap-
plication is required. Plenty of drive-test applications are available on Google Play Store
for Android devices, such as GNet Track Pro [32], RF Signal Tracker [33], and Network
Cell Info [34]. In this study, the GNet Track Pro has been used due to its accuracy and
capability to measure and monitor the essential KPIs of the cellular network compared to
other existing applications [24].
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65–125 m.

The measurement was conducted at the National University of Malaysia (UKM). The
campus environment can be considered a tropical suburban metropolitan area with a
geographic terrain of undulating hills and dense vegetation. Figure 3 shows an aerial image
of the considered area.

In the considered study area, cellular coverage is provided by different telecommuni-
cation service providers and, in this study, only one of the cellular operators with better
coverage was selected for the measurement. The measurement area is covered by four
LTE BSs with a carrier frequency of 2.6 GHz and a system bandwidth of 20 MHz. Table 2
presents the information on BSs.
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Table 2. Physical information of the considered BSs.

Type of BS No. of
Sectors

Tilt Angle
(Degree)

Height (m)
Above Ground

Level

Height (m)
Above Sea

Level

BS A Tower
located on a hill 3 × 120◦ 6 28 99

BS B Rooftop 3 × 120◦ 4 11 72
BS C Rooftop 3 × 120◦ 4 23 56
BS D Rooftop 3 × 120◦ 4 12 46

The smartphone was mounted on the drone and served by the LTE network during
the measurement. At the same time, GNet measured the LTE-related parameters such as
drone position, RSRP, RSRQ, and network latency. The measured KPIs were then stored on
the phone and retrieved after landing. It should be noted that during the tests, the drone
speed was maintained at an average speed of 20 km/h.

Drive tests were conducted on three different paths and four elevations (65, 85, 105,
and 125 m). Meanwhile, to enhance measurement accuracy, each flight set was repeated
twice. Moreover, the starting point’s elevation was considered the reference point, about
40 m above sea level. For example, flying at an altitude of 65 m means flying at an altitude
of 65 m above the starting point or equivalent to 105 m above sea level.

3.2. ML-Based RSRP and RSRQ Prediction Models

To develop a realistic prediction model to represent the performance of an LTE com-
munication link based on the capability of the GNet track, RSPR and PRSQ parameters
were selected as the parameters to be measured and modeled. RSRP is a key measurement
parameter indicating the average received signal power of a single resource element in an
LTE resource block (RB) and can be calculated as [17]:

RSRP[W] =
1
N

N

∑
n=1

Pn , (1)

where N is the number of received reference signals and Pn is the received power of n-th
reference signal. However, RSRP alone does not fully reflect the quality of the received
signal because it also picks up the energy of interfering signals in the corresponding
frequency range.
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RSRQ is considered another key measurement parameter that indicates the received
signal quality level in the LTE network and the effect of interference from adjacent BSs. The
RSRQ can be calculated as [17]:

RSRQ = N× RSRP[W]

RSSI[W]
, (2)

where the reference signal strength indicator (RSSI) is the power measured over the entire
bandwidth of occupied RBs, including intracell power, interference, and noise. RSRQ is
dimensionless and usually written in dB. Table 3 demonstrates the status of a signal based
on its measured RSRP and RSRQ level [35].

Table 3. Signal status based on RSRP and RSRQ value.

Signal Strength/Quality RSRP RSRQ

Excellent −60~−70 dBm >−6 dB
Good −70~−80 dBm −6~−10 dB

Medium −80~−90 dBm −10~−15 dB
Weak −90~−100 dBm <−15 dB

The NumPy [36] and Pandas [37] libraries were used to clean, preprocess, and analyze
the collected data statistically. Figure 4 depicts the flowchart of the ML-based RSRP and
RSRQ modeling. The raw data consists of a 28,389 × 42 matrix, where each row represents
one measured sample, including the drone’s geographical location, sampling time, and
information about the cellular network and received signals. First, the raw data were
filtered to extract the measured samples and required features from the desired BSs. In
addition, the measurements were cleaned by removing outliers and irregular measurement
points. Then, as independent variables, two new columns were added to the dataset, which
are 2D distance and elevation angle. The 2D distance, d2D, was measured based on the GPS
coordinates of the serving BS and the drone at each sampling point, as [38]:

d2D = 2×R× arctan2
(√

a,
√

1− a
)

, (3)

a = sin2
(

latBS − latUAV
2

)
+ cos(latBS)× cos(latUAV)× sin2

(
lonBS − lonUAV

2

)
, (4)

whereR is the Earth’s mean radius equal to 6371 km, latBS and lonBS are the latitude and
longitude of the serving BS in the decimal degrees format, respectively. latUAV and lonUAV
are the latitude and longitude of the drone in considered sampling point, respectively.
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Elevation angle, β, was calculated based on the height of BS’s antennas, hBS, flight
altitude, hUAV, and d2D, as:

β = arctan
(

hUAV − hBS

d2D

)
+ α, (5)

where α is the tilt angle of the BS’s antenna as listed in Table 1. Note that the UAV flight
height was always above the BSs’ height in the measurement scenarios. Hence, the divisor
in the above equation is always a positive number. In this step, to accelerate modeling
speed, improve accuracy, prevent bias, and avoid other scale difference issues in the model
fitting phase, the determined features were normalized.

After preprocessing the data, the dataset contains the following information for
8457 samples: cell ID, 2D distance, elevation angle, RSRP, and RSRQ. Out of the latter,
RSRP and RSRQ are considered the dependent variables, i.e., the goal of prediction.

At this stage, ML was used to predict the RSRP and RSRQ values at different heights
and distances. Supervised ML algorithms can look at independent variables in a dataset
and predict a dependent variable based on the characteristics of independent variables, i.e.,
predict trends by using previously labeled data. In this study, the Scikit library [39] was
used for ML model training and evaluation. Since there are multiple independent variables
and based on the distribution of the collected data, different methods have been used to
develop prediction models for RSRP and RSRQ. These methods include LARS lasso, SVR,
polynomial, and logarithmic methods.

The LARS lasso method is implemented based on the LARS algorithm, which provides
the full path of the coefficients along with the regularization parameter, and unlike the
coordinated descent-based algorithm, yields an exact solution. SVR extends the support
vector machine (SVM) method for solving regression problems. There are different imple-
mentations/kernels of SVR, such as epsilon, nu, and linear SVR. The fit time complexity
of SVR kernels is high, e.g., in epsilon implementation, it is more than quadratic with the
number of samples. Hence, based on the size of our dataset, the linear kernel has been
selected for model training. The trained models by the LARS lasso and SVR methods can
be represented as:

RSRP or RSRQ = θ0 + θ1 × d2D + θ2 × β, (6)

where θ0 is the intercept and θ1 and θ2 are coefficients that predict the impact of change on
the d2D and β, respectively.

One common strategy within ML is to use linear models trained on nonlinear functions
of the data. This strategy maintains the fast performance of linear methods while letting
them fit a broader range of data. The generated model with this approach depends on
the degree of polynomials. For example, for second-order polynomials, the model can be
presented as:

RSRP or RSRQ = w0 + w1 × d2D + w2 × β + w3 × d2
2D + w4 × d2D × β + w5 × β2, (7)

where w0, . . . , w5 are the polynomial coefficients that are calculated and optimized by the
utilized algorithm.

However, for the cases where the data shows a curvy trend, the linear regression
cannot produce very accurate results when compared to nonlinear regression. Therefore, as
the third method, the logarithmic model has been used to model the nonlinear relationship
between the independent variables, distance, and elevation angle, and the dependent
variables, RSRP and RSRQ. The reason for choosing the logarithmic model is that, based on
the data distribution, a logistic function can provide a good approximate model, since it
has the property of being fit with the changes in the dataset. In addition, it is consistent
with the well-known conventional logarithmic models such as Okumura-Hata, COST231-
Hata, and ITU-R P.1546. Therefore, the nonlinear models have been fitted based on the
following equations:
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RSRP or RSRQ = ϕ1 + ϕ2 × log10(d2D) + ϕ3 × log10(β), (8)

where ϕ1, ϕ2, and ϕ3 are the coefficients that can be calculated and optimized by the
curve_fit function from the optimize module of the SciPy library.

The dataset was randomly split into train and test sets with a portion of 80% and 20%,
respectively. The train set was used to train the model, and the test set was used to evaluate
the accuracy of the prediction model.

The “metrics” module of Scikit-learn has been used to measure the performance of
regression models. In this study, metrics such as RMSE, MAPE, and median absolute error
(MedAE) were used to evaluate the models’ performances.

RMSE is the standard deviation of the prediction errors and residuals. Residuals are a
measure of how far from the regression line data points are and can be estimated over n
samples as:

RMSE =

√
1
n ∑n

j=1

(
yj − ŷj

)2, (9)

where ŷj is the predicted value of the jth sample and yj is the corresponding true value.
MAPE, also known as mean absolute percentage deviation, is a measure of prediction

accuracy of a statistical forecasting model and expresses the accuracy as a percentage,
which can be calculated as:

MAPE =
1
n ∑n

j=1

∣∣yj − ŷj
∣∣

max
(
ε,
∣∣yj
∣∣) , (10)

where ε is an arbitrarily small positive number to avoid undefined results when yj is zero.
MedAE is a robust measure of the variability of a univariate sample of quantitative

data, and it is particularly interesting because it is robust to outliers. The loss is calculated
by taking the median of all absolute differences between yj and ŷj, as:

MedAE = median(|y1 − ŷ1|, . . . , |yn − ŷn|). (11)

4. Results and Discussion

This section summarizes the collected data from the 4G LTE drive test. Then, it
investigates the aerial cellular coverage and analyzes the data in different scenarios. Finally,
the results of the developed RSRP and RSRQ prediction models are discussed.

4.1. Measurement Results and Analysis

Figures 5 and 6 show the overall drive test results for different paths and heights in
terms of RSRP and RSRQ, respectively. The flight distance for routes A, B, and C are about
2.3, 2.4, and 2.6 km, respectively, and the flight heights are 65, 85, 105, and 125 m above the
takeoff point. The colors indicate the RSRP and RSRQ conditions, which are changing in the
“excellent” to “weak” range, based on Table 2. Based on the results, the link performance
depends on the 3D position of the drone relative to BSs, where, generally, the shorter the
distance and the lower the altitude, the better the performance.

During the drive tests, the mounted phone on the drone was served by 13 BSs. It was
observed that the number of serving cells increased by increasing the flight height. The
main reason behind this phenomenon is that the drone is mainly served by the sidelobes of
BS’s antennas when flight height increases. Hence, in higher altitudes, where the drone is
in visual line of sight of the adjacent BSs, the probability of serving by the sidelobes of a
larger number of BSs increases. However, the serving time from most of the adjacent BSs is
not long, and after a short distance, a handover occurs, and another BS serves the drone. In
this regard, we only considered the data belonging to the dominant BSs with a sufficient
number of measured samples. After preprocessing and data cleansing, 8457 samples were
considered for data analysis.
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Figure 6. Measured RSRQ values at different routes and elevations.

Table 4 describes a statistics summary of the considered data. Meanwhile, Figure 7
shows the histograms of distance, angle, RSRP, and RSRQ. Distance is the 2D distance
between serving BS and the drone. The elevation angle is the angle between the drone’s
position and the center of the antenna’s main lobe. Finally, height is the drone’s altitude
above the serving BS’s antenna, and X% is the percentage of the data distribution.

Table 4. Summary statistics of considered data.

Distance
(m)

Elevation Angle
(Degree)

Height
(m)

RSRP
(dBm)

RSRQ
(dB)

mean 242.195 24.534 79.547 −74.735 −11.396
std 141.782 17.066 28.396 5.832 3.081
min 10.534 0.560 6.000 −98.000 −20.000
25% 140.183 13.090 59.000 −79.000 −14.000
50% 224.761 21.040 89.000 −75.000 −11.000
75% 322.479 30.520 99.000 −71.000 −9.000
max 1045.209 82.700 119.000 −59.000 −5.000



Sensors 2022, 22, 5522 13 of 21

Sensors 2022, 22, x FOR PEER REVIEW 15 of 24 
 

 

Table 4. Summary statistics of considered data. 

 
Distance 

(m) 

Elevation Angle 

(Degree) 

Height 

(m) 

RSRP 

(dBm) 

RSRQ 

(dB) 

mean 242.195 24.534 79.547 −74.735 −11.396 

std 141.782 17.066 28.396 5.832 3.081 

min 10.534 0.560 6.000 −98.000 −20.000 

25% 140.183 13.090 59.000 −79.000 −14.000 

50% 224.761 21.040 89.000 −75.000 −11.000 

75% 322.479 30.520 99.000 −71.000 −9.000 

max 1045.209 82.700 119.000 −59.000 −5.000 

 

Figure 7. Histograms of dataset parameters, including (a) distance, (b) angle, (c) RSRP, and (d) 

RSRQ. 

Figures 8a and 9a show the 3D distribution of the measured RSRP and SRRQ values 

versus angle and distance, respectively. As the data shows, the performance of the cellular 

communication link directly depends on the distance between the drone and the serving 

BS, as well as the elevation angle or the flight height. For better visualization, Figure 8b,c 

and 9b,c show the 2D plots of RSRP and RSRQ versus distance and angle, respectively. 

Results show that by increasing the distance and angle, both RSRP and RSRQ degrade, 

and degradation can be modeled with either linear or nonlinear models. Note, since the 

RSRP and RSRQ values depend highly on distance and angle, a 2D plot cannot reflect the 

impact of each factor on the link performance, so the data distribution seems to be 

scattered. 

The results show that most data are distributed at less than 600 m and an elevation 

angle of fewer than 40 degrees. The reason for such a distribution is the handover and 

cellular network architecture in the considered measurement area, which is in line with 

the standard architecture of the cellular network in urban and suburban areas. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 1 Figure 7. Histograms of dataset parameters, including (a) distance, (b) angle, (c) RSRP, and (d) RSRQ.

Figures 8a and 9a show the 3D distribution of the measured RSRP and SRRQ values
versus angle and distance, respectively. As the data shows, the performance of the cellular
communication link directly depends on the distance between the drone and the serving BS,
as well as the elevation angle or the flight height. For better visualization, Figure 8b,c and
Figure 9b,c show the 2D plots of RSRP and RSRQ versus distance and angle, respectively.
Results show that by increasing the distance and angle, both RSRP and RSRQ degrade, and
degradation can be modeled with either linear or nonlinear models. Note, since the RSRP
and RSRQ values depend highly on distance and angle, a 2D plot cannot reflect the impact
of each factor on the link performance, so the data distribution seems to be scattered.
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Figure 9. (a) Data distribution of RSRQ versus angle and distance, (b) RSRQ versus distance, and
(c) RSRQ versus angle.

The results show that most data are distributed at less than 600 m and an elevation
angle of fewer than 40 degrees. The reason for such a distribution is the handover and
cellular network architecture in the considered measurement area, which is in line with the
standard architecture of the cellular network in urban and suburban areas.

For a closer look, Figure 10 depicts the box plots of all collected data. From the results
of Figure 10c,d, it can be seen that 75% of RSRP and RSRQ are in the range of −59 dBm and
−79 dBm, and −5 to −14 dB, respectively. Based on the results of Figure 10a,b and Table 3,
it can be revealed that within a distance of 320 m and an elevation angle of 30 degrees,
most probably a terrestrial BS can serve a drone with good or medium signal strength
and quality.

The hollow circles also show the outliers, which the boxplot function of the matplotlib
library has identified. This data mainly belongs to the measurements at the heights of
105 and 125 m, where the adjacent BS is in the drone’s line of sight and receives service
for a short period. However, since these samples are reliable and represent the signal
condition over a long distance, we keep and consider these samples for developing the
prediction models.

In conclusion, the data analysis revealed that the reliability and performance of a
terrestrial cellular link in aerial communication is a function of distance and elevation angle.
Enhancing the distance destructing factors such as path loss and shadowing attenuate
the energy of receive signals, RSRP, at the drone side. In contrast, the degradation of
RSRQ is mainly affected by the elevation angle enhancement. The main reasons behind
this phenomenon are reduced antenna gain and enhanced signal interference at higher
altitudes, resulting in a lower signal-to-interference plus noise ratio (SINR).

The reason for the desired signal level degradation is that the BSs antennas are down
tilted and, based on the antenna radiation pattern, by increasing the flight height, the
chance of serving the drone with the main lobe decreases, which consequently degrades
the received signal energy at the drone side. The reason for interference enhancement
is because, in higher altitudes, a drone can see a larger number of BSs. Therefore, the
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probability of receiving signals from adjacent/interfering BSs increases. Consequently, the
drone receives higher interference energy at higher altitudes.
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4.2. RSRP and RSRQ Prediction Models

Tables 5 and 6 present the performance of the RSRP and RSRQ prediction models
under LARS lasso, SVR, polynomial, and logarithmic methods, respectively. Table 5 also
compares the results obtained in this study against a few related works. Results show that
the performance of the proposed models outperformed other related works. Meanwhile,
the performance of LARS lasso and SVR are almost the same, while SVR involves high
computational complexity and requires more computation power. Hence, LARS lasso
is selected as a linear regression method with acceptable accuracy. The results of the
polynomial and logarithmic methods show that the polynomial degree of 2 could present
slightly better results than the linear methods and the logarithmic method outperforms
linear regression models. That latter comes since it uses nonlinear functions to train the
data and generates a model that fits a much wider range of data.

Table 5. Performance of proposed prediction models for RSRP compared against related works.

Proposed Method/Reference RMSE MAPE (%) MedAE Notes

LARS Lasso 4.58 4.9 3.04 -
SVR 4.60 5.0 2.99 -

Polynomial 4.49 4.8 2.90 -
Logarithmic 4.37 4.6 2.81 -

[31] 6.26 3.92 - Predicts RSS
[32] 6.674 3.357 - -
[33] 9.63–12.32 - - -

Table 6. Performance of proposed prediction models for RSRQ.

Method RMSE MAPE (%) MedAE

LARS Lasso 2.80 22 1.86
SVR 2.81 21 1.86

Polynomial 2.75 22 1.90
Logarithmic 2.71 21 1.87
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On the other hand, the performance of a polynomial method depends on its degree,
in which higher degrees enhance the flexibility of the model to fit a broader range of data.
However, the overfitting issue should be considered, where the generated method may
fit perfectly with the existing data but may not predict accurate output for new data. In
this regard, Table 7 compares the evaluation results of the polynomial-based RSRP model
under different degrees. Results thereby show that increasing the degree to 6 improves
the performance slightly. Then, due to the overfitting, the performance starts to degrade.
Hence, due to the simplicity of the equation, we believe that a degree of 2 can provide
accurate enough prediction methods for RSRP and RSRQ.

Table 7. Performance of polynomial method under different degrees.

Polynomial Degree RMSE MAPE (%) MedAE

2 4.49 4.8 2.90
4 4.33 4.6 2.82
6 4.31 4.6 2.80
8 4.39 4.7 2.84
10 4.48 4.8 2.97

The following equations present the proposed multiple linear regression models for
RSRP and RSRQ as a function of 2D distance in meter and elevation angle in degree. The
angle coefficients showed that RSRQ is more angle-dependent than RSRP because of the
higher interference level at higher altitudes. Figures 11 and 12 depict a 3D representation
of the linear regression-based RSRP and RSRQ prediction models, respectively.

RSRPlinear = −68.197− 0.0264× d2D − 0.0057× β, (12)

RSRQlinear = −7.7894− 0.012× d2D − 0.0279× β . (13)

Sensors 2022, 22, x FOR PEER REVIEW 19 of 24 
 

 

 

Figure 11. 3D representation of the proposed linear regression model for RSRP. 

 

Figure 12. 3D representation of the proposed linear regression model for RSRQ. 

The following equations present the proposed polynomial-based RSRP and RSRQ 

prediction models, and Figures 13 and 14 show a 3D representation of the proposed 

models for the RSRP and RSRQ, respectively. 

RSRPpolynomial = −65.048 − 4.67 × 10−2 ×  𝑑2𝐷 + 0.11 × 𝛽 + 3.22 × 10−5 × 𝑑2𝐷
2 − 4.35 × 10−4 × 𝑑2𝐷 × 𝛽 −

2.04 × 10−3 × 𝛽2, 
(14) 

RSRQpolynomial = −4.679 − 2.66 × 10−2 × 𝑑2𝐷 − 3.83 × 10−2 × 𝛽 + 1.95 × 10−5 ×  𝑑2𝐷
2 − 1.47 × 10−4 ×

 𝑑2𝐷 × 𝛽 − 3.13 × 10−4 × 𝛽2. 
(15) 

 

 

 

 1 Figure 11. 3D representation of the proposed linear regression model for RSRP.



Sensors 2022, 22, 5522 17 of 21

Sensors 2022, 22, x FOR PEER REVIEW 19 of 24 
 

 

 

Figure 11. 3D representation of the proposed linear regression model for RSRP. 

 

Figure 12. 3D representation of the proposed linear regression model for RSRQ. 

The following equations present the proposed polynomial-based RSRP and RSRQ 

prediction models, and Figures 13 and 14 show a 3D representation of the proposed 

models for the RSRP and RSRQ, respectively. 

RSRPpolynomial = −65.048 − 4.67 × 10−2 ×  𝑑2𝐷 + 0.11 × 𝛽 + 3.22 × 10−5 × 𝑑2𝐷
2 − 4.35 × 10−4 × 𝑑2𝐷 × 𝛽 −

2.04 × 10−3 × 𝛽2, 
(14) 

RSRQpolynomial = −4.679 − 2.66 × 10−2 × 𝑑2𝐷 − 3.83 × 10−2 × 𝛽 + 1.95 × 10−5 ×  𝑑2𝐷
2 − 1.47 × 10−4 ×

 𝑑2𝐷 × 𝛽 − 3.13 × 10−4 × 𝛽2. 
(15) 

 

 

 

 1 
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The following equations present the proposed polynomial-based RSRP and RSRQ
prediction models, and Figures 13 and 14 show a 3D representation of the proposed models
for the RSRP and RSRQ, respectively.

RSRPpolynomial = −65.048− 4.67× 10−2 × d2D + 0.11× β + 3.22× 10−5 × d2
2D − 4.35× 10−4 × d2D × β− 2.04× 10−3 × β2, (14)

RSRQpolynomial = −4.679− 2.66× 10−2 × d2D − 3.83× 10−2 × β + 1.95× 10−5 × d2
2D − 1.47× 10−4 × d2D × β− 3.13× 10−4 × β2. (15)
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Equations (16) and (17) present the proposed logarithmic-based models for RSRP and
RSRQ, and Figures 15 and 16 depict a 3D representation of the proposed models for RSRP
and RSRQ, respectively.

RSRPlogarithmic = −30.75− 8.11× log10(d2D) + 0.07× log10(β), (16)

RSRQlogarithmic = 9.91− 3.76× log10(d2D)− 0.017× log10(β). (17)
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Based on the presented results it can be concluded that all the proposed models can
predict RSRP and RSRQ values with acceptable accuracy in suburban environments. The
selection of a prediction model depends on its application; for example, for cases where
computational resources are not the limiting factor and computational accuracy is critical,
nonlinear models can be better choices, whereas linear models are simple to interpret and
can provide a quick and accurate prediction.

5. Conclusions

In this work, we conduct an extensive measurement campaign in the 4G/LTE mobile
network to investigate the performance of existing cellular networks in the low-altitude
UAVs’ flight territory and develop ML-based prediction models for RSRP and RSRQ.
According to the discussed results, it can be concluded that, although the existing LTE
infrastructures are designed and optimized for terrestrial communications, the terrestrial
BSs in suburban environments still can provide a communication link in a range of “good”
to “moderate” conditions in terms of RSRP and RSRQ. It has been revealed that the
reliability of the communication link is a function of the distance and the elevation angle,
which depends on the cellular network design, flight height, surrounding environment,
and terrain profile. The statistical analysis shows that the existing LTE networks are able to
provide a reliable communication link for UAVs at a distance up to 400 m and elevation
angle up to 30 degrees, while the RSRP is in the range of −59 dBm to −79 dBm and RSRQ
is in the range of −9 dB to −14 dB. The results of RSRP and RSRQ modeling show that the
logarithmic and polynomial models outperform the linear regression models because of
the nonlinear curvature of data, in which the nonlinear models can accurately predict the
considered metrics in a suburban environment up to a distance of 1 km and an elevation
angle of 85 degrees. Finally, it was concluded that the proposed models outperform the
existing models, and the selection of an appropriate prediction model, linear or nonlinear,
depends on its application.
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