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Abstract: The navigation systems of autonomous aircraft rely on the readings provided by a suite of
onboard sensors to estimate the aircraft state. In the case of fixed wing vehicles, the sensor suite is
usually composed by triads of accelerometers, gyroscopes, and magnetometers, a Global Navigation
Satellite System (GNSS) receiver, and an air data system (Pitot tube, air vanes, thermometer, and
barometer), and it is often complemented by one or more digital cameras. An accurate representation
of the behavior and error sources of each of these sensors, together with the images generated
by the cameras, is indispensable for the design, development, and testing of inertial, visual, or
visual–inertial navigation algorithms. This article presents realistic and customizable models for each
of these sensors; a ready-to-use C++ implementation is released as open-source code so non-experts
in the field can easily generate realistic results. The pseudo-random models provide a time-stamped
series of the errors generated by each sensor based on performance values and operating frequencies
obtainable from the sensor’s data sheets. If in addition, the simulated true pose (position plus attitude)
of the aircraft is provided, the camera model generates realistic images of the Earth’s surface that
resemble those taken with a real camera from the same pose.

Keywords: aircraft sensors; IMU model; camera model; simulation; pseudo-random

1. Introduction

The sensors onboard an autonomous aircraft measure various aspects of the aircraft
real or actual state x = xTRUTH and provide these measurements to the aircraft guidance,
navigation, and control (GNC) system. The outputs of these sensors, collectively known as
the sensed state x̃ = xSENSED, represent the only link between the real but unknown actual
states and the GNC system in charge of achieving an actual trajectory that deviates as little
as possible from the guidance targets (Figure 1).

SENSORS
x(tt) = xTRUTH(tt) x̃(ts) = xSENSED(ts)

Figure 1. Sensors flow diagram.

Researchers and engineers designing, developing, or testing aircraft navigation sys-
tems require realistic renditions of the time variations of both the actual and sensed states
to analyze the behavior of their algorithms in simulation. It is only after validating the
algorithms under a wide range of conditions that these can be installed onboard the aircraft
and field tested. The obtainment of realistic x = xTRUTH states covering the different maneu-
vers to be analyzed is generally achieved by discrete integration of the aircraft equations of
motion coupled with the applicable guidance targets. Realistic x̃ = xSENSED sensor outputs
are however quite difficult to generate given their stochastic nature, the various underlying
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technologies, and the lack of detailed error models from the sensor manufacturers. In
addition, realistic-looking images of the Earth’s surface that resemble those taken from a
real aircraft are also necessary to test visual navigation algorithms.

Note that although the actual aircraft state varies continuously in the real world, in sim-
ulation, it is usually the outcome of a high-frequency discrete integration process [1] that re-
sults in x(tt) = xTRUTH(tt), where tt = t ·∆tTRUTH. The sensed trajectory x̃(ts) = xSENSED(ts),
where ts = s ·∆tSENSED, is however intrinsically discrete, although the working frequency
of the different sensors may vary. This article considers that all sensors operate at the same
rate of ∆tSENSED, with the exception of the GNSS receiver and the onboard camera, which
work at ∆tGNSS and ∆tIMG, respectively. It is also assumed that all sensors are fixed to the
aircraft structure in a strapdown configuration and that their measurement processes are
instantaneous and time synchronized with each other at their respective frequencies.

The sensed states or sensed trajectory can be defined as a time-stamped series of
state vectors x̃ = xSENSED that groups the measurements provided by the different onboard
sensors (1) (note that when present, the super index represents the frame or reference
system in which a certain variable is viewed; if two sub-indexes are present, it implies that
the vector goes from the first frame to the second. For example, ωB

IB represents the angular
velocity from the inertial frame FI to the body frame FB viewed in body. This article makes
use of the body frame FB, which is rigidly attached to the aircraft structure with origin in its
center of mass [2], the NED frame FN also centered on the aircraft center of mass with axes in
the North–East–Down directions [2], and the inertial frame FI, which is usually considered
as centered in the Sun with axes fixed with respect to other stars [3]), comprising the only
view of the actual states at the disposal of the navigation system. Its components are listed
in Table 1. Note that the specific force fIB is defined as the non-gravitational acceleration
experienced by the aircraft body with respect to an inertial frame [4].

x̃ = xSENSED =
[
f̃

B

IB, ω̃B
IB, B̃

B
, x̃GDT, ṽN, p̃, T̃, ṽTAS, α̃, β̃, I

]T
(1)

Table 1. Components of sensed trajectory.

Components Variable Measured by Acronym Rate

Specific force f̃
B

IB
Accelerometers ACC ∆tSENSED

Inertial angular velocity ω̃B
IB Gyroscopes GYR ∆tSENSED

Magnetic field B̃
B Magnetometers MAG ∆tSENSED

Geodetic coordinates x̃GDT GNSS receiver GNSS ∆tGNSS
Ground velocity ṽN GNSS receiver GNSS ∆tGNSS
Air pressure p̃ Barometer OSP ∆tSENSED
Air temperature T̃ Thermometer OAT ∆tSENSED
Airspeed ṽTAS Pitot tube TAS ∆tSENSED
Angle of attack α̃ Air vanes AOA ∆tSENSED
Angle of sideslip β̃ Air vanes AOS ∆tSENSED
Image I Digital camera CAM ∆tIMG

Following a review of the objectives, state of the art, and novelty in Sections 1.1–1.3,
the following sections provide detailed descriptions of the stochastic models representing
the errors present in the measurements of the different sensors: Section 2 describes the
inertial sensors (accelerometers and gyroscopes), Section 3 focuses on the magnetometers,
GNSS receiver, and air data system, and Section 4 presents the tool employed to generate
realistic images that resemble what a real camera would view if located at the same position
and attitude. Although the camera differs from all other sensors in that it does not provide
a measurement or reading but a digital image, in this article, it is indeed considered a
sensor as it provides the navigation system with information about its surroundings that
can be employed for navigation. Section 5 describes sensor calibration activities that are
indispensable for the determination of various parameters present in the sensor models.
Section 6 discusses the main characteristics of the models, with special emphasis on the
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input seeds that control its stochastic properties; it also includes an example on how to
customize the models for the case of a low Size, Weight, and Power (SWaP) aircraft. The
conclusions are presented in Section 7.

1.1. Objectives

Sensor manufacturers do not provide models with which to estimate the errors in-
troduced by their products, this is, the differences between the actual and sensed states.
Instead, they usually publish data sheets that contain selected performance parameters in
different formats and units, with few or no instructions for their interpretation. In the case
of high-grade inertial sensors, an Allan variance curve is sometimes provided.

Faced with this situation, researchers willing to understand how their GNC systems
will perform when the aircraft is equipped with given sensors face a difficult choice,
especially in the case of low-cost sensors. One possibility is to adopt a sensor model from
the literature and rely on the Allan variance curve (if available) to identify the required
parameters, although it is not always clear how to do so [5]. If the Allan curve is not
available, a second possibility is to obtain the curve by analyzing the sensor outputs when
placed on a test bench, but the process is time consuming, requires specialized equipment
and know-how, and the results are only valid for the specific tested hardware [5]. The
end result is that researchers often rely on simple sensor models, which although easy to
implement, fail to provide realistic outputs of the errors introduced by each sensor type.
This has negative consequences for the performance of their GNC algorithms, which may
not work as desired when faced with the real sensor outputs instead of the simulated ones
employed for their development.

The first objective of this article is to address the need for realistic error models that
can be quickly customized by the user based exclusively on the performance parameters
contained in the data sheets provided by the sensor manufacturers, without the need for
specific test equipment nor expert knowledge in the behavior of the different sensors. By
implementing the described models or employing the provided open-source C++ code [6],
the end user can quickly obtain realistic pseudo-random results without any expertise
in the behavior of the different onboard sensors. Once the user introduces the desired
performance parameters and operating frequencies, the simulated outputs of all onboard
sensors rely exclusively on two input seeds (one identifying the airframe and the other
identifying the specific flight). Different pairs of seeds can be employed as part of a Monte
Carlo simulation, or the same pair can be used repeatedly in case the same outputs are
required for further analysis. The use of the proposed models hence enables researchers to
quickly obtain realistic time-stamped series of the values of x̃ = xSENSED with which to feed
their simulations.

The second objective of this article is to develop a camera model capable of generating
realistic images, resembling what a real camera would record if mounted on the aircraft, so
the resulting images of the Earth’s surface can be employed for the development and testing
of visual and visual–inertial navigation systems. The resulting Earth Viewer application,
described in Section 4.2, is also released as open-source code within [6].

1.2. State of the Art

The standard means for conveying the performance of a given single-axis inertial
sensor is by means of its Allan variance curve [5], even though manufacturers do not always
make it available, in particular for low-cost sensors. Although standards exist for how to
generate the curve [7–9], it is not always clear how to convert the Allan variance information
into a suitable sensor model [5]. Various Allan curve translation methods [10–19] have been
available for a long time, but [5] provides the first clear exposition of the underlying ideas,
issues, and trade-offs between the different methods. More recent attempts to identify
the required parameters involve the use of maximum likelihood estimators [20] as well as
machine learning [21].
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As described in [5], the Allan variance is a well-known time domain analysis technique
originally developed to analyze the frequency stability of oscillators [22–24], which has
been successfully adopted to communicate the performances of inertial sensors and to
characterize their stochastic errors [11,13,15,18,19,25–29].

The various error sources that influence the output of an inertial sensor are described
in multiple navigation textbooks, such as [2,4,30–33]. In addition to the single-axis sensor
model described in [5], the system noise and random walk contributions of the final error
of a single-axis sensor are discussed in detail in [34,35], which constitute the basis for the
model presented in Section 2.2. The added difficulty of combining three inertial sensors
into a triad, treated in Section 2.5, is discussed in [2,31,32]. Basic magnetometer and GNSS
receiver models can also be found in these navigation textbooks.

1.3. Novelty

The main contribution of this article is that it provides customizable, stochastic, and
realistic models for the errors introduced by the various sensors onboard a fixed wing
aircraft, with special emphasis on the inertial ones (accelerometers and gyroscopes), without
relying on the Allan variance curves, as is the case in the rest of the literature reviewed in
Section 1.2. The required characteristics of the models are the following:

• Customizable so the user can employ the values that better resemble the performances
of the specific equipment being modeled.

• Stochastic to properly represent the nature of the different random processes involved,
while ensuring that the time variation of the errors generated by each sensor can be
repeated if so desired.

• Realistic to provide a faithful description of the variation with time of the measurement
errors, including as few simplifications as possible.

This enables researchers to quickly generate pseudo-random time-stamped series of
the errors introduced by each sensor without the need for the expert know-how in the
behavior of each sensor required to process the Allan variance curve nor the expensive and
time-consuming process required to generate the curve independently. The results can be
employed to feed Monte Carlo simulations that require the sensor readings as inputs, such
as those required to analyze the behavior of GNC algorithms.

To develop comprehensive models whose parameters can be obtained exclusively
from the data sheets published by the manufacturers, the authors have built on established
models for the system noise and random walk contributions to single-axis sensors as
well as the scale factor and cross-coupling contributions that appear when using sensor
triads. The comprehensive models take into consideration the influence of the true relative
pose (position plus attitude) of the sensor triad with respect to the platform as well as the
uncertainty in the processor’s knowledge about such poses. The contribution of the various
calibration procedures on the required parameters is also discussed.

The second contribution of this article is the release of the Earth Viewer application,
which is capable of providing realistic and distortion-free images of the Earth surface that
resemble what a real camera would record when mounted on the aircraft. To the knowledge
of the authors, this is the first time that a tool capable of considering the six degrees of
freedom of the camera pose has been published. These images can be employed to test the
behavior of visual and visual inertial navigation systems.

2. Inertial Sensors

Inertial sensors comprise accelerometers and gyroscopes, which measure the specific force
and inertial angular velocity about a single axis, respectively [36]. An inertial measurement unit
(IMU) encompasses multiple accelerometers and gyroscopes, usually three of each, obtaining
three-dimensional measurements of the specific force and angular rate [2] viewed in the
platform frame FP (Section 2.5). However, the individual accelerometers and gyroscopes
are not aligned with the FP axes but with those of the non-orthogonal accelerometers FA

and gyroscopes FY frames, which are also defined in Section 2.5. The output of the inertial
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sensors must hence first be transformed from the FA and FY frames to FP, as described
in Sections 2.6 and 2.7, and then from the FP frame to the body frame FB as explained in
Section 2.8, where they can be employed by the navigation system. The accelerometers and
gyroscopes are assumed to be infinitesimally small and located at the IMU reference point
(Section 2.8), which coincides with the origin of these three frames (OP = OA = OY).

The IMU is physically attached to the aircraft structure in a strapdown configuration,
so both the displacement TB

BP and the Euler angles φBP = [ψP, θP, ξP]T that describe the
relative position and rotation between the body FB and platform FP frames are constant.
Accelerometers can be divided by their underlying technology into pendulous and vibrating
beams, while gyroscopes are classified into spinning mass, optical (ring laser or fiber optic),
and vibratory [4]. Current inertial sensor development is mostly focused on micro machined
electromechanical system (MEMS) sensors (there exist both pendulous and vibrating beam
MEMS accelerometers, but all MEMS gyroscopes are vibratory), which makes direct use of
the chemical etching and batch processing techniques used by the electronics integrated
circuit industry to obtain sensors with small size, low weight, rugged construction, low
power consumption, low price, high reliability, and low maintenance [30]. On the negative
side, the accuracy of MEMS sensors is still low, although tremendous progress has been
achieved in the last two decades, and more is expected in the future.

There is no universal classification of inertial sensors according to their performance,
although they can be broadly assigned into five different categories or grades: marine (sub-
marines and spacecraft), aviation (commercial and military), intermediate (small aircraft
and helicopters), tactical (unmanned air vehicles and guided weapons), and automotive
(consumer) [4]. The full range of grades covers approximately six orders of magnitude of
gyroscope performance and only three for the accelerometers, but higher performance is
always associated with bigger size, weight, and cost. Tactical grade IMUs cover a wide
range of performance values but can only provide a stand-alone navigation solution for a
few minutes, while automotive grade IMUs are unsuitable for navigation.

The different errors that appear in the measurements provided by accelerometers and
gyroscopes are described in Section 2.1. Section 2.2 presents a model for the measurements
of a single inertial sensor, while Sections 2.3 and 2.4 focus on how to obtain the specific val-
ues for white noise and bias on which the model relies from the documentation. Section 2.5
describes the reference systems required to represent the IMU measurements. Additional
errors appear when three accelerometers or gyroscopes are employed together, and these
are modeled in Section 2.6 for accelerometers and Section 2.7 for gyroscopes. The analysis
of the inertial sensors concludes with Section 2.9, which provide a comprehensive error
model for the IMU measurements. The final model also depends on the relative position of
the IMU with respect to the body frame, which is described in Section 2.8.

2.1. Inertial Sensor Error Sources

In addition to the accelerometers and gyroscopes, an IMU also contains a processor,
storage for the calibration parameters, one or more temperature sensors, and a power
supply. As described below, each sensor has several error sources, but each of them has
four components: fixed contribution, temperature-dependent variation, run-to-run variation,
and in-run variation [4,37]. The first two can be measured at the laboratory (at different
temperatures) and the calibration results can be stored in the IMU so the processor can
later compensate the sensor outputs based on the reading provided by the temperature
sensor. Calibration, however, increases manufacturing costs, so it may be absent in the
case of inexpensive sensors. The run-to-run variation results in a contribution to a given
error source that varies every time the sensor is employed but remains constant within a
given run. It cannot be compensated by the IMU processor but can be calibrated by the
navigation system every time it is turned on with a process known as fine alignment [2,4,31].
The in-run contribution to the error sources slowly varies during execution and cannot be
calibrated in the laboratory nor by the navigation system.

Let us now discuss the different sources of error that influence an inertial sensor [4,38–40]:
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• The bias is an error exhibited by all accelerometers and gyroscopes that is independent
of the underlying specific force or angular rate being measured, and it comprises the
dominant contribution to the overall sensor error. It can be defined as any nonzero
output when the sensor input is zero [37], and it can be divided into its static and
dynamic components. The static part, also known as fixed bias, bias offset, turn-on
bias, or bias repeatability, comprises the run-to-run variation, while the dynamic
component, known as in-run bias variation, bias drift, or bias instability (or stability),
is typically about 10% of the static part and slowly varies over periods of the order of
one minute. As the bias is the main contributor to the overall sensor error, its value
can be understood as a sensor quality measure. Table 2 provides approximate values
for the inertial sensor biases according to the IMU grade [4].
While the bias offset can be greatly reduced through fine alignment [2,4,31], the bias
drift cannot be determined and needs to be modeled as a stochastic process. It is mostly
a warm-up effect that should be almost non-existent after a few minutes of operation,
and it corresponds to the minimum point of the sensor’s Allan curve [7–9,39]. It is
generally modeled as a random walk process obtained by the integration of a white
noise signal coupled with limits that represent the conclusion of the warm up process.

• The scale factor error is the departure of the input output gradient of the instrument
from unity following unit conversion at the IMU processor. It represents a varying
relationship between sensor input and output caused by aging and manufacturing
tolerances. As it is a combination of fixed contribution plus temperature-dependent
variation, most of it can be eliminated through calibration (Section 5.1).

• The cross-coupling error or non-orthogonality error is a fixed contribution that arises
from the misalignment of the sensitive axes of the inertial sensors with respect to the
orthogonal axes of the platform frame due to manufacturing limitations, and it can
also be highly reduced through calibration. The scale factor and cross-coupling errors
are in the order of 10−4 and 10−3 for most inertial sensors, although they can be higher
for some low-grade gyroscopes. The cross-coupling error is equal to the sine of the
misalignment, which is listed by some manufacturers.

• System noise or random noise is inherent to all inertial sensors and can combine
electrical, mechanical, resonance, and quantization sources. It can originate at the
sensor itself or at any other electronic equipment that interferes with it. System noise
is a stochastic process usually modeled as white noise because its noise spectrum is
approximately white, and it cannot be calibrated as there is no correlation between
past and future values. A white noise process is characterized by its power spectral
density (PSD), which is constant as it does not depend on the signal frequency. It
corresponds to the 1 s crossing of the sensor’s Allan curve [7–9,39].
System noise is sometimes referred to as random walk, which can generate confusion
with the bias. The reason is that the inertial sensor outputs are always integrated to
obtain ground velocity in the case of accelerometers and aircraft attitude in the case of
gyroscopes. As the integration of a white noise process is indeed a random walk, the
later term is commonly employed to refer to system noise. Table 3 contains typical
values for accelerometer and gyroscope root PSD according to sensor grade [4].

• Other minor error sources not considered in this article are the g-dependent bias (sensitiv-
ity of spinning mass and vibratory gyroscopes to specific force), scale factor nonlinearity,
and higher-order errors (spinning mass gyroscopes and pendulous accelerometers).

Table 2. Typical inertial sensor biases according to IMU grade.

IMU Grade Accelerometer Bias [mg] Gyroscope Bias [°/h]

Marine 0.01 0.001
Aviation 0.03–0.1 0.01

Intermediate 0.1–1 0.1
Tactical 1–10 1–100

Automotive >10 >100
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Table 3. Typical inertial sensor system noise according to IMU grade.

IMU Grade Accelerometer Root PSD
[m/s/h0.5] Gyroscope Root PSD [°/h0.5]

Aviation 0.012 0.002
Tactical 0.06 0.03–0.1

Automotive 0.6 1

2.2. Single-Axis Inertial Sensor Error Model

As the inertial sensors provide measurements at equispaced discrete times
ts = s ·∆tSENSED = s ·∆t, this section focuses on obtaining a discrete model for the bias
and white noise errors of a single-axis inertial sensor. The results obtained here will be
employed in the following sections to generate a comprehensive IMU model.

Let us consider a sensor in which the difference between its measurement at any given
time x̃(t) and the real value of the physical magnitude being measured at that same time
x(t) can be represented by a zero mean white noise Gaussian process ηv(t) with spectral
density σ2

v :
x̃(t) = x(t) + ηv(t) (2)

Dividing (2) by ∆tSENSED = ∆t and integrating results in:

1
∆t

∫ t0+∆t

t0

x̃(t)dt =
1
∆t

∫ t0+∆t

t0

[x(t) + ηv(t)]dt (3)

Assuming that the measurement and real value are both constant over the integra-
tion interval (note that the stochastic process ηv cannot be considered constant over any
interval) [34] yields

x̃(t0 +∆t) = x(t0 +∆t) +
1
∆t

∫ t0+∆t

t0

ηv(t)dt (4)

This expression results in the white noise sensor error w(t), which is the difference
between the sensor measurement x̃(t) and the true value x(t). Its mean and variance can
be readily computed:

w(t0 +∆t) =
1
∆t

∫ t0+∆t

t0

ηv(t)dt (5)

E[w(t0 +∆t)] = 0 (6)

Var[w(t0 +∆t)] =
σ2

v
∆t

(7)

Based on these results, the white noise error can be modeled by a discrete random
variable identically distributed to the above continuous white noise error, that is, one
that results in the same mean and variance, where Nv ∼ N(0, 1) is a standard normal
random variable:

w(s∆tSENSED) = w(s∆t) =
σv

∆t1/2 Nvs (8)

Let us now consider a second model in which the measurement error or bias is given
by a first-order random walk process or integration of a zero mean white noise Gaussian
process ηu(t) with spectral density σ2

u:

ḃ(t) = ηu(t) −→ b(t0 +∆t) = b(t0) +
∫ t0+∆t

t0

ηu(t)dt (9)

Its mean and variance can be quickly computed:

E[b(t0 +∆t)] = E[b(t0)] (10)

Var[b(t0 +∆t)] = σ2
u ∆t (11)
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These results indicate that the bias can be modeled by a discrete random variable
identically distributed to the continuous random walk above:

b(t0 +∆t) = b(t0) + σu ∆t1/2 Nu (12)

where Nu ∼ N(0, 1) is a standard normal random variable. Operating with the above ex-
pression results in the final expression for the discrete bias as well as its mean and variance:

b(s∆t) = B0 Nu0 + σu ∆t1/2
s

∑
i=1

Nui (13)

E[b(s∆t)] = 0 (14)

Var[b(s∆t)] = B2
0 + σ2

u s∆t (15)

A comprehensive single-axis sensor error model without a scale factor can hence be
constructed by adding together the influence of the system noise provided by (8) and the
bias given by (13) [35], while assuming that the standard normal random variables Nu and
Nv are uncorrelated (note that the expected value and variance of each of the two discrete
components of this sensor model coincide with those of their continuous counterparts, but
their combined mean and variance provided by expressions (17) and (18) differ from that
of the combination of the two continuous error models given by (5) and (9). This is the
case even if considering that the two zero mean white noise Gaussian processes ηu and
ηv are independent and hence uncorrelated. It is however possible to obtain a discrete
model whose discrete bias and white noise components are not only identically distributed
to those of their continuous counterparts [34], even adding the equivalence of covariance
between the bias and the sensor error, but this results in a significantly more complex model
that behaves similarly to the one above at all but has the shortest time samples after sensor
initialization. The authors have decided not to do so in the model described in this article,
reducing complexity with little or no loss of realism):

eBW(s∆t) = x̃(s∆t)− x(s∆t) = B0 Nu0 + σu ∆t1/2
s

∑
i=1

Nui +
σv

∆t1/2 Nvs (16)

E[eBW(s∆t)] = 0 (17)

Var[eBW(s∆t)] = B2
0 + σ2

u s∆t +
σ2

v
∆t

(18)

The discrete sensor error or difference between the measurement provided by the sensor
x̃(s∆tSENSED) = x̃(s∆t) at any given discrete time s∆t and the real value of the physical
variable being measured at that same discrete time x(s∆t) is the combination of a bias or
first-order random walk and a white noise process, and it depends on three parameters: the
bias offset B0, the bias instability σu, and the white noise σv. The contributions of these three
different sources to the sensor error as well as to its first and second integrals (gyroscopes
measure angular velocity, and their output needs to be integrated once to obtain attitude,
while accelerometers measure specific force and are integrated once to obtain velocity
and twice to obtain position) are very different and inherent to many of the challenges
encountered when employing accelerometers and gyroscopes for inertial navigation, as
explained below.

Figures 2 and 3 represent the performance of a fictitious sensor of B0 = 1.6× 10−2,
σu = 4× 10−3, and σv = 1× 10−3 working at a frequency of 100 Hz (∆t = 0.01 s), and they
are intended to showcase the different behavior and relative influence on the total error
of each of its three components. The figures show the theoretical variation with time of
the sensor error mean (Figure 2) and standard deviation (Figure 3) given by (17) and (18)
together with the average of fifty different runs. In addition, Figure 2 also includes ten of
those runs to showcase the variability in results implicit to the random variables (although
the data are generated at 100 Hz, for visibility purposes, the figure only employs 1 out of
every 1000 points, so it appears far less noisy than the real data), while Figure 3 shows
the theoretical contribution to the standard deviation of each of the three components. In
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addition to the near equivalence between the theory and the average of several runs, the
figures show that the bias instability is the commanding long-term factor in the deviation
between the sensor measurement and its zero mean (the standard deviation of the bias
instability grows with the square root of time while the other two components are constant).
As discussed in Section 2.1, the bias drift or bias instability is indeed the most important
quality parameter of an inertial sensor. This is also the case when the sensor output is
integrated, as discussed below.
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Figure 2. Propagation with time of sensor error mean.
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Figure 3. Propagation with time of sensor error standard deviation.

Let us integrate the sensor error over a timespan s∆t to evaluate the growth with time
of both its expected value and its variance (as the interest lies primarily in s� 1, a simple
integration method such as the rectangular rule is employed):
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fBW(s∆t) = fBW(0) +
∫ s∆t

0
eBW(τ)dτ = fBW(0) +∆t

s

∑
i=1

eBW(i∆t)

= fBW(0) + B0 Nu0 s∆t + σu ∆t3/2
s

∑
i=1

(s− i + 1)Nui+ (19)

+σv ∆t1/2
s

∑
i=1

Nvi

E[fBW(s∆t)] = fBW(0) (20)

Var[fBW(s∆t)] = B2
0 (s∆t)2 +

σ2
u

6
∆t3 s (s + 1) (2 s + 1) + σ2

v (s∆t)

≈ B2
0 (s∆t)2 +

σ2
u

3
(s∆t)3 + σ2

v (s∆t) (21)

Figures 4 and 5 follow the same pattern as Figures 2 and 3 but applied to the error
integral instead of to the error itself. They would represent the attitude error resulting
from integrating the gyroscope output or the velocity error expected when integrating the
specific force measured by an accelerometer. The conclusions are the same as before but
significantly more accentuated. Not only is the expected value of the error constant instead
of zero (fBW(0) = 3 has been employed in the experiment), but the growth in the standard
deviation (over a nonzero mean) is much quicker than before. The bias instability continues
to be the dominating factor but now increases with a power of t3/2, while the bias offset
and white noise contributions also increase with time, although with powers of t and t1/2,
respectively. Let us continue the process and integrate the error a second time:

gBW(s∆t) = gBW(0) +
∫ s∆t

0
fBW(τ)dτ = gBW(0) +∆t

s

∑
i=1

fBW(i∆t)

= gBW(0) + fBW(0) s∆t +
B0

2
Nu0 (s∆t)2+

+σu ∆t5/2
s

∑
i=1

s−i+1

∑
j=1

j Nui + σv ∆t3/2 ∑
i=1

s(s− i + 1)Nvi (22)

E[gBW(s∆t)] = gBW(0) + fBW(0) (s∆t) (23)

Var[gBW(s∆t)] =
B2

0
4

(s∆t)4 + σ2
u ∆t5

s

∑
i=1

(
s−i+1

∑
j=1

j

)2

+
σ2

v
6

∆t3 s (s + 1) (2 s + 1)

≈
B2

0
4

(s∆t)4 +
σ2

u
20

(s∆t)5 +
σ2

v
3

(s∆t)3 (24)

Figures 6 and 7 show the same type of figures but applied to the second integral of the
error (gBW(0) = 1.5 has been employed in the experiment). In this case, the degradation
of the results with time is even more intense to the point where the measurements are
useless after a very short period of time. Unless corrected by the navigation system,
this is equivalent to the error in position obtained by double integrating the output of
the accelerometers.
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Figure 4. Propagation with time of first integral of sensor error mean.
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Figure 5. Propagation with time of first integral of sensor error standard deviation.
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Figure 6. Propagation with time of second integral of sensor error mean.
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Figure 7. Propagation with time of second integral of sensor error standard deviation.

Let us summarize the main points of the single-axis inertial sensor discrete error model
developed in this section, which includes the influence of the bias and the system error but
not that of the scale factor and cross-coupling errors included in the three-dimensional error
model of Section 2.9. The error eBW(s∆t), which applies to specific force for accelerometers
and inertial angular velocity in the case of gyroscopes, depends on three factors: bias
offset B0, bias drift σu, and white noise σv. Its mean is always zero, but the error standard
deviation grows with time (∝ t1/2) due to the bias drift with constant contributions from
the bias offset and the white noise. When integrating the error to obtain fBW(s∆t), which is
equivalent to ground velocity for accelerometers and attitude for gyroscopes, the initial
speed error or initial attitude error fBW(0) becomes the fourth contributor, and an important
one indeed, as it becomes the mean of the first integral error at any time. The standard
deviation, which measures the spread over the nonzero mean, increases very quickly with
time because of the bias instability (∝ t3/2), with contributions from the offset (∝ t) and
the white noise (∝ t1/2). If integrating a second time to obtain gBW(s∆t), or position in case
of the accelerometer, the initial position error gBW(0) turns into the fifth contributor. The
expected value of the position error grows linearly with time due to the initial velocity error
with an additional constant contribution from the initial position error, while the position
standard deviation (measuring spread over a growing average value) grows extremely
quick due mostly to the bias instability (∝ t5/2) but also because of the bias offset (∝ t2)
and the white noise (∝ t3/2). Table 4 shows the standard units of the different sources of
error for both accelerometers and gyroscopes.

Table 4. Units for single-axis inertial sensor error sources.

Units B0 σu σv fBW(0) gBW(0)

Accelerometer m/s2 m/s2.5 m/s1.5 m/s m
Gyroscope ◦/s ◦/s1.5 ◦/s0.5 ◦ N/A

2.3. Obtainment of System Noise Values

This section focuses on the significance of system or white noise error σv and how to
obtain it from sensor specifications, which often refer to the integral of the output instead of
the output itself. As the integral of white noise is a random walk process, the angle random
walk of a gyroscope is equivalent to white noise in the angular rate output, while velocity
random walk refers to the specific force white noise in accelerometers [37]. The discussion
that follows applies to gyroscopes but is fully applicable to accelerometers if replacing the
angular rate by specific force and attitude or angle by ground velocity.
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Angle random walk, measured in (rad/s1/2), (◦/h1/2), or equivalent, describes the
average deviation or error that occurs when the sensor output signal is integrated due
to system noise exclusively, without considering other error sources such as bias or scale
factor [41]. If integrating multiple times and obtaining a distribution of end points at a given
final time s∆t, the standard deviation of this distribution, containing the final angles at the
final time, scales linearly with the white noise level σv, the square root of the integration
step size ∆t, and the square root of the number of steps s, as noted by the last term of (21).
This means that an angle random walk of 1 ◦/s1/2 translates into a standard deviation for
the error of 1 ◦ after 1 s, 10 ◦ after 100 s, and 10001/2 ≈ 31.6 ◦ after 1000 s.

Manufacturers often provide this information as the power spectral density PSD of the
white noise process in (◦,2/h2/Hz) or equivalent, where it is necessary to take its square
root to obtain σv, or as the root PSD in (◦/h/Hz1/2) that is equivalent to σv. Sometimes,
it is even provided as the PSD of the random walk process, not the white noise, in units
(◦/h) or equivalent. It is then necessary to multiply this number by the square root of the
sampling interval ∆t or divide it by the square root of the sampling frequency to obtain the
desired σv value.

2.4. Obtainment of Bias Drift Values

This section describes the meaning of bias instability σu (also known as bias stability
or bias drift) and how to obtain it from sensor specifications. As in the previous section, the
discussion is centered on gyroscopes, but it is fully applicable to accelerometers as well.
Bias instability can be defined as the potential of the sensor error to stay within a certain
range for a certain time [42]. A small number of manufacturers directly provide sensor
output changes over time, which directly relates with the bias instability (also known
as in-run bias variation, bias drift, or rate random walk) per the second term of (18). If
provided with an angular rate change of x (◦/s) (1σ) in t (s), then σu can be obtained as
follows [34,43]:

σu =
x

t1/2 (25)

As the bias drift is responsible for the growth of sensor error with time (Figures 2 and 3),
manufacturers more commonly provide bias stability measurements that describe how the
bias of a device may change over a specified period of time [35], typically around 100 s. Bias
stability is usually specified as a 1σ value with units (◦/h) or (◦/s), which can be interpreted
as follows according to (16)–(18). If the sensor error (or bias) is known at a given time t, then a
1σ bias stability of 0.01◦/h over 100 s means that the bias at time t + 100 s is a random variable
with the mean error at time t and standard deviation 0.01◦/h, and expression (25) can be
used to obtain σu. As the bias behaves as a random walk over time whose standard deviation
grows proportionally to the square root of time, the bias stability is sometimes referred as a
bias random walk.

In reality, bias fluctuations do not really behave as a random walk. If they did, the
uncertainty in the bias of a device would grow without bound as the timespan increased,
which is not the case. In practice, the bias is constrained to be within some range, and
therefore, the random walk model is only a good approximation to the true process for
short periods of time [35].

2.5. Platform, Accelerometers, and Gyroscopes Frames

The following sections make use of three different reference frames to describe the
readings of accelerometers and gyroscopes:

• The platform frame FP is a Cartesian reference system with its origin located at the IMU
reference point (Section 2.8) and its three axes {iP

1 , iP
2 , iP

3} forming a right-hand system
that is loosely aligned with the aircraft body axes, so they point in the general direc-
tions of the aircraft fuselage (forward), aircraft wings (rightwards), and downward,
respectively [2,31,32].
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A proper definition of the platform frame is indispensable for navigation, as the calibrated
outputs of the accelerometers and gyroscopes are based on it (Sections 2.6 and 2.7). The
FP frame can be obtained from the body frame FB by a rotation best described by the
Euler angles φBP = [ψP, θP, ξP]T (these Euler angles correspond to the 3–2–1 (yaw, pitch,
roll) convention employed in aeronautics) followed by a translation TB

BP (Section 2.8)
from the aircraft center of mass to the IMU reference point.

• The accelerometers frame FA is a non-orthogonal reference system also centered at the
IMU reference point [2,31,32]. The basis vectors {iA

1 , iA
2 , iA

3 } are aligned with each
of the three accelerometer’s sensing axes (each accelerometer hence only senses the
specific force component parallel to its sensing axis) (Section 2.6), but they are not
orthogonal among them due to manufacturing inaccuracies. This implies that the
angles between the FA and FP axes are very small.
It is always possible, with no loss of generality, to impose that iP

1 coincides with iA
1 and

that iP
2 is located in the plane defined by iA

1 and iA
2 . If this is the case, iA

1 ⊥ iP
2 , iA

1 ⊥ iP
3 ,

and iA
2 ⊥ iP

3 , and the relative attitude between the FP and FA frames can be defined by
three independent small rotations.

– The iA
2 axis can be obtained from iP

2 by means of a small rotation αACC,3 about iP
3 .

– The iA
3 axis can be obtained from iP

3 by two small rotations: αACC,1 about iP
1 and

αACC,2 about iP
2 .

Although the exact relationships can be obtained [31], and given that the angles are
very small, it is possible to consider cos αACC,i = 1, sin αACC,i = αACC,i, and
αACC,i · αACC,j = 0 ∀ i, j ∈ {1, 2, 3}, i 6= j, resulting in the following transformations be-
tween free vectors viewed in the platform (vP) and accelerometer (vA) frames, respec-
tively (As FA is not orthogonal, the transformation matrices are denoted with ? to
indicate that they are not proper rotation matrices):

vP = R?
PA vA =

 1 0 0
αACC,3 1 0
−αACC,2 αACC,1 1

 vA (26)

vA = R?
AP vP =

 1 0 0
−αACC,3 1 0
αACC,2 −αACC,1 1

 vP (27)

• The gyroscopes frame FY is similar to the accelerometers frame FA defined above, but
it is aligned with the gyroscopes’ sensing axes instead of those of the accelerom-
eters [2,31,32]. It is also a non-orthogonal reference system centered at the IMU
reference point, but no simplifications can be made about the relative orientation of its
axes {iY

1 , iY
2 , iY

3 } with respect to those of FP, so their relative attitude is defined by six
small rotations αGYR,ij ∀ i, j ∈ {1, 2, 3}, i 6= j, where αGYR,ij is the rotation of iY

i about iP
j .

An approach similar to that employed with accelerometers leads to the following
transformations between free vectors viewed in the platform (vP) and gyroscope
(vY) frames:

vP = R?
PY vY =

 1 −αGYR,23 αGYR,32

αGYR,13 1 −αGYR,31

−αGYR,12 αGYR,21 1

 vY (28)

vY = R?
YP vP =

 1 αGYR,23 −αGYR,32

−αGYR,13 1 αGYR,31

αGYR,12 −αGYR,21 1

 vP (29)

2.6. Accelerometer Triad Sensor Error Model

An IMU is equipped with an accelerometer triad composed by three individual ac-
celerometers, each of which measures the projection of the specific force over its sensing
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axis as described in Section 2.2 while incurring in an error eBW,ACC that can be modeled as a
combination of bias offset, bias drift, and white noise (16). The three accelerometers can be
considered infinitesimally small and located at the IMU reference point, which is defined as
the intersection between the sensing axes of the three accelerometers. As the accelerometer
frame FA is centered at the IMU reference point and its three non-orthogonal axes coincide
with the accelerometers’ sensing axes, (30) joins together the measurements of the three
individual accelerometers:

f̃
A

IA = SACC

(
fA

IA + eA
BW,ACC

)
(30)

where fA
IA is the specific force viewed in the accelerometer frame FA, f̃

A

IA represents its
measurement also viewed in FA, eA

BW,ACC is the error introduced by each accelerometer (16),
and SACC is a square diagonal matrix containing the scale factor errors {sACC,1, sACC,2, sACC,3}
for each accelerometer (Section 2.1). It is however preferred to obtain an expression in
which the specific forces are viewed in the orthogonal platform frame FP instead of the
accelerometer frame FA. As both share the same origin,

f̃
P

IP = R?
PA SACC

(
R?

AP fP
IP + eA

BW,ACC

)
(31)

where R?
PA and R?

AP, defined by (26) and (27), contain the cross-coupling errors
{αACC,1, αACC,2, αACC,3} generated by the misalignment of the accelerometer sensing axes.
The scale factor and cross-coupling errors contain fixed and temperature-dependent error
contributions (refer to Section 2.1) that can be modeled as normal random variables:

sACC,i = N
(

1, s2
ACC

)
∀ i ∈ {1, 2, 3} (32)

αACC,i = N
(

0, α2
ACC

)
∀ i ∈ {1, 2, 3} (33)

where sACC and αACC can be obtained from the sensor specifications. Equation (31) can be
transformed to make it more useful by defining the accelerometer scale and cross-coupling
error matrix MACC:

MACC = R?
PA SACC R?

AP =

mACC,11 0 0
mACC,21 mACC,22 0
mACC,31 mACC,32 mACC,33


≈

 sACC,1 0 0
αACC,3 (sACC,1 − sACC,2) sACC,2 0
αACC,2 (sACC,3 − sACC,1) αACC,1 (sACC,2 − sACC,3) sACC,3

 (34)

Considering that the scale and cross-coupling errors are uncorrelated and very small,
and taking into account the expressions for the mean and variance of the sum and product
of two random variables [44], the different components mACC,ij of MACC can be obtained as
follows ∀ i, j ∈ {1, 2, 3}:

mACC,ij = N
(

1, s2
ACC

)
i = j (35)

mACC,ij = N
(

0,
[√

2 αACC sACC

]2
)
= N

(
0, m2

ACC

)
i > j (36)

mACC,ij = 0 i < j (37)

Let us also define the accelerometer error transformation matrix NACC as

NACC = R?
PASACC =

nACC,11 0 0
nACC,21 nACC,22 0
nACC,31 nACC,32 nACC,33

 =

 sACC,1 0 0
αACC,3 sACC,1 sACC,2 0
−αACC,2 sACC,1 αACC,1 sACC,2 sACC,3

 (38)
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A process similar to that employed above leads to:

nACC,ij = N
(

1, s2
ACC

)
i = j (39)

nACC,ij = N
(

0, α2
ACC

(
1 + s2

ACC

))
≈ N

(
0, α2

ACC

)
i > j (40)

nACC,ij = 0 i < j (41)

Taking into account the expressions for the mean and variance of the sum and product
of two random variables [44], and knowing that the cross-coupling errors are very small(
1 + α2

ACC ≈ 1
)
, it can be proven that the bias and white noise errors viewed in the platform

frame FP respond to a expression similar to (16):

eP
BW,ACC = eP

BW,ACC(s∆tSENSED) = eP
BW,ACC(s∆t)

= NACC eA
BW,ACC = B0ACC Nu0,ACC + σuACC ∆t1/2

s

∑
i=1

Nui,ACC +
σvACC

∆t1/2 Nvs,ACC (42)

where each Nu,ACC and Nv,ACC is a random vector composed by three independent standard
normal random variables N(0, 1). Note that as the bias drift is mostly a warm-up process
that stabilizes itself after a few minutes of operation, the random walk within (42) is not
allowed to vary freely but is restricted to within a band of width ± 100 σuACC ∆t1/2. The
final model for the accelerometer measurements viewed in FP results in

f̃
P

IP = MACC fP
IP + eP

BW,ACC (43)

where MACC is described in (34) through (37) and eP
BW,ACC is provided by (42). This model

relies on inputs for the bias offset B0ACC, bias drift σuACC, white noise σvACC, scale factor error
sACC, and cross-coupling error mACC. Section 6.2 provides an example on how to obtain
these values from the data sheet provided by the accelerometer manufacturer.

2.7. Gyroscopes Triad Sensor Error Model

The IMU is also equipped with a triad of gyroscopes, each of which measures the
projection of the inertial angular velocity over its sensing axis as described in Section 2.2.
The obtainment of the gyroscope triad model is fully analogous to that of the accelerometers
in the previous section, with the added difficulty that the transformation between the
gyroscope frame FY and platform frame FP relies on six small angles instead of three. The
starting point hence is:

ω̃P
IP = R?

PY SGYR

(
R?

YP ωP
IP + eY

BW,GYR

)
(44)

where ωP
IP is the inertial angular velocity viewed in the platform frame FP, ω̃P

IP represents its
measurement also viewed in FP, eY

BW,GYR is the error introduced by each gyroscope (16), SGYR

is a square diagonal matrix containing the scale factor errors {sGYR,1, sGYR,2, sGYR,2}, and R?
PY

and R?
YP, defined by (28) and (29), contain the cross-coupling errors

αGYR,12, αGYR,21, αGYR,13, αGYR,31, αGYR,23, αGYR,32 generated by the misalignment of the gyro-
scope sensing axes.

Operating in the same way as in Section 2.6 leads to:

eP
BW,GYR = eP

BW,GYR(s∆tSENSED) = eP
BW,GYR(s∆t)

= B0GYR Nu0,GYR + σuGYR ∆t1/2
s

∑
i=1

Nui,GYR +
σvGYR

∆t1/2 Nvs,GYR (45)

ω̃P
IP = MGYR ωP

IP + eP
BW,GYR (46)

where each Nui,GYR and Nv,GYR is a random vector composed by three independent standard
normal random variables N(0, 1). As in the case of the accelerometers, the random walk
within (45) representing the bias drift is not allowed to vary freely but is restricted to within
a band of width ± 100 σuGYR ∆t1/2. This model relies on inputs for the bias offset B0GYR, bias
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drift σuGYR, white noise σvGYR, scale factor error sGYR, and cross-coupling error mGYR, which
can be obtained from the gyroscope specifications. An example of this process is included
in Section 6.2. The gyroscope scale and cross-coupling error matrix MGYR responds to:

MGYR = R?
PY SGYR R?

YP =

mGYR,11 mGYR,12 mGYR,13

mGYR,21 mGYR,22 mGYR,23

mGYR,31 mGYR,32 mGYR,33


≈

 sGYR,1 αGYR,23 (sGYR,1 − sGYR,2) αGYR,32 (sGYR,3 − sGYR,1)
αGYR,13 (sGYR,1 − sGYR,2) sGYR,2 αGYR,31 (sGYR,2 − sGYR,3)
αGYR,12 (sGYR,3 − sGYR,1) αGYR,21 (sGYR,2 − sGYR,3) sGYR,3

 (47)

mGYR,ij = N
(

1, s2
GYR

)
i = j (48)

mGYR,ij = N
(

0, 2 α2
GYR s2

GYR

)
= N

(
0, m2

GYR

)
i 6= j (49)

2.8. Mounting of Inertial Sensors

Equations (43) and (46) contain the relationships between the specific force fP
IP and

inertial angular velocity ωP
IP and their measurements

(
f̃

P

IP, ω̃P
IP

)
when evaluated and viewed

in the platform frame FP. However, from the point of view of the navigation system, both
magnitudes need to be evaluated and viewed in the body frame FB instead of FP. These
equations thus need to be modified so they relate fB

IB with f̃
B

IB as well as ωB
IB with ω̃B

IB,
respectively, as described in Section 2.9 below. To do that, it is necessary to define the
relative pose (position plus attitude) between the FP and FB frames, and to distinguish
between the true position TB

BP and attitude φBP, and their estimations by the IMU processor
(T̂B

BP and φ̂
BP). Note that the IMU, represented by the platform frame FP, should be mounted

in the aircraft as close as possible to the center of gravity (this reduces errors, as described
in Section 2.9), and it is loosely aligned with the aircraft body axes.

To increase the realism, this article assumes that the real displacement TB
BP between

the two frames is deterministic, while the relative rotation φBP = [ψP, θP, ξP]T is stochastic.
In this way, each simulation run exhibits a slightly different IMU platform attitude with
respect to the aircraft body:

• As the IMU reference point is fixed with respect to the structure but the aircraft center
of mass slowly moves as the fuel load diminishes, it is possible to establish a linear
model that provides the displacement between the origins of both frames according
to the aircraft mass (the aircraft masses mfull and mempty) when the fuel tank is fully
loaded or empty as inputs, as are the displacements between the IMU reference point
and the aircraft center of mass TB

BP,full and TB
BP,empty:

TB
BP = f(m) = TB

BP,full +
mfull −m

mfull −mempty

(
TB

BP,empty − TB
BP,full

)
(50)

• The platform Euler angles respond to the stochastic model provided by (51), in which
each specific Euler angle is obtained as the product of the user-selected standard
deviations (σψP , σθP , σξP ) by a single realization of a standard normal random variable
N(0, 1) (NψP , NθP , and NξP ).

φBP =
[
σψP NψP , σθP NθP , σξPNξP

]T
(51)

Once the real pose between the FP and FB frames is established, it is necessary to specify
its estimation employed by the IMU processor in the comprehensive model introduced in
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Section 2.9, which is discussed in Section 5.2. Stochastic models are employed for both the
translation T̂B

BP and rotation φ̂
BP, changing their values from one execution to the next:

T̂B
BP = TB

BP +
[
σT̂B

BP
NT̂P

BP,1
, σT̂B

BP
NT̂P

BP,2
, σT̂B

BP
NT̂P

BP,3

]T
(52)

φ̂
BP

= φBP +
[
σφ̂BP Nψ̂P , σφ̂BP Nθ̂P , σφ̂BPNξ̂P

]T
(53)

As in the previous case, the model relies on two user-selected standard deviations
(σT̂B

BP
and σφ̂BP), as well as six realizations of a standard normal random variable N(0, 1),

which are denoted as Nψ̂P , Nθ̂P , Nξ̂P , NT̂P
BP,1

, NT̂P
BP,2

, and NT̂P
BP,3

. Section 6.2 suggests values

for the five required settings (σψP , σθP , σξP , σT̂B
BP

, σφ̂BP), although they can be adjusted by
the user.

TBP can be considered quasi-stationary as it slowly varies based on the aircraft mass,
and the relative position of their axes φBP remains constant because the IMU is rigidly
attached to the aircraft structure. Although Euler angles have been employed in this
section, from this point on, it is more practical to employ the rotation matrix RBP to represent
the rotation between two different frames [45]. The time derivatives of TBP and RBP are
hence zero:

ṪBP = ṘBP = 0 −→ vBP = aBP = ωBP = αBP = 0 (54)

2.9. Comprehensive Inertial Sensor Error Model

Two considerations are required to establish the measurement equations for the in-
ertial sensors viewed in the body frame FB. First, let us apply the composition rules of
Appendix A.6 considering FI as F0, FB as F1, and FP as F2, which results in:

ωIP = ωIB (55)

αIP = αIB (56)

vIP = vIB + ω̂IB TBP (57)

aIP = aIB + α̂IB TBP + ω̂IB ω̂IB TBP (58)

Second, it is also necessary to consider that as R̂BP is a rotation matrix in which all
rows and columns are unitary vectors, the projection of the FP frame bias and white noise
errors eP

BW,ACC and eP
BW,GYR onto the FB frame does not change their stochastic properties:

eB
BW,ACC(s∆t) = R̂BPeP

BW,ACC = B0ACCNu0,ACC + σuACC∆t1/2
s

∑
i=1

Nui,ACC +
σvACC

∆t1/2 Nvs,ACC (59)

eB
BW,GYR(s∆t) = R̂BPeP

BW,GYR = B0GYRNu0,GYR + σuGYR∆t1/2
s

∑
i=1

Nui,GYR +
σvGYR

∆t1/2 Nvs,GYR (60)

As the inertial angular velocity does not change when evaluated in the FB and FP frames
(55), its measurement in the body frame can be derived from (46) by first projecting it from
FB to FP based on the real rotation matrix RBP and then projecting back the measurement
into FB based on the estimated rotation matrix R̂BP. The bias and white noise error is also
projected according to (60):

ω̃B
IB = R̂BP MGYR RBP

T ωB
IB + eB

BW,GYR (61)

The expression for the specific force measurement is significantly more complex be-
cause the back and forth transformations of the specific force between the FB and FP frames
need to consider the influence of the lever arm TBP, as indicated in (58). The additional



Sensors 2022, 22, 5518 19 of 38

terms introduce errors in the measurements, so as indicated in Section 2.8, it is desirable to
locate the IMU as close as possible to the aircraft center of mass.

f̃
B

IB = R̂BP MACC RBP
T (fB

IB + α̂B
IB TB

BP + ω̂B
IB ω̂B

IB TB
BP

)
− ̂̂αB

IB T̂B
BP − ̂̂ωB

IB
̂̂ωB

IB T̂B
BP + eB

BW,ACC (62)

Note that this expression cannot be directly evaluated as the estimated values for the
inertial angular velocity and acceleration (ω̂B

IB, α̂B
IB) are unknown by the IMU until obtained

by the navigation filter. The IMU can however rely on the gyroscope readings, directly
replacing ω̂B

IB with ω̃B
IB and computing α̃B

IB based on the difference between the present and
previous ω̃B

IB readings, resulting in:

f̃
B

IB = R̂BP MACC RBP
T (fB

IB + α̂B
IB TB

BP + ω̂B
IB ω̂B

IB TB
BP

)
− ̂̃αB

IB T̂B
BP − ̂̃ωB

IB
̂̃ωB

IB T̂B
BP + eB

BW,ACC (63)

Table 5 lists the error sources contained in the comprehensive inertial sensor error
model represented by (61), (63). The first two columns list the different error sources, while
the third column specifies their origin according to the criterion established in the first
paragraph of Section 2.1. The section where each error is described appears on the fourth
column, which is followed by the seeds (refer to Section 6 for the meaning of the terms Υi,A
and Υj,F) employed to ensure the results variability for different aircraft (Υi,A) as well as
different flights (Υj,F).

Table 5. Inertial sensor error sources.

Error Source Description Seeds

Bias Offset B0ACC, B0GYR run-to-run Section 2.2 υj,F,ACC, υj,F,GYR Υj,F
Bias Drift σuACC, σuGYR in-run Section 2.2 υj,F,ACC, υj,F,GYR Υj,F

System Noise σvACC, σvGYR in-run Section 2.2 υj,F,ACC, υj,F,GYR Υj,F

Scale Factor sACC, sGYR fixed and T Section 2.6,
Section 2.7

υi,A,ACC,
υi,A,GYR

Υi,A

Cross-
Coupling mACC, mGYR fixed Section 2.6,

Section 2.7
υi,A,ACC,
υi,A,GYR

Υi,A

Lever Arm TBP, σT̂B
BP

fixed Section 2.8 υi,A,PLAT Υi,A

IMU Attitude σψP , σθP , σξP , σφ̂BP fixed Section 2.8 υi,A,PLAT Υi,A

Note that all the required error sources (2nd column) need to be specified by the
user. As an example, section 6.2 suggests values appropriate for a low SWaP aircraft. It is
worth pointing out that all errors are modeled as stochastic variables or processes (with
the exception of the TBP displacement between the body and platform frames, which is
deterministic), as expressions (61), (63) rely on the errors provided by (59), (60), the scale
and cross-coupling matrices given by (34), (47), and the transformations given by (50), (51),
(52), (53).

In the case of the accelerometer triad, the stochastic nature of the fixed and run-to-run
error contributions to the model relies on three realizations of normal distributions for the
bias offset, three for the scale factor errors, three for the cross-coupling errors, and nine for
the mounting errors, while the in-run error contributions require three realizations each
for the bias drift and system noise at every discrete sensor measurement. The gyroscope
triad is similar but requires six realizations to model the cross-coupling errors instead of
three while using the same six realizations as the accelerometer triad to model the true and
estimated rotation between the FB and FP frames.
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Expressions (61), (63) can be rewritten to show the measurements as functions of the
full errors (EACC, EGYR), which represent all the errors introduced by the inertial sensors
with the exception of white noise.

f̃
B

IB(s∆t) = fB
IB(s∆t) + EACC(s∆t) +

σvACC

∆t1/2 Nvs,ACC (64)

ω̃B
IB(s∆t) = ωB

IB(s∆t) + EGYR(s∆t) +
σvGYR

∆t1/2 Nvs,GYR (65)

3. Non-Inertial Sensors

This section describes the different non-inertial sensors usually installed onboard a
fixed wind autonomous aircraft, such as a triad of magnetometers to measure the Earth’s
magnetic field, a GNSS receiver that provides absolute position and velocity measurements,
and the air data system, which in addition to the pressure altitude and temperature also
provides a measurement of the airspeed and the airflow angles.

3.1. Magnetometers

Magnetometers measure magnetic field intensity along a given direction and are very
useful for estimating the aircraft heading. Although other types exist, magnetoinductive
and magnetoresistive sensors are generally employed for navigation due to their accuracy
and small size [4,30]. As with the inertial sensors, three orthogonal magnetometers are
usually employed in a strapdown configuration to measure the magnetic field with respect
to the body frame FB.

Unfortunately, magnetometers do not only measure the Earth’s magnetic field B but
also that generated by the aircraft permanent magnets and electrical equipment (known as
hard iron magnetism) as well as the magnetic field disturbances generated by the aircraft
ferrous materials (soft iron magnetism). For that reason, the magnetometers should be
placed in a location inside the aircraft that minimizes these errors. On the positive side,
magnetometers do not exhibit the bias instability present in inertial sensors, and the error of
an individual sensor can be properly modeled by the combination of bias offset and white
noise. A triad of magnetometers capable of measuring the magnetic field in three directions
adds the same scale factor (nonlinearity) and cross-coupling (misalignment) errors as those
present in the inertial sensors, together with the transformation between the magnetic axes
and the body ones.

Modeling the behavior of a triad of magnetometers is simpler but less precise than
that of inertial sensors, as the effect of the fixed hard iron magnetism is indistinguishable
from that of the run-to-run bias offset, while the fixed effect of soft iron magnetism is indis-
tinguishable from that of the scale factor and cross-coupling error matrix. This has several
consequences. First of all is that magnetometers cannot be calibrated at the laboratory
before being mounted in the aircraft as in the case of inertial sensors (Section 5.1) but are
instead calibrated once attached to the aircraft by a process known as swinging (Section 5.3),
which is less precise, as the aircraft attitude during swinging cannot be determined with so
much accuracy as it would be in a laboratory setting. Second is that defining a magnetic
platform frame to then transform the results into body axes serves no purpose, as the
magnetometer readings are only valid, this is, contain the effects of hard and soft iron
magnetism, once they are attached to the aircraft, and then they can be directly measured
in body axes. Third is that percentage-wise, the errors induced by the magnetometers are
bigger than those of the inertial sensors. The implemented model is the following:

B̃
B

= BHI,MAG + B0,MAG + MMAG RBN BN + eB
W,MAG (66)

B̃
B
(s∆t) = BHI,MAG NHI,MAG + B0,MAG Nu0,MAG + MMAG RBN BN +

σv,MAG

∆t1/2 Nvs,MAG (67)

where B̃
B

is the measurement viewed in FB, BHI,MAG is the fixed hard iron magnetism, B0,MAG

is the run-to-run bias offset, MMAG is a fixed matrix combining the effects of soft iron
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magnetism with the scale factor and cross-coupling errors, and BN is the real magnetic field
including local anomalies. NHI,MAG, Nu0,MAG and Nvs,MAG are uncorrelated normal vectors of
size three each composed of three uncorrelated standard normal random variables N(0, 1).
The soft iron, scale factor and cross-coupling matrix MMAG does not vary with time and is
computed as follows:

MMAG =

 sMAG mMAG mMAG

mMAG sMAG mMAG

mMAG mMAG sMAG

 ◦Nm,MAG (68)

In this expression, Nm,MAG contains nine outputs of a standard normal random variable
N(0, 1), and the symbol ◦ represents the Hadamart or element-wise matrix product.

Table 6 lists the error sources contained in the magnetometer model in the same format as
the previous section, noting that soft iron magnetism is included in both the scale factor and cross-
coupling errors. Note that all the required error sources (BHI,MAG, B0,MAG, σv,MAG, sMAG, mMAG)
need to be specified by the user. As an example, section 6.2 suggests values appropriate for
a low SWaP aircraft. The stochastic nature of the fixed and run-to-run error contributions to
the magnetometer model relies on three realizations of normal distributions for the hard iron
magnetism, three for the bias offset, three for the scale factor errors, and six for the cross-coupling
errors, while the in-run error contributions require three realizations for system noise at every
discrete sensor measurement.

Table 6. Magnetometer error sources.

Error Source Seeds

Hard Iron BHI,MAG fixed υi,A,MAG Υi,A
Bias Offset B0,MAG run-to-run υj,F,MAG Υj,F

System Noise σv,MAG in-run υj,F,MAG Υj,F
Scale Factor sMAG fixed υi,A,MAG Υi,A

Cross Coupling mMAG fixed υi,A,MAG Υi,A

Expression (67) can be rewritten to show the measurements as functions of the magne-
tometer full error EMAG, which represents all the errors introduced by the magnetometers
with the exception of white noise:

B̃
B
(s∆t) = BB(s∆t) + EMAG(s∆t) +

σv,MAG

∆t1/2 Nvs,MAG (69)

3.2. Global Navigation Satellite System Receiver

A GNSS receiver enables the determination of the aircraft position and absolute
velocity based on signals obtained from various constellations of satellites, such as GPS,
GLONASS, and Galileo. The position is obtained by triangulation based on the accurate
satellite position and time contained within each signal. Instead of derivating the position
with respect to time, which introduces noise, GNSS receivers obtain the vehicle absolute
velocity by measuring the Doppler shift between the constant satellite frequencies and
those measured by the receiver.

It is important to note that because of the heavy processing required to fix a position
based on the satellite signals, GNSS receivers are not capable of working at the high
frequencies characteristic of inertial and air data sensors, so ∆tGNSS is usually a multiple of
∆tSENSED. The position error of a GNSS receiver can be modeled as the sum of a zero mean
white noise process plus slow varying ionospheric effects [33] modeled as the sum of the
bias offset plus a random walk. This random walk is modeled with a frequency of 1/60 Hz
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(∆tION = 60 s) and linearly interpolated in between. The ground velocity error is modeled
exclusively with a white noise process.

eGNSS,POS(g∆tGNSS) = x̃GDT − xGDT = σGNSS,POS Ng,GNSS,POS + eGNSS,ION(g∆tGNSS) (70)

eGNSS,VEL(g∆tGNSS) = ṽN − vN = σGNSS,VEL Ng,GNSS,VEL (71)

eGNSS,ION(g∆tGNSS) = eGNSS,ION(i∆tION)+
r

fION

(
eGNSS,ION

(
(i + 1)∆tION

)
− eGNSS,ION(i∆tION)

)
(72)

g = fION · i + r 0 ≤ r < fION (73)

eGNSS,ION(i∆tION) = B0,GNSS,ION Nu0,GNSS,ION + σGNSS,ION

i

∑
j=1

Nj,GNSS,ION (74)

fION = ∆tION/∆tGNSS = 60 (75)

where σGNSS,POS, σGNSS,ION, B0,GNSS,ION, and σGNSS,VEL are user-supplied inputs (Section 6.2 con-
tains an example on how to fill up these values), and Ng,GNSS,POS, Ng,GNSS,VEL, Nu0,GNSS,ION,
and Nj,GNSS,ION are uncorrelated normal vectors of size three, each composed of three uncor-
related standard normal random variables N(0, 1). In addition, note that as both g and fION

are integers, the quotient remainder theorem guarantees that there exist unique integers i
and r that comply with (73) [46].

Table 7 lists the error sources contained in the GNSS receiver model in the same
format as previous sections. Note that all errors are modeled as stochastic variables or
processes. Three realizations of a normal distribution are required for the run-to-run
error contributions, while the in-run error contributions require three realizations each
for position and velocity at every discrete sensor measurement, plus an extra three when
corresponding for the ionospheric error.

Table 7. GNSS receiver error sources.

Error Source Seeds

Bias Offset B0,GNSS,ION run-to-run υj,F,GNSS Υj,F
System Noise σGNSS,POS, σGNSS,VEL, σGNSS,ION in-run υj,F,GNSS Υj,F

3.3. Air Data System

The mission of the air data system is to measure the aircraft pressure altitude HP [47,48]
by means of the atmospheric pressure p, the outside air temperature T, the airspeed vTAS,
and the angles of attack α and sideslip β that provide the orientation of the aircraft structure
with respect to the airflow.

A barometer or static pressure sensor, generally part of the Pitot tube as explained
below [30], measures atmospheric pressure, which can be directly translated into pressure
altitude [47,48]. Air data systems are also equipped with a thermometer to measure the
external air temperature T. The implemented models, where OSP stands for outside static
pressure and OAT means outside air temperature, include contributions from both bias
offsets (B0OSP, B0OAT) and random noises (σOSP, σOAT):

eOSP(s∆tSENSED) = eOSP(s∆t) = p̃(s∆t)− p(s∆t) = B0OSP N0,OSP + σOSP Ns,OSP (76)

eOAT(s∆tSENSED) = eOAT(s∆t) = T̃(s∆t)− T(s∆t) = B0OAT N0,OAT + σOAT Ns,OAT (77)

where N0,OSP, Ns,OSP, N0,OAT, and Ns,OAT are uncorrelated standard normal random variables
N(0, 1).

A Pitot probe is a tube with no outlet pointing directly into the undisturbed air stream,
where the values of the air variables (temperature, pressure, and density) at its dead end
resemble the total or stagnation variables of the atmosphere prior to its deceleration inside
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the Pitot [49]. Measuring the air flow total pressure pt at the tube dead end enables the
estimation of the aircraft airspeed vTAS.

The air data system is also capable of measuring the direction of the air stream with
respect to the aircraft, which is represented by the angles of attack α and sideslip β. To do
so, it can be equipped with two air vanes that align themselves with the unperturbed air
stream or with a more complex multi-hole Pitot probe. In all three cases, the errors can
also be modeled by a combination of bias offsets (B0TAS, B0AOA, B0AOS) and random noises
(σTAS, σAOA, σAOS):

eTAS(s∆tSENSED) = eTAS(s∆t) = ṽTAS(s∆t)− vTAS(s∆t) = B0TAS N0,TAS + σTAS Ns,TAS (78)

eAOA(s∆tSENSED) = eAOA(s∆t) = α̃(s∆t)− α(s∆t) = B0AOA N0,AOA + σAOA Ns,AOA (79)

eAOS(s∆tSENSED) = eAOS(s∆t) = β̃(s∆t)− β(s∆t) = B0AOS N0,AOS + σAOS Ns,AOS (80)

where N0,TAS, Ns,TAS, N0,AOA, Ns,AOA, N0,AOS, and Ns,AOS are uncorrelated standard normal
random variables N(0, 1). Table 8 lists the error sources contained in the air data sensor
model represented by (76), (77), (78), (79), and (80) in the same format as previous tables.
Note that all errors are modeled as stochastic variables or processes. The stochastic nature
of the run-to-run error contributions to the models relies on five realizations of normal
distributions for the bias offsets, while the in-run error contributions require five realizations
for the system noises at every discrete sensor measurement.

Table 8. Air data sensor error sources.

Error Source Seeds

Bias Offset B0OSP, B0OAT, B0TAS, B0AOA, B0AOS run-to-run υj,F,OSP, υj,F,OAT Υj,FSystem Noise σOSP, σOAT, σTAS, σAOA, σAOS in-run υj,F,TAS, υj,F,AOA, υj,F,AOS

4. Camera

Image generation is a power and data-intensive process that cannot work at the high
frequencies characteristic of inertial and air data sensors, so ∆tIMG is usually significantly
higher than ∆tSENSED but not as much as ∆tGNSS. The camera is considered rigidly attached
to the aircraft structure, and it is assumed that the shutter speed is sufficiently high so
that all images are equally sharp, and that the image generation process is instantaneous.
In addition, the camera ISO setting remains constant during the flight, and all generated
images are noise free. The model also assumes that the visible spectrum radiation reaching
all patches of the Earth’s surface remains constant, and the terrain is considered Lamber-
tian [50], so its appearance at any given time does not vary with the viewing direction. The
combined use of these assumptions implies that a given terrain object is represented with
the same luminosity in all images, even as its relative pose (position and attitude) with
respect to the camera varies. Geometrically, a perspective projection or pinhole camera
model [50] is employed, which in addition is perfectly calibrated and hence shows no
distortion. Table 9 lists the required configuration parameters, which shall be provided by
the user.

Table 9. Camera parameters.

Parameter Symbol Unit

Focal length f mm
Image width SH px
Image height SV px
Pixel size sPX mm/px
Principal point horizontal location cIMG

1 px
Principal point vertical location cIMG

2 px
Horizontal field of view ΘH

◦

Vertical field of view ΘV
◦
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4.1. Mounting of Camera

The digital camera can be located anywhere on the aircraft structure as long as its view
of the terrain is unobstructed by other platform elements. It is desirable that the lever arm
or distance between the camera optical center and the aircraft center of mass is as small
as possible to reduce the negative effects of any camera alignment error. With respect to
its orientation, the camera should be facing down to show a balanced view of the ground
during level flight, but minor deviations are not problematic.

As in the case of the IMU platform, the model considers that the camera location is
deterministic but its orientation is stochastic. The expressions below are hence analogous
to those employed in Section 2.8, where each specific camera Euler angle is obtained as
the product of the standard deviations (σψC , σθC , σξC) by a single realization of a standard
normal random variable N(0, 1) (NψC , NθC , and NξC ):

TB
BC = f(m) = TB

BC,full +
mfull −m

mfull −mempty

(
TB

BC,empty − TB
BC,full

)
(81)

φBC =
[
90 ◦ + σψC NψC , σθC NθC , σξCNξC

]T
(82)

In addition to the true translation and rotation between the FB and FC frames given by
the previous equations, the model also requires the accuracy with which they are known
to the navigation system. The determination of the camera position T̂B

BC and rotation

φ̂
BC

=
[
ψ̂C, θ̂C, ξ̂C

]T
is discussed in Section 5.4. As in previous cases, stochastic models are

considered for both the translation T̂B
BC and rotation φ̂

BC, changing their values from one
run to another:

T̂B
BC = TB

BC +
[
σT̂B

BC
NT̂B

BC,1
, σT̂B

BC
NT̂B

BC,2
, σT̂B

BC
NT̂B

BC,3

]T
(83)

φ̂
BC

= φBC +
[
σφ̂BC Nψ̂C , σφ̂BC Nθ̂C , σφ̂BC Nξ̂C

]T
(84)

where Nψ̂C , Nθ̂C , Nξ̂C , NT̂B
BC,1

, NT̂B
BC,2

, and NT̂B
BC,3

are six realizations of a standard normal

random variable N(0, 1). Section 6.2 provides an example of the standard deviations
required to fill up the model, although they can be adjusted by the user.

The translation TB
BC between the origins of the FB and FC frames can be considered

quasi-stationary, as it slowly varies based on the aircraft mass (81), and the relative position
of their axes φBC remains constant because the camera is rigidly attached to the aircraft
structure (82).

4.2. Earth Viewer

The camera model differs from all other sensor models described in this article in that
it does not return a sensed variable x̃ consisting of its real value x plus a sensor error E
but instead generates a digital image simulating what a real camera would record based
on the aircraft position and attitude as given by the actual or real state x = xTRUTH. When
provided with the camera pose with respect to the Earth at equally time-spaced intervals,
the available model implementation [6] is capable of generating images that resemble the
view of the Earth’s surface that the camera would record if located at that particular pose.
To do so, it relies on three software libraries:

• OpenSceneGraph [51] is an open-source high-performance 3D graphics toolkit written
in C++ and OpenGL, used by application developers in fields such as visual simulation,
games, virtual reality, scientific visualization and modeling. The library enables
the representation of objects in a scene by means of a graph data structure, which
allows grouping objects that share some properties to automatically manage rendering
properties such as the level of detail necessary to faithfully draw the scene but without
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considering the unnecessary detail that slows down the graphics hardware drawing
the scene.

• osgEarth [52] is a dynamic and scalable 3D Earth surface rendering toolkit that relies
on OpenSceneGraph, and it is based on publicly available orthoimages of the area
flown by the aircraft. Orthoimages consist of aerial or satellite imagery geometrically
corrected such that the scale is uniform; they can be used to measure true distances
as they are accurate representations of the Earth surface, having been adjusted for
topographic relief, lens distortion, and camera tilt. When coupled with a terrain
elevation model, osgEarth is capable of generating realistic images based on the camera
position as well as its yaw and pitch, but it does not accept the camera roll (in other
words, the osgEarth images are always aligned with the horizon).

• Earth Viewer is a modification to osgEarth implemented by the authors, so it is also
capable of accepting the bank angle of the camera with respect to the NED axes. Earth
Viewer is capable of generating realistic Earth images as long as the camera height
over the terrain is significantly higher than the vertical relief present in the image. As
an example, Figure 8 shows two different views of a volcano in which the dome of the
mountain, having very steep slopes, is properly rendered.

Figure 8. Example of Earth Viewer images.

5. Calibration Procedures

This section describes various calibration processes required for the determination
of the fixed and run-to-run error contributions to the accelerometers, gyroscopes, magne-
tometers, and onboard camera. These procedures only need to be executed once and do
not need to be repeated unless the sensors are replaced or their position inside the aircraft
is modified (in addition, the swinging process of Section 5.3 needs to be performed every
time new equipment is installed inside the aircraft, as this may modify the hard and soft
iron magnetism and hence the magnetometer readings).

The calibration procedures include the laboratory calibration of the accelerometers and
gyroscopes described in Section 5.1, the determination of the pose between the platform
and body frames explained in Section 5.2, the magnetometer calibration or swinging
described in Section 5.3, and the determination of the pose between the camera and body
frames explained in Section 5.4. Their main objective is the determination of the fixed
contributions to the sensor error models (refer to Section 2.1 for the different types of
sensor error contributions, including fixed, run-to-run, and in-run), that is, the scale factor
and cross-coupling errors of both inertial sensors and magnetometers (M̂ACC, M̂GYR, M̂MAG)
(note that M̂MAG also includes the soft iron magnetism), the magnetometers hard iron
magnetism B̂HI,MAG, the body to platform transformation (T̂B

BP, φ̂
BP), and the body-to-camera

transformation (T̂B
BC, φ̂

BC). These procedures also provide estimations for the run-to-run
error contributions (B̂0ACC, B̂0GYR, B̂0,MAG), but these need to be discarded, as they change
every time the aircraft systems are switched on.
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5.1. Inertial Sensors Calibration

Calibration is the process of comparing instrument outputs with known references
to determine coefficients that force the outputs to agree with the references over a range
of output values [31]. The IMU inertial sensors need to be calibrated to eliminate the
fixed errors originated from manufacturing and also to determine their temperature sen-
sitivity [32]. The calibration process requires significant material and time resources, but
it greatly reduces the measurement errors. While high-grade IMUs are always factory
calibrated, low-cost ones generally are not, so it is necessary to calibrate the IMU at the
laboratory before mounting it on the aircraft [4].

The calibration process is executed at a location where the position xGDT and the grav-
ity (gravity includes both gravitation and centrifugal accelerations) vector gc have been
previously determined with great precision [31]. It relies on a three-axis table, which en-
ables rotating the IMU with known angular velocities into a set of predetermined precisely
controlled orientations [32,53]. Accelerometer and gyroscope measurements are then com-
pared to reference values (gravity for the accelerometers, torquing rate plus Earth angular
velocity for the gyroscopes) and the differences employed to generate corrections [31].

During calibration, the amount of time that the IMU is maintained stationary at each
attitude, as well as the time required to rotate it between two positions, are trade-offs
based on two opposing influences. On one side, longer periods of time are preferred as
the negative influence of the system noise in the measurements tends to even out over
time, while on the other, shorter times imply smaller variations of the bias drift over the
measurement interval.

It is worth noting that as the calibration is performed before the IMU is installed on the
aircraft, it relies on the platform frame FP and the models contained in Sections 2.6 and 2.7.
Although it is possible to use a calibration strategy based on selecting platform orientations
that isolate sensor input onto a single axis (for example, gravity will only be sensed by the
accelerometer that is placed vertically with respect to the Earth’s surface) to then apply
least squares techniques, in real life, it is better to employ state estimation techniques (the
estimation filter not only relies on known gravity and angular velocity but also the fact
that the IMU is stationary and hence its velocity is zero) to obtain estimates of the inertial
sensor’s scale factors, cross-coupling errors, and bias offsets [4,32]. The process is repeated
at different temperatures so the IMU processor can later apply the correction based on the
IMU sensor temperature [4].

The twenty-one coefficients estimated in the calibration process are listed in Table 10.
Once the coefficients have been estimated, they can be introduced into the IMU processor
so it automatically performs the corrections contained in (85) and (86):

˜̃fP

IP = M̂−1
ACC f̃

P

IP − B̂0ACC (85)˜̃ωP

IP = M̂−1
GYR ω̃P

IP − B̂0GYR (86)

This article assumes that the bias offset is exclusively a run-to-run source of error that
varies every time the IMU is switched on, so the B̂0ACC and B̂0GYR coefficients obtained by
calibration are discarded, as they have no relation to the offsets that occur during flight.
Modeling the results obtained by the calibration process implies reducing the scale factor
and cross-couplings errors found on the inertial sensors specifications by an arbitrary
amount that can be specified by the user. To summarize, instead of applying (85), (86) to the
measurements obtained by (61), (63), the model directly employs (61), (63) with reduced
MGYR and MACC values.
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Table 10. Results of calibration process.

Estimation # Coefficients

M̂ACC 6 {ŝACC,i, m̂ACC,ij}
M̂GYR 9 {ŝGYR,i, m̂GYR,ij}
B̂0ACC 3 B0ACC N̂u0,ACC,i

B̂0GYR 3 B0GYR N̂u0,GYR,i

5.2. Determination of the Platform Frame Pose

The true relative pose between the body and platform frames (FB, FP), given by TB
BP and

φBP, as well as their estimated values T̂B
BP and φ̂

BP, play a key role in the readings generated
by the inertial sensors, as explained in Section 2.9.

Considering that the position of the aircraft center of mass is known (in both full
and empty tank configurations), the true displacement TB

BP can be determined with near
exactitude based on the IMU attachment point to the aircraft, resulting in very low σT̂B

BP

values to be employed for the estimation of T̂B
BP in (52).

With regard to the attitude φBP, after mounting the IMU platform so two of its axes are
approximately aligned with the forward and down directions of an approximate aircraft
plane of symmetry (with no particular need for accuracy), it is possible to estimate the
angular deviation φBP by means of self-alignment [4], resulting in small σφ̂BP values when

estimating φ̂
BP in (53).

5.3. Swinging or Magnetometer Calibration

Magnetometer calibration is inherently more complex than that of the inertial sensors,
as it must be performed with the sensors already mounted on the aircraft, as otherwise,
it would not capture the fixed contributions of the hard iron and soft iron magnetisms
(Section 3.1). The calibration process, known as swinging, relies on obtaining magnetometer
readings while the aircraft is positioned at different attitudes that encompass a wide array
of heading, pitch, and roll values [4], and it is executed at a location where the magnetic
field is precisely known.

The accuracy of the results is very dependent of the precision with which the different
aircraft attitudes can be determined during swinging. This can be done with self-alignment
procedures [4] or with the use of expensive static instruments. In any case, attitude accuracy
is always going to be inferior to that obtained with a three-axis table during inertial sensor
calibration. Once the magnetic field readings are obtained, they are compared to the real
magnetic field values, and expression (67) is employed with least squares techniques to
obtain estimations of the bias (sum of hard iron magnetism BHI,MAG and offset B0,MAG),
and the scale factor and cross-coupling matrix MMAG, which also includes the soft iron
magnetism. The process can be repeated several times to isolate the influence of hard iron
magnetism (a fixed effect that does not change) from the offset, which is a run-to-run error
source that changes every time the magnetometers are turned on.

The fifteen coefficients estimated in the swinging process are listed in Table 11. Once
the coefficients have been estimated, they can be introduced into the processor so it auto-
matically performs the corrections shown in (87):

˜̃BB
= M̂−1

MAG B̃
B − B̂HI,MAG − B̂0,MAG (87)

This articles assumes that the bias offset B0,MAG is exclusively a run-to-run source of
error that varies every time the magnetometer is switched on, so bias offset coefficients
obtained by swinging are discarded, as they have no relation to the offsets that occur
during flight. Modeling the results obtained by swinging implies reducing the hard
iron bias BHI,MAG and scale factor and cross-coupling errors MMAG found on the sensor’s
specifications by an arbitrary amount that can be specified by the user. To summarize,
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instead of applying (87) to the measurements obtained by (67), the model directly employs
(67) with reduced BHI,MAG and MMAG values.

Table 11. Results of swinging process.

Estimation # Coefficients

M̂MAG 9 {ŝMAG,i, m̂MAG,ij}
B̂HI,MAG 3 B̂HI,MAG,i

B̂0,MAG 3 B0,MAG N̂u0,MAG,i

5.4. Determination of the Camera Frame Pose

The images generated by the onboard camera, and simulated by means of the Earth
Viewer application introduced in Section 4.2, do not only depend on the relative pose
between the body and the Earth but also on that of the camera with respect to the aircraft
structure, which is represented by the rotation φBC and displacement TB

BC generated when
mounting the camera, as described in Section 4.1. Visual navigation algorithms, however,
rely on the navigation system best estimate of this pose, this is, φ̂

BC and T̂B
BC, which need to

be estimated once the already calibrated camera has been mounted on the aircraft. The two-
phase process requires a chess board such as that employed for camera calibration [50,54].

The first phase uses an optimization procedure quite similar to that used in calibration
to determine the relative pose between the camera frame FC and the one rigidly attached to
the chessboard. Instead of using the location of each chess box corner in different images,
this process relies on a single photo and imposes that all chess boxes are square and have
the same size, which is enough to obtain a solution up to an unknown scale. The size of the
chess boxes provides the scale required to unambiguously solve the identification problem
with high precision.

The second step is to obtain the pose between the chessboard and body frames. This is
a straightforward geometric optimization problem that relies on distance measurements
between chessboard points and aircraft structure points whose coordinates in the FB frame
are known. The resulting accuracy depends on the accuracy with which these distances
can be measured, so special equipment may be required given the importance of the final
estimations for the success of the visual navigation algorithms.

Overall, this is a robust and accurate process if properly executed, which results in the
user-selectable σT̂B

BC
σφ̂BC values employed for the stochastic estimation of T̂B

BC and φ̂
BC in

each run by means of (83) and (84).

6. Discussion: Realism, Stochastic Properties and Customizable Inputs

This article provides models of the various sensors usually installed onboard a fixed
wing autonomous aircraft, and it includes a ready-to-use open source C++ implemen-
tation [6] so researchers can quickly generate realistic, stochastic (pseudo-random), and
customizable time-stamped series of the outputs of the different sensors, including images
of the Earth’s surface that closely resemble what a real camera would record from the same
positions and attitudes.

• In terms of realism, the detailed descriptions of Sections 2–4 show that in addition
to the usually present white noise and random walk contributions, the models also
include key error sources such as scale factors and cross-coupling effects, which are
challenging for navigation systems, since these often include some type of lineariza-
tion, and inputs that should theoretically be restricted to a single axis (caused by
maneuvering or turbulence) in fact result in outputs to all three sensor axes. Supplied
with a series of time-varying aircraft positions and attitudes, the Earth Viewer ap-
plication generates detailed distortion-free images, resembling what a real onboard
camera would record if flying the same trajectory.
In addition, and only for the case of the camera and inertial sensors, the models do
not only consider the relative pose (position and attitude) between the platform (IMU)
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and camera frames (in which the information is recorded) and the body frame (into
which they are converted for output), as well as their slow variations with time as a
consequence of fuel load changes, but also take into account the inaccuracies in the
aircraft processors’ knowledge of these relative poses.

• With respect to randomness, the random nature of the outputs generated by the vari-
ous sensors is reflected in the extensive use of stochastic processes and distributions
within the models. Section 6.1 below explains how all sensor errors are derived from
two input seeds (one identifying the aircraft or fixed errors, and another specifying
the flight, or run-to-run and in-run error contributions). This facilitates the use of the
models within Monte Carlo simulations while also enabling the same set of outputs to
be reproduced if so desired.

• Regarding the customization, the realism in the models relies on multiple input
parameters that need to be provided by the end user. Most of them can be found
in the data sheets provided by the manufacturers (usually with different names
and conventions, which are explained in previous sections), others depend on the
methods employed for the mounting of the sensors onboard the aircraft, and some of
them can be improved by means of the calibration procedures described in Section 5.
Section 6.2 describes the process followed to obtain the parameters for the case of a
small low SWaP aircraft, which constitutes the default configuration for the model’s
C++ implementation [6].

6.1. Stochastic Models and the Use of Input Seeds

As explained in the corresponding sections, the outputs of the different sensor models
depend on the input seeds listed in Tables 5–8 and grouped together in Table 12 for convenience.

Table 12. Sensor seeds.

Type Error Sources Seeds

Aircraft i fixed υi,A,ACC, υi,A,GYR, υi,A,MAG, υi,A,PLAT, υi,A,CAM

Flight j run-to-run and in-run υj,F,ACC, υj,F,GYR, υj,F,MAG, υj,F,OSP, υj,F,OAT

υj,F,TAS, υj,F,AOA, υj,F,AOS, υj,F,GNSS

The following steps describe how these seeds are obtained in the available C++ imple-
mentation of the models [6]:

1. Initialize a discrete uniform distribution with any seed (any value is valid, so 1 was
employed by the authors), which produces random integers where each possible
value has an equal likelihood of being produced. Call this distribution a number of
times equal or higher than twice the maximum number of runs to be executed (each
run provides the variation of time of all sensors for an unlimited amount of time and
corresponds to a single aircraft flight), divide them into two groups of the same size,
and store the results for later use. These values, called Υi,A and Υj,F, are, respectively,
the aircraft seeds and the flight seeds, where i is the aircraft number representing given
fixed error realizations (fixed error contributions vary from aircraft to aircraft but are
constant for all flights of that aircraft), and j is the trajectory number representing
run-to-run and in-run error realizations (run-to-run and in-run error contributions
vary from one flight of a given aircraft to the next). The stored aircraft and flight seeds
become the initialization seeds for each of the executions or runs, so this step does not
need to be repeated.

2. Every time the simulator needs to obtain the errors generated by the different sensors
(which usually correspond to a given flight), it is initialized with a given aircraft seed
Υi,A together with a flight seed Υj,F. As these seeds are the only inputs required for all
the stochastic processes within the sensors, the results of a given run can always be
repeated by employing the same two seeds.
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The selected aircraft and flight seeds are then employed to initialize two different
discrete uniform distributions. One is executed five times to provide the fixed sensor
seeds (υi,A,ACC, υi,A,GYR, υi,A,MAG, υi,A,PLAT, and υi,A,CAM), while the other is realized nine
times to obtain the run sensor seeds (υj,F,ACC, υj,F,GYR, υj,F,MAG, υj,F,OSP, υj,F,OAT, υj,F,TAS, υj,F,AOA,
υj,F,AOS, and υj,F,GNSS). These seeds hence become the initialization seeds for each of the
different sensors described throughout this article.

3. Each sensor relies on either one or two standard normal distributions N(0, 1), de-
pending on whether its error model is based exclusively on run-to-run and in-run
error contributions or it also contains fixed error sources. The normal distributions
of every sensor are initialized with the corresponding seeds (υi,A,XXX and υj,F,XXX) for
that sensor.

4. Upon initialization, the fixed normal distribution of every sensor is employed to
generate all the values corresponding to scale factors, cross couplings, hard iron
magnetism, and mounting errors. The run normal distribution in turn is employed to
generate the required bias offsets.

5. Once the model has been initialized, it is able to estimate the errors generated by
each sensor working at the required sensor rate. As time advances, every time a
sensor is called to provide a measurement, its already initialized and used run normal
distribution is called to generate the corresponding random walk increments and
white noises.

6.2. Example: Input Parameters for a Low SWaP Fixed Wing Aircraft

This section describes the process followed by the authors to obtain the input parame-
ters required by the various models (listed in Tables 5–8) for the specific case of a small low
SWaP fixed wing autonomous aircraft. These values constitute the default configuration
of the supplied C++ implementation [6], but they can be modified by the user to reflect
different hardware, mounting, or calibration procedures.

With respect to the operating frequencies, Table 13 reflects the considered values,
which are all within the working range of the specific sensors described in the following
paragraphs.

Table 13. Example of frequencies of the different sensors.

Discrete Time Frequency Rate

tt = t ·∆tTRUTH 500 Hz 0.002 s
ts = s ·∆tSENSED 100 Hz 0.01 s

ti = i ·∆tIMG 10 Hz 0.1 s
tg = g ·∆tGNSS 1 Hz 1 s

The gyroscope values correspond to the MEMS gyroscopes present inside the Analog
Devices ADIS16488A IMU [55]. Table 14 shows its performances, which have been taken
from the data sheet when possible and corrected when suspicious. A calibration process
such as that described in Section 5.1 is assumed to eliminate 95% of the scale factor and
cross-coupling errors.

Table 14. Example for gyroscopes performance values.

GYR Spec Unit Variable Value Calibration Unit

In-Run Bias Stability (1 σ) 5.10 ◦/h σuGYR 1.42× 10−4 1.42× 10−4 ◦/s1.5

Angle Random Walk (1 σ) 0.26 ◦/h0.5 σvGYR 4.30× 10−3 4.30× 10−3 ◦/s0.5

Nonlinearity 1 0.01 % sGYR 3.00× 10−4 1.50× 10−5 -
Misalignment ±0.05 ◦ mGYR 8.70× 10−4 4.35× 10−5 -

Bias Repeatability (1 σ) ±0.2 ◦/s B0GYR 2.00× 10−1 2.00× 10−1 ◦/s
1 The 0.01% scale factor error obtained in [55] is considered too optimistic and hence modified to
0.03% = 3.00× 10−4.
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Table 14 contains three columns of data. The left most column (“Spec”) corresponds to
data taken directly from the sensor’s specifications, which become converted in the middle
column (“Value”) to the parameters shown in Sections 2.2–2.9 (the conversion between
bias instability and σu uses a period of 100 s, as noted in Section 2.4). The right column
(“Calibration”) contains the values after the calibration process, which reduces the scale
factor and cross-coupling errors by 95%. A similar process based on the explanations of
Sections 2.3 and 2.4 should be followed by the user to obtain the parameters applicable to
different gyroscopes, noting that a certain level of arbitrariness is required to account for
the effects of calibration.

The accelerometer values also correspond to the MEMS accelerometers present inside
the Analog Devices ADIS16488A IMU [55]. All values shown in Table 15 have been taken
from the data sheet. As in the case of the gyroscopes, a calibration process as that described
in Section 5.1 is assumed to eliminate 95% of the scale factor and cross-coupling errors (the
conversion between bias instability and σu uses a period of 100 s, as noted in Section 2.4).
As in the previous case, a similar process should be followed by the user to obtain the
parameters applicable to different accelerometers and calibration procedures.

Table 15. Example for accelerometers’ performance values.

ACC Spec Unit Variable Value Calibration Unit

In-Run Bias Stability (1 σ) 0.07 mg σuACC 6.86× 10−5 6.86× 10−5 m/s2.5

Velocity Random Walk (1 σ) 0.029 m/s/h0.5 σvACC 4.83× 10−4 4.83× 10−4 m/s1.5

Nonlinearity 0.1 % sACC 1.00× 10−3 5.00× 10−5 -
Misalignment ±0.035 ◦ mACC 6.11× 10−4 3.05× 10−5 -

Bias Repeatability (1 σ) ±16 mg B0ACC 1.57× 10−1 1.57× 10−1 m/s2

The magnetometer values are shown in Table 16, where the white noise has been
taken from [4] and the rest of the parameters correspond to the magnetometers present
in the Analog Devices ADIS16488A IMU [55]. Although the value of hard and soft iron
magnetism in aircraft is rather small, the authors have not been able to obtain trusted values
for them. To avoid eliminating sources of error, the authors have decided to increase by
50% the values for bias offset, scale factor, and cross-coupling errors found in the literature,
as shown in the compensation column (“Comp.”). As both result in a similar effect, the
authors expect that the realism of the results will not be adversely affected. In the case of
the bias, the authors have assigned most of the error to the fixed hard iron error BHI,MAG and
the remaining to the run-to-run bias offset B0,MAG.

Table 16. Example for magnetometers’ performance values.

MAG Spec Unit Variable Value Comp. Swinging Unit

Output Noise 5 nT · s0.5 σv,MAG 5.00× 100 5.00× 100 5.00× 100 nT · s0.5

Nonlinearity 0.5 % sMAG 5.00× 10−3 7.50× 10−3 7.50× 10−4 -
Misalignment ±0.35 ◦ mMAG 6.11× 10−3 9.16× 10−3 9.16× 10−4 -

Bias (1 σ) ±1500 nT BHI,MAG 1.50× 103 1.75× 103 1.75× 102 nT
Repeatability B0,MAG 5.00× 102 5.00× 102 nT

A swinging process such as that described in Section 5.3 is assumed to eliminate 90%
of the fixed error contributions, this is, the hard iron magnetism, the scale factor, and the
cross-coupling error (the soft iron effect is combined with the scale factor and cross-coupling
errors). The final results can be found in the rightmost column above. The user should
follow a similar process to obtain the parameters applicable to each specific case. Note
however that because of the influence of the hard and soft iron effects, and the intrinsic
difficulty of swinging, the determination of the parameters is more arbitrary than in the
case of the inertial sensors.
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With respect to the GNSS receiver, the horizontal position accuracy shown in Table 17
corresponds to the U-blox NEO-M8 receiver data sheet [56], where CEP stands for circular
error probability. As CEP is equivalent to 1.18 standard deviations [57], it enables the
obtainment of σGNSS,POS,HOR. As no vertical position accuracy is available within [56], a
conservative value for σGNSS,POS,VER of twice that of σGNSS,POS,HOR has been selected. The ve-
locity accuracy also originates at the U-blox NEO-M8 receiver data sheet [56]. Assuming
that it corresponds to a per-axis error of ±0.05 m/s instead of CEP, and knowing that the
50% mark of a normal distribution lies at 0.67448 standard deviations, it is possible to
obtain σGNSS,VEL.

Table 17. Example of GNSS receiver performance values.

GNSS Spec Unit Variable Value Unit

Horizontal position accuracy (CEP 50%) 2.50 m σGNSS,POS,HOR 2.12× 100 m
Vertical position accuracy (CEP 50%) N/A σGNSS,POS,VER 4.25× 100 m
Ionospheric random walk 1/60 Hz N/A σGNSS,ION 1.60× 10−1 m
Ionospheric bias offset N/A B0,GNSS,ION 8.00× 100 m
Velocity accuracy (50%) 0.05 m/s σGNSS,VEL 7.41× 10−2 m/s

In regards to the air data system, the σOSP value shown in Table 18 originates at the
±10 m altitude error listed in the specifications of the Aeroprobe air data system [58], which
translates into ±100 Pa at a pressure altitude of 1500 m. The σOAT value is taken from the
Analog Devices ADT7420 temperature sensor [59]. With respect to σTAS, the Aeroprobe
air data system specifications [58] list a maximum airspeed error of 1 m/s, which can be
interpreted as 3 σ, and hence results in the σTAS value included in the table. The multi-hole
Pitot tube contained in the Aeroprobe air data system [58] measures both flow angles
(attack and sideslip) with a maximum error of ±1.0◦. If interpreted as 3 σ, this results in
standard deviations σAOA and σAOS of 0.33◦. Although never present in the data sheets, the
bias offsets for all variables present in the the Section 3.3 air data system model have been
set equal to the system noises to obtain further realism in the results.

Table 18. Example of air data system performance values.

Air Data System Spec Unit Variable Value Unit

Altitude Error ±10 m σOSP 1.00× 102 Pa
B0OSP 1.00× 102 Pa

Temperature Error (3σ) ±0.15 K σOAT 5.00× 10−2 K
B0OAT 5.00× 10−2 K

Airspeed Error (max) 1 m/s σTAS 3.33× 10−1 m/s
B0TAS 3.33× 10−1 m/s

Flow Angle Error (max) ±1.0 ◦ σAOA 3.33× 10−1 ◦

B0AOA 3.33× 10−1 ◦

Flow Angle Error (max) ±1.0 ◦ σAOS 3.33× 10−1 ◦

B0AOS 3.33× 10−1 ◦

Table 19 suggests appropriate values for the IMU platform and camera pose estimation
errors described in Sections 5.2 and 5.4, together with totally subjective ones for their true
attitude with respect to the body frame.
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Table 19. Example for IMU and camera mounting accuracy values.

Concept Variable Value Unit Variable Value Unit

True Yaw Error σψP 0.5 ◦ σψC 0.1 ◦

True Pitch Error σθP 2.0 ◦ σθC 0.1 ◦

True Bank Error σξP 0.1 ◦ σξC 0.1 ◦

Position Estimation Error σT̂B
BP

0.01 m σT̂B
BC

0.002 m
Attitude Estimation Error σφ̂BP 0.03 ◦ σφ̂BC 0.01 ◦

7. Conclusions

This article presents realistic, stochastic, and customizable models for the errors
generated by the sensors typically installed onboard a fixed wing aircraft. These can be
used to generate pseudo-random time-stamped series of values that simulate the sensor
outputs during flight as well as a series of images of the Earth’s surface that resemble what
would be recorded by a camera mounted on the aircraft.

The article provides instructions and an example of how to obtain the parameters
on which the models rely based exclusively on the information usually displayed in the
data sheets provided by the sensors’ manufacturers, so the user can employ the values that
better resemble the performances of the specific equipment being modeled. The models
properly represent the stochastic nature of the different random processes involved, while
ensuring that the time-stamped series of outputs generated by each sensor can be repeated
if so desired. The various sensor models include the contributions of the most important
sources of error, and they are intended to be used as inputs to Monte Carlo simulations
that rely on the sensor outputs, such as those required to evaluate inertial, visual, and
visual–inertial navigation systems.

The authors release an open-source C++ implementation of the described models.
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GNSS Global Navigation Satellite System
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GYR GYRoscope
IMU Inertial Measurement Unit
ISO International Organization for Standardization
MAG MAGnetometer
MEMS Micromachined ElectroMechanical System
NED North–East–Down
OAT Outside Air Temperature
OSP Outside Static Pressure
PSD Power Spectral Density
SWaP Size, Weight, and Power
TAS True Air Speed

Appendix A. Motion of Multiple Rigid Bodies

The equations employed in this article make use of positions, velocities, and acceler-
ations (both linear and angular) that refer to different reference systems or rigid bodies,
which are in continuous motion (translation and rotation) among themselves. Their re-
lationships are obtained in this appendix based on the three reference systems shown in
Figure A1: an inertial reference system F0{00, i0

1, i0
2, i0

3} and two non-inertial reference
systems F1{01, i1

1, i1
2, i1

3} and F2{02, i2
1, i2

2, i2
3}, where (T01, v01, a01) are the position, linear

velocity, and linear acceleration of the origin of F1 with respect to F0, (T02, v02, a02) are
those of the origin of F2 with respect to F0, and (T12, v12, a12) are those of the origin of F2
with respect to F1. Similarly, (ω01, α01) are the angular velocity and angular acceleration of
F1 with respect to F0, (ω02, α02) are those of F2 with respect to F0, and (ω12, α12) are those
of F2 with respect to F1. Let us also consider that R01, R02, and R12 are the rotation matrices
among the three different rigid bodies.
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i0
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O1
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i2
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i2
3
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Figure A1. Reference system for combination of movements.

Appendix A.1. Composition of Position

The relationship between the linear position vectors T02, T12, and T01 can be estab-
lished by vectorial arithmetics when expressed in the same reference frame or by coordinate
transformation [45] when not so:

T0
02 = T0

12 + T0
01 = R01 T1

12 + T0
01 (A1)

Appendix A.2. Composition of Linear Velocity

The derivation with time of (A1) results in:

Ṫ0
02 = Ṙ01 T1

12 + R01 Ṫ1
12 + Ṫ0

01 (A2)

The use of the relationship between the rotation matrix and its time derivative [45]
results in (note that the wide hat < ·̂ > refers to the skew-symmetric form of a vector):

Ṫ0
02 = R01 ω̂1

01 T1
12 + R01 Ṫ1

12 + Ṫ0
01 (A3)
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Reordering and replacing the position time derivatives with their respective velocities
results in the relationship between the linear velocity vectors v02, v12, and v01 expressed in
the inertial frame F0:

v0
02 = R01 v1

12 + v0
01 + R01 ω̂1

01 T1
12 (A4)

v0
02 = v0

12 + v0
01 + ω̂0

01 T0
12 (A5)

Appendix A.3. Composition of Linear Acceleration

The derivation with time of (A4) results in:

v̇0
02 = Ṙ01 v1

12 + R01 v̇1
12 + v̇0

01 + Ṙ01 ω̂1
01 T1

12 + R01 ˙̂ω1
01 T1

12 + R01 ω̂1
01 Ṫ1

12 (A6)

Replacing the rotation matrix time derivative results in:

v̇0
02 = R01 ω̂1

01 v1
12 + R01 v̇1

12 + v̇0
01 + R01 ω̂1

01 ω̂1
01 T1

12 + R01 ˙̂ω1
01 T1

12 + R01 ω̂1
01 Ṫ1

12 (A7)

Reordering, replacing the position, linear velocity, and angular velocity time deriva-
tives with their respective velocities, linear accelerations and angular accelerations, results
in the relationship between the linear acceleration vectors a02, a12, and a01 expressed in the
inertial frame F0:

a0
02 = R01 a1

12 +
(

a0
01 + R01 α̂1

01 T1
12 + R01 ω̂1

01 ω̂1
01 T1

12

)
+ 2 R01 ω̂1

01 v1
12 (A8)

a0
02 = a0

12 +
(

a0
01 + α̂0

01 T0
12 + ω̂0

01 ω̂0
01 T0

12

)
+ 2 ω̂0

01 v0
12 (A9)

The term on the left-hand side is called absolute acceleration, while the three right-hand
side terms are usually named relative, transport, and Coriolis accelerations, respectively.

Appendix A.4. Composition of Angular Velocity

The relationship among the different frames angular velocities is given by the rotation
matrix composition rule [45], which can be derivated with respect to time:

R02 = R01 R12 → Ṙ02 = Ṙ01 R12 + R01 Ṙ12 (A10)

Replacing the rotation matrix time derivatives results in:

R02 ω̂2
02 = ω̂0

01 R01 R12 + R01 R12 ω̂2
12 = ω̂0

01 R02 + R02 ω̂2
12 = R02 ω̂2

01 + R02 ω̂2
12 (A11)

The relationship among the angular velocity vectors ω02, ω12, and ω01 is hence
the following:

ω0
02 = ω0

12 + ω0
01 = R01 ω1

12 + ω0
01 (A12)

Appendix A.5. Composition of Angular Acceleration

The derivation with time of (A12) results in:

ω̇0
02 = Ṙ01 ω1

12 + R01 ω̇1
12 + ω̇0

01 (A13)

Replacing the rotation matrix time derivatives results in:

ω̇0
02 = R01 ω̂1

01 ω1
12 + R01 ω̇1

12 + ω̇0
01 (A14)
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Reordering, replacing the angular velocity time derivatives with their respective
angular accelerations, results in the relationship between the angular acceleration vectors
α02, α12, and α01 expressed in the inertial frame F0:

α0
02 = R01 α1

12 + α0
01 + R01 ω̂1

01 ω1
12 (A15)

α0
02 = α0

12 + α0
01 + ω̂0

01 ω0
12 (A16)

Appendix A.6. Summary of Compositions

The final expressions of the compositions above (A1), (A5), (A9), (A12), and (A16)
are all expressed in the inertial frame F0, but they are also valid in any other frame as
long as all its components are converted into that frame (note that it is not the same to
compute a time derivative (velocity, acceleration, or angular acceleration) in the inertial
frame and then convert it into a different frame than to directly compute the derivative in a
non-inertial frame):

T02 = T12 + T01 (A17)

v02 = v12 + v01 + ω̂01 T12 (A18)

a02 = a12 + (a01 + α̂01 T12 + ω̂01 ω̂01 T12) + 2 ω̂01 v12 (A19)

ω02 = ω12 + ω01 (A20)

α02 = α12 + α01 + ω̂01 ω12 (A21)
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