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Abstract: Audio-visual speech recognition (AVSR) can significantly improve performance over audio-
only recognition for small or medium vocabularies. However, current AVSR, whether hybrid or
end-to-end (E2E), still does not appear to make optimal use of this secondary information stream
as the performance is still clearly diminished in noisy conditions for large-vocabulary systems. We,
therefore, propose a new fusion architecture—the decision fusion net (DFN). A broad range of time-
variant reliability measures are used as an auxiliary input to improve performance. The DFN is used
in both hybrid and E2E models. Our experiments on two large-vocabulary datasets, the Lip Reading
Sentences 2 and 3 (LRS2 and LRS3) corpora, show highly significant improvements in performance
over previous AVSR systems for large-vocabulary datasets. The hybrid model with the proposed
DFN integration component even outperforms oracle dynamic stream-weighting, which is considered
to be the theoretical upper bound for conventional dynamic stream-weighting approaches. Compared
to the hybrid audio-only model, the proposed DFN achieves a relative word-error-rate reduction of
51% on average, while the E2E-DFN model, with its more competitive audio-only baseline system,
achieves a relative word error rate reduction of 43%, both showing the efficacy of our proposed
fusion architecture.

Keywords: audio-visual speech recognition; hybrid models; end-to-end recognition; reliability
measures; decision fusion net

1. Introduction

When people converse in noisy environments, they often subconsciously focus on
the speaker’ s lips to obtain supplementary information. It was also shown in [1] that the
integration of visual information is of great benefit to human listening and comprehension.
Even in clean speech, simply seeing the speakers articulatory movements influences percep-
tion, which is impressively demonstrated by the McGurk effect [2]. Machine audio-visual
speech recognition (AVSR) is partly inspired by the genuine ability of humans to integrate
audio-visual information, and its history reaches back into the late 1990s [3]. Multiple
studies have provided evidence for dramatic improvements regarding small-vocabulary
AVSR tasks when compared to their audio-only speech recognition counterparts with
otherwise equivalent set-ups [4–7].

Nevertheless, AVSR remains difficult for large-vocabulary tasks, e.g., in large-vocabulary
lip-reading tasks, with many pairs of phonemes corresponding to identical visemes. This
fact makes many words almost indistinguishable to a vision-only system, as for example
“do” and “to”. This intrinsic difficulty makes it difficult to improve the lip-reading perfor-
mance and furthermore could worsen the AVSR performance on large- or open-vocabulary
tasks. On the other hand, current AVSR stream-fusion strategies, whether for hybrid or
end-to-end (E2E) models, still do not seem to integrate the additional information stream
optimally, and thus word error rates (WERs) have long remained unsatisfactory in noisy
conditions [3,8,9].
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Decision fusion is regarded an effective fusion strategy for AVSR. Individual decisions
of multiple classifiers’ are integrated into a single joint decision. Decision fusion covers
many different forms, such as dynamic stream-weighting [10] or state-based decision fu-
sion (SBDF), e.g., in [11–14]. In [15], the output logits of the single-modality networks
were fed into a fully connected layer. Instead of fusing decisions, representation fusion
is an alternative fusion approach for AVSR, e.g., via multi-modal attentions [16] or via
gating [17,18]—for example in [18], which proposed the gated multi-modal unit to dy-
namically fuse different feature streams. Another example for representation fusion is
in [19–21], which used deep feed-forward networks to first create and secondly fuse audio
and video representations.

Inspired by the decision and representation fusion strategies, in this work, based
on [22,23], a unified view of both fusion strategies is presented, using the posterior proba-
bilities p(s|oi

t) of i = 1 . . . M single-modality models as representations of the uni-modal
streams. This new viewpoint opens up a variety of exciting possibilities, centered around
these single-modality representations. On the one hand, new multi-modal models can be
built from multiple pre-trained uni-modal ASR models. On the other hand, optimal stream
integration networks can be learned. These can utilize the reliability information inherent
in the posterior probabilities and may also incorporate longer temporal context into their
fused stream outputs.

In this paper, we compare the performance of the proposed fusion network in both
hybrid and E2E models. Two large-vocabulary datasets, the Lip Reading Sentences 2 and 3
(LRS2 and LRS3) corpora [9,24] are used in our experiments. To analyze the performance
in different noise conditions, realistic noise and reverberation are added to all the acoustic
data. Our baseline models are introduced in Section 2. Section 3 describes the proposed
model structure in both hybrid and E2E models. Our models rely on a range of reliability
measures that are used as auxiliary inputs to inform the fusion network. These measures
are detailed in Section 4. Section 5 provides the experimental details and our results for both
hybrid and E2E models are demonstrated in Section 6. The lessons learned are discussed in
Section 7, which also provides perspectives for future work.

2. Fusion Models Furthermore, Baselines

Many fusion strategies are available in AVSR research. This section provides a brief
introduction to the various fusion strategies that are used as baseline models for this work.
In all baselines, M single-modality models are combined. oi

t are the features of stream i,
where i = 1, · · · , M. Further details are given in Section 5.2.

2.1. Hybrid Baselines

Hybrid speech recognition models have been studied for many years [25]. Although
hybrid models have the disadvantage of higher complexity, they show excellent results
in many studies–for example in [26]—and are still the model of choice for low-resource
settings. They also provide a convenient interface for many fusion strategies, the most
widely used of which are described in the following.

2.1.1. Early Integration

Early integration simply fuses the information of all input streams at the level of the
input features via

ot = [(o1
t )

T , · · · , (oM
t )T ]T . (1)

Here, superscript T denotes the transpose.

2.1.2. Dynamic Stream Weighting

For the fusion of different information streams, stream weighting is a successful and
theoretically sound approach. It addresses the problem that the various streams may
be reliable and informative in distinct ways. Consequently, many researchers employ
the strategy of weighting different modalities [6,14,27]. Many operate static weights; for
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example, Ref. [28] trained audio and video speech recognizers separately, and the different
model state posteriors were combined with constant stream weights λi according to

log p̃(s|ot) =
M

∑
i

λi · log p(s|oi
t). (2)

Here, log p(s|oi
t) is the log-posterior of state s in stream i at time t, and log p̃(s|ot) is

its estimated combined log-posterior.
However, determining optimal weights is a difficult endeavor that has significant

consequences for the overall system quality [29]. In different environmental conditions,
the performance of the different streams varies greatly. Specifically, the visual information
may be more useful in good lighting conditions, yet audio information is most beneficial in
frames with high SNRs. Therefore, the weights ought to be optimized dynamically for the
best performance and to reliably prevent any instances of catastrophic fusion.

As a baseline approach, we therefore re-implemented dynamic stream weighting [30],
which is realized through a weighted combination of the DNN state posteriors of all modalities:

log p̃(s|ot) =
M

∑
i

λi
t · log p(s|oi

t). (3)

The dynamic stream weights λi
t are predicted by a feedforward network from the

estimated reliability indicators, as discussed in detail in Section 4.
Many studies have shown that reliability information is of great benefit to multi-modal

integration [5,6,31,32]. Reliability indicators enhance system performance by informing the
integration model about the degree of reliability in the separate information streams across
time. This approach to integrated stream information can effectively and significantly
improve the recognition accuracy in lower signal-to-noise ratios (SNRs).

In contrast to many other strategies, such as [10,33,34], reliability-based stream in-
tegration does not suffer from wide disparities in audio and video model performance.
This is greatly beneficial to our case as we wish to design a system that least avoids any
performance degradation due to the inclusion of multiple streams and that ideally profits
from the visual modality under all, even under clean, acoustic conditions.

2.1.3. Oracle Weighting

As an interesting reference point, so-called oracle stream weights [30] were also im-
plemented. These oracle weights are computed by minimizing the cross-entropy with the
ground-truth forced alignment information, which is obtained from the clean acoustic data
set. Since this method requires the ground-truth text transcription of the test set, this is not
strictly a baseline but, rather, it defines a theoretical upper performance bound for dynamic
stream-weighting approaches. The computed oracle stream weights λi

t are used to calculate
the estimated log-posterior through Equation (3).

2.2. End-to-End Baselines

End-to-end speech recognition is drawing a great deal of attention and has quickly
gained widespread popularity for AVSR tasks [35–37]. End-to-end models typically predict
text sequences directly from signals. In this work, we select the sequence-to-sequence (S2S)
transformer model (TM) [38] with connectionist temporal classification (CTC) [39] as a
baseline, denoted by TM-CTC [9].

This joint model has achieved high performance in many different tasks [9,40]. In the
TM-CTC model, the CTC component learns to align features and transcriptions explicitly,
which is helpful for model convergence [41]. The E2E AVSR model in [9] trains the
transformer and CTC separately. The transformer combines the audio and video context
vectors to realize the information stream integration, and, in the CTC part, the transformer
audio and video encoder outputs are simply concatenated.
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In this work, we re-implemented the same structure, with the difference that the model
was trained with the joint CTC/transformer strategy, serving as our E2E AVSR baseline
model [41]. This joint training strategy leads to better overall performance for the AVSR
task than the separate training in [9]. For the joint TM-CTC optimization, the training stage
uses an objective function that linearly combines the CTC and S2S objectives

L = α · log pctc(s|o) + (1− α)log ps2s(s|o), (4)

with s as the states and α as the constant hyper-parameter. During decoding, an RNN
language model pLM(s) is also used; thus, the decoder optimizes the objective:

log p∗(s|o) = α log pctc(s|o) + (1− α) log ps2s(s|o) + θ log pLM(s), (5)

where θ controls the contribution of the language model.

3. System Overview

Our proposed decision fusion net (DFN) can be employed both in hybrid and E2E
models. Both model architectures are introduced briefly in the following.

3.1. Hybrid System

In hybrid speech recognition systems, the ASR task is split into two constituent phases:
an estimation of state posteriors from the extracted acoustic features and a decoding
stage that utilizes these posteriors in finding an optimal path by a graph search through
a decoding graph. This graph can be obtained and decoded efficiently on the basis of
weighted finite state transducers (WFSTs) [42]. Thus, the hybrid structure provides a
natural interface for stream fusion at the level of the estimated pseudo-posteriors of all
modalities p(s|oi

t).
For our hybrid AVSR model, all modalities are therefore dynamically combined

through the proposed DFN (Figure 1). The state posteriors of each modality represent
the instantaneous feature input of the DFN. Different reliability indicators are also used
as auxiliary inputs, which help in estimating the multi-modal log-posteriors log p̃(s|ot)
for the decoder. In the hybrid system, we investigate M = 3 single-modality models, one
acoustic and two visual. The estimated posterior log p̃(s|ot) is computed via

log p̃(s|ot) = DFN([p(s|oA
t )

T , p(s|oVA
t )T , p(s|oVS

t )T , RT
t ]

T), (6)

where p(s|oA
t ), p(s|oVA

t ) and p(s|oVS
t ) are the state posteriors of the audio model and of

the appearance-based and a shape-based video model, respectively. Rt is the vector of all
reliability measures at time t as detailed in Section 4.

oVA
t

p(s|oVA
t )

Graph search

ŵ

log p̃(s|ot)

DFN

Acoustic
model

Video shape
model

Rt

p(s|oA
t ) p(s|oVS

t )

oA
t

Video
appearance

model

oVS
t

1

Figure 1. Audio-visual fusion based on the DFN, applied to one stream of audio and two streams of
video features.
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The hybrid AVSR fusion model is trained with the cross-entropy loss

LCE = − 1
T

T

∑
t=1

S

∑
s=1

p∗(s|ot) · log p̃(s|ot). (7)

Here, p∗(s|ot) is the goal state probability of state s, calculated by forced alignment
of the clean acoustic training data. The estimated vector of log-posteriors log p̃(s|ot) is
obtained from Equation (6). Finally, the decoder utilizes these estimated log-posteriors to
find the optimum word sequence by graph searching through the decoding graph [43].

3.2. E2E System

Our E2E AVSR model is based on the TM-CTC model, which combines a transformer
model (TM) and a connectionist temporal classification (CTC) model through Equation (4)
during the training stage and through Equation (5) in the decoding stage. In all E2E
experiments, M = 2 modalities are considered, one acoustic and one visual (oA and oVI

in Figure 2). The following sections describe the encoder and decoder architecture, which
both needed modifications for our proposed stream integration approach.

hA hVI ρ i

oA

Transformer
Encoder

Bresenham’s
Algorithm

3D/2D ResNet

Mouth ROI

Sub-sampling

Ri

Transformer
Encoder

oVI

1

Figure 2. Audio encoder (left), video encoder (middle) and reliability measure encoder (right) for
both modalities i ∈ A, VI. The blue blocks are used to align video features with audio features; the
turquoise block shows the transformer encoder.

3.2.1. Encoder Architecture

The structure of the conventional transformer encoder is depicted in Figure 3. The
features are first fed into a sub-sampling block comprised of two 2D convolution layers
with a kernel size of 3 and stride of 2, which are used to decrease the computational effort.
The input has dimension [batch, 1, N f , d f ], where NF is the number of frames and d f is the
input feature dimension. With two 2D convolution layers and a feed-forward layer, the
sub-sampling layer reduces the sequence length from NF to NF/4 and changes the feature
size d f to a common dimension datt = 256. A stack of 12 encoder blocks, consisting of
a multi-head self-attention and a fully connected feed-forward layer, yields the desired
encoder output hi for each modality.

Figure 2 depicts all encoders in the E2E system—an audio encoder, a video encoder
and a reliability encoder. As described in [41], for a joint TM-CTC model, the output
sequence of the transformer encoder is used in both the transformer and the CTC decoder.
The video features are extracted according to [9] via a pre-trained spatio-temporal visual
front-end [44] (the 3D/2D ResNet in Figure 2). The extracted video features are then passed
through the transformer encoder. Due to the different frame rates of the audio and video
features, a Digital Differential Analyzer (comparable to Bresenham’s algorithm [45]) is used
to optimally replicate the video features to achieve the same sequence length.
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In the multi-head self-attention block in Figure 3, the queries Q, keys K and values V
are identical. The attention transform matrix [38] of every attention head with index j is
computed via

Tj = softmax


(

WQ
j QT

)T(
WK

j KT
)

√
dk

. (8)

The attention is computed as

αj = attentionj(Q, K, V) = Tj

(
WV

j VT
)T

, (9)

where W∗j are the learned parameters, dk = datt
h and h is the number of attention heads.

In the attention mechanism, the attention transform matrix Tj indicates the relevance of
the current keys for the current queries. Tj is of sizeNQ × NK, where NQ and NK are the
lengths of Q and K, respectively. A fully connected layer is used in the self-attention block
to project the concatenated outputs of all heads αj. Finally, the output of the self-attention
block is input to a feed-forward layer, which yields the encoder output hi.

hi

Feed-forward

Multi-head self-
attention block

× 12

Sub-sampling

oi

1

Figure 3. Transformer encoder for both modalities i ∈ A, VI. The blue block shows the sub-sampling,
whereas the turquoise blocks comprise the the transformer encoder.

3.2.2. Decoder Architecture

Figure 4 shows the TM-CTC decoder components for each stream. As in the baseline
model [9], the CTC decoder consists of a stack of six multi-head self-attention blocks and
the output layer. The transformer decoder is comprised of a stack of six decoder blocks,
each containing a multi-head attention block. For each decoder, the keys (K) and values
(V) are the encoder outputs hi—both of size (NF/4)× 256. The queries (Q) come from
the previous decoder block and are transformed by a multi-head self-attention block. Q
is a NT × 256 matrix, where NT represents the length, or the number of tokens, of the
transcription. In the decoder, the attention transform matrix Tj is of size NT × NF/4, which
transforms the sequence length from NF/4 to NT . Hence, the length of the transformer
posteriors is NT .

Our goal is to integrate the stream-wise posteriors given all the stream reliability
measures. Fortunately the integration step for the CTC model is straightforward, because
the stream-wise posteriors pctc(s|oi) are already temporally aligned with the reliability
metrics ρ i—both of length NF/4.

In contrast, the integration for the transformer remains difficult. The reliability metrics
ρ i in Figure 2, are of length NF/4; however, we expect them to temporally match the token-
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by-token posteriors ps2s(s|oi). Therefore, a transformation from the linear time domain
of length NF/4 to length NT is necessary at this point. As shown in Figure 4, there are
six multi-head attention blocks in the transformer decoder, and each block has its own
attention transform matrix Ti

j. Here, the transform matrix in the final block of modality i is

reused to transform the length of ρ i from NF/4 to NT . The transformed reliability attention
of head j (ρ̃ i

j ) is computed by

ρ̃ i
j = Ti

j ·
(

Wiρ
j (ρ

i)T
)T

. (10)

The final reliability embedding vector ρ̃ i is obtained by projecting a concatenation of
all heads of the transformed reliability attentions via a fully connected layer.

Figure 5 shows the topology of the multi-modal fusion for the E2E model. The posterior
probabilities from all modalities are the inputs, and the corresponding reliabilities ρ i, or
their embeddings ρ̃ i are used to estimating the multi-modal log-posteriors log p̃(s|o),
for both the CTC and the S2S model. Finally, the estimated log-posteriors from both
transformer and CTC model are combined through Equation (4) in the training stage and
via Equation (5) in the decoding stage.

Feed-forward

Multi-head
Attention block

Multi-head self-
attention block

ps2s(s|oi)

Linear layer +
Softmax

hi

K, V:(NF/4)× 256

× 6

pctc(s|oi)

Feed-forward

Multi-head self-
attention block

× 6

hi

Linear layer +
Softmax

Q:NT × 256

1

Figure 4. Transformer decoder (left) and CTC decoder (right) for both modalities i ∈ A, VI.

log p̃type(s|ot)

ptype(s|oA) ptype(s|oVI) ρ A(ρ̃ A) ρ VI(ρ̃ VI)

DFNtype

1

Figure 5. DFN fusion topology for E2E model, type ∈ s2s, ctc.

4. Reliability Measures

As stated before, in this work, we aim to fuse stream-wise posteriors into joint pos-
teriors according to the respective stream reliabilities. Therefore, a variety of reliability
measures are extracted to inform the integration model of the time varying reliability of the
separate streams. Although the reliabilities for the hybrid and E2E models are similar, there
are some subtle differences. These will be discussed in more detail in the following part.
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4.1. Reliabilities for the Hybrid Model

For the dynamic stream weighting in our proposed DFN hybrid model, both model-
based and signal-based reliability measures (e.g., see Table 1) are extracted; most of them
were previously introduced in [30].

Table 1. Overview of reliability measures.

Model-Based
Signal-Based

Audio-Based Video-Based

Entropy
Dispersion
Posterior difference
Temporal divergence
Entropy and dispersion ratio

MFCC
∆MFCC
SNR
f0
∆ f0
voicing probability

Confidence
IDCT
Image distortion

To obtain the model uncertainty information, a number of model-based measures
are extracted, i.e., entropy, dispersion, posterior difference, temporal divergence, entropy-
and dispersion-ratio. The model-based measures consider the audio and video models
separately. All these measures are derived from the log-posterior probabilities of their
respective single-modality models.

Signal-based measures are used to estimate the signal quality in each stream. They can
be subdivided into audio- and video-based measures. The audio reliability measures are
the first five MFCC coefficients with their temporal derivatives ∆MFCC, again as in [30].
The signal-to-noise ratio (SNR) is an important indicator related to the intelligibility of
the audio signal. However, due to the acoustic data augmentation with realistic noise,
conventional SNR estimation is not able to provide adequate results.

For this reason, the deep learning approach DeepXi [46] is used here to estimate the
frame-wise SNR. Furthermore, as pitch appears to influence the reliability of acoustic
features, specifically of MFCC [47,48], the estimated pitch f0 and its temporal derivative,
∆ f0, are also used as reliability indicators. The probability of voicing [48] is also a valuable
reliability indicator, which is computed from the Normalized Cross-Correlation Function
(NCCF) values for each frame.

For the video stream, OpenFace [49] is used for face detection and facial landmark
extraction. Here, the confidence of the face detector in each frame is considered as a video
signal quality indicator. The Inverse Discrete Cosine Transform (IDCT), as well as the image
distortion estimates, are also included and computed as in [30].

4.2. Reliabilities for the E2E Model

The E2E model focuses on signal-based reliability measures, e.g., the confidence of
the face detector. Additionally, some Facial Action Units (AUs) [49,50] about the chin, jaw
and lip movements (AU12, AU15, AU17, AU23, AU25 and AU26) were also selected to
help to improve the performance of the visual model. Different from the hybrid model, the
E2E model does not use the image distortion estimates as part of the reliability measures,
as our experimental results indicated these estimates to be detrimental to performance in
initial experiments. More detailed analyses and discussions can be found in Section 6.1.
The audio-based reliability measures comprise the first five MFCC coefficients, estimated
SNR, the pitch f0 and its first temporal derivative as well as the probability of voicing.

5. Experimental Setup

This section introduces the databases and the feature extraction for both streams and
it details our experimental setup.
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5.1. Dataset

The Oxford-BBC Lip Reading Sentences (LRS) 2 and 3 corpora [9,24] were selected for
our experiments, see Table 2 for their statistics.

Table 2. Characteristics of the utilized datasets.

Subset Utterances Vocabulary Duration [hh:mm]

LRS2 pre-train 96,318 41,427 196:25
LRS2 train 45,839 17,660 28:33

LRS2 validation 1082 1984 00:40
LRS2 test 1243 1698 00:35

LRS3 pre-train 118,516 51 k 409:10

The hybrid model experiments used the LRS2 corpus. All acoustic, visual and AV
models were trained with the combined LRS2 pre-train and training set. To compare the
performance of our proposed E2E model with the baseline model [9], the LRS3 corpus pre-
train set was also used in the E2E experiments. In AVSR tasks, the acoustic model is always
in a dominant position. To analyze the performance in different noise environments and
counter the audio-visual model imbalance, we applied data augmentation. The acoustic
noise data comes from the MUSAN noise corpus [51]. For the hybrid model dataset, the
acoustic data was augmented with the ambient noise, which contains noises, such as wind,
footsteps, paper rustling and rain as well as indistinct crowd noises. SNRs were randomly
selected from −9 to 9 dB in steps of 3 dB, where the SNRs are computed by:

SNRdB = 10log10
Psignal

Pnoise
(11)

with Psignal and Pnoise as the signal and noise energy, respectively.
Since the LRS2 dataset does not contain highly reverberant data, the acoustic data was

artificially reverberated by convolutions with measured impulse responses. These impulse
responses also came from the MUSAN corpus. The E2E model training set augmenta-
tion was the same as that in hybrid model, with ambient noise and SNRs were between
−9 and 9 dB. The video sequences were augmented with random cropping and horizontal
flips with a 50% probability. To check the robustness of our model, new acoustic noise
conditions that are unseen in the training data were added to the test set. Both ambient and
music noise were used, from −12 to 12 dB. Similarly, Gaussian blur and salt-and-pepper
noise were also applied to the visual data for the test set. The acoustic data augmentation
was realized through a Kaldi Voxceleb example recipe.

5.2. Features

Both our hybrid and the E2E models used log-mel features together with the estimated
pitch f0 and its derivative, ∆ f0, and the voicing probability as the audio features. The frame
size was 25 ms with a 10 ms frameshift. The Kaldi hybrid model extracts audio features with 40
triangular mel filters, while in the ESPnet E2E model, the number of mel-frequency bins is 80.

For both systems, OpenFace [49] was used for face detection and facial landmark
extraction. The speaker's face was detected at 25 frames per second. The digital differential
analyzer, which uses the Bresenham algorithm, was used to align the audio and video
streams. In the hybrid model, two kinds of video features were extracted: The video
appearance model (VA) used 43-dimensional IDCT coefficients of the gray-scale region
of interest (ROI) as features, where the mouth ROI was extracted from the facial mouth
landmarks with a rectangular box.

The video shape model (VS), in contrast, is based on the 34-dimensional non-rigid
shape parameters described in [49]. For the E2E model, the mouth ROI was fed directly
into a pre-trained video model [44], which first performed 3D convolutions on the image
sequence and then utilized a 2D ResNet to extract the final facial feature representation.
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5.3. Hybrid Model Implementation Details

In the hybrid model, the Kaldi toolkit [52] was used for speech recognition. The LRS2
pre-train and training set were used together for model training. The hybrid model starts
with HMM-GMM training, which follows the standard Kaldi AMI recipe, i.e., monophone
training followed by triphone training. Afterwards, a linear discriminate analysis (LDA)
stacks the context of features to obtain discriminative short-term features. Finally, the
speaker adaptive training (SAT) is used to compensate the speaker characteristics. Each
step produces a better forced alignment based on the current model for later network
training. The subsequent HMM-DNN training used the nnet2 p-norm network [53] recipe,
which is efficiently parallelizable.

The estimated log-posteriors log p(s|oi
t) for each stream were obtained from each

trained single modality. As shown in Figure 6, the posteriors of all modalities were the
inputs for our proposed decision fusion net (DFN). The corresponding reliability measures
were used to estimating the multi-modal log-posteriors log p̃(s|ot), which was finally used
in graph searching through a decoding graph to obtain the best word sequence. In the
hybrid model, all modalities were trained separately. To ensure that all modalities search
through the same decoding graph, the phonetic decision tree was shared between all
single modalities. For this reason, the number of states for each modality was identical—
specifically 3856.

Log-Softmax

log p̃(s|o)

FC

Tanh Dropout

3 BLSTMs

Hidden Layer,
ReLU,Dropout,

LN

× 3

[p(s|oA); p(s|oVA); p(s|oVS);Rt]

1

Figure 6. Decision fusion net structure for the hybrid model. The turquoise block indicates the
successively repeated layers.

For the hybrid model, there were 41 reliability indicators, therefore, the input of the
DFN was (3× 3856 + 41) = 11,609 dimension. The three hidden layers in Figure 6 contain
8192, 4096 and 1024 units, respectively, each followed by a ReLU activation function, layer
normalization (LN) and with a dropout rate of 0.15. After hidden layers are three BLSTM
layers with 1024 memory cells for each direction, with the tanh activation function. A fully
connected (FC) final layer projects the data to the output dimension of 3856. A log-softmax
function finally yields the log-posteriors.

To avoid overfitting, we applied early stopping and check every 7900 iterations. When
the validation loss did not decrease for 23,700 iterations, the training was stopped. Finally,
the trained model was evaluated on the test set. To evaluate the effect of bi-directional
inference, two experiments with the proposed DFN strategy were conducted. The first one
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used the BLSTM-DFN—exactly as shown in Figure 6. The second employed an LSTM-DFN,
replacing the BLSTM layers with LSTM layers.

The initial learning rate was 0.0005, and this was decreased by 20% if the validation
loss did not reduce in the early stopping check. The batch size was 10. The DFN model
fine-tuning was based on the PyTorch library [54] with the ADAM optimizer. The training
was performed with a GeForce RTX 2080 Ti GPU. Each single-modality model and the
early integration training took around 7 days. A complete training of the BLSTM-DFN or
LSTM-DFN stream integration model ran for approximately 15 days.

E2E Model Implementation Details

To compare the performance between our proposed E2E AVSR model and the baseline
model, all E2E models, which were trained by ESPnet, were pre-trained on the same data,
the LRS2 and LRS3 pre-train set. However, training with such an enormous dataset is time-
consuming. To save computational effort, in the pre-training stage, the parameters of the
ResNet video feature extractor were frozen, which is the same as in the baseline model [9].
Then, in the training stage, all parameters, including those of the ResNet, were fine-tuned on
the LRS2 training set. To improve the performance, our proposed TM-CTC AVSR model was
initialized with the audio- and video-only model, which were trained separately.

All ESPnet E2E models share the same language model, which always predicts one
character at a time and receives the previous character as its input. It was implemented as a
unidirectional four-layer recurrent network, with each layer having 2048 units. This work was
based on a pre-trained language model, which was trained on the LibriSpeech corpus [55].

As shown in Figure 7, in the E2E model, the single-modality posteriors are the inputs
and, together with the corresponding reliability information, they are used to estimate the
multi-modal log-posteriors, log p̃(s|o), for both the CTC and the S2S model. Both DFNctc
and DFNs2s in Figure 7 start with three hidden layers, which have 8192, 4096 and 512 units,
each using the ReLU activation function and layer normalization (LN).

Log-Softmax

log p̃ctc(s|o)

FC

Tanh Dropout

3 BLSTMs

Hidden Layer,
ReLU,Dropout,

LN

× 3

[pctc(s|oA); pctc(s|oVI);ρ A;ρ VI]

log p̃s2s(s|o)

Log-Softmax

FC

Tanh Dropout

Hidden Layer,
ReLU,Dropout,

LN

× 3

[ps2s(s|oA); ps2s(s|oVI); ρ̃ A; ρ̃ VI]

1

Figure 7. DFNctc (left) and DFNs2s (right). The turquoise blocks indicate the successively repeated layers.

The dropout rate was 0.15. DFNctc contained three BLSTM layers with 512 memory
cells for each direction, using the tanh as their activation function. BLSTM layers for the
DFNs2s were also tested; however, this resulted in overfitting. Similarly to the hybrid
model, again, the final layer was realized as a fully connected (FC) layer followed by a
log-softmax function, which gives us the estimated log-posteriors. In Equations (4) and (5),
the language model contribution parameter θ is 0.5; α is 0.3. h = 4 heads were used in
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the attention blocks. The transformer-learning factor controls the learning rate. In the
pre-training stage, the factor was 5.0, while in the fine-tuning stage, it was 0.05.

The ESPnet E2E models were trained by NVIDIA’s Volta-based DGX-1 multi-GPU
system with seven Tesla V100 GPUs, each with 32 GB memory. All single-modality models
were trained for 100 epochs. The AVSR baseline model and our proposed model were
pre-trained for 65 epochs and fine-tuned for 10 epochs.

6. Results

In this section, we compare the performance of our experimental results based on the
hybrid and E2E models.

6.1. Hybrid Model

The performance of all hybrid baseline models and our fusion strategies are first
shown in this part. In the following, some intuitive exemplary decoding results of our
experiments are given in Table 3. Comparing all results, the proposed BLSTM-DFN had
better performance compared with the other baseline strategies.

Table 3. Decoding results for three exemplary sentences S1, S2 and S3. RT represents the reference
transcription; AO is audio only model; EI is early integration; CE and MSE represent dynamic stream
weighting with CE and MSE as loss functions; OW is the oracle stream-weighting; and LSTM-DFN
and BLSTM-DFN are variants of our proposed integration model.

Type Result

RT However, what a surprise when you come in
AO However, what a surprising coming
EI However, what a surprising coming
CE However, what a surprising coming

S1 MSE However, what a surprising coming
OW However, what a surprising coming
LSTM-DFN However, what a surprising coming
BLSTM-DFN However, what a surprise when you come in

RT I’m not massively happy
AO I’m not mass of the to
EI Some more massive happy
CE I’m not massive into

S2 MSE I’m not massive into
OW I’m not mass of the happiest
LSTM-DFN I’m not massive it happened
BLSTM-DFN I’m not massively happy

RT Better street lighting can help
AO Benefit lighting hope
EI However, the street lighting and hope
CE Benefit lighting hope

S3 MSE Benefit lighting hope
OW In the street lighting hope
LSTM-DFN However, the street lighting and hope
BLSTM-DFN Better street lighting can help

The estimated log-posterior probabilities for the target state sequence, log p̃(s∗t |ot),
are plotted in Figure 8 to show the discriminative power of different models. Larger
log-posterior probabilities indicate that the estimated state is closer to the target state. As
expected, the BLSTM-DFN produced larger log-posteriors on the reference states, compared
to the other fusion strategies. This corresponds with the better performance of the BLSTM-
DFN that was observed on this example.
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AO EI CE MSE OW LSTM-
DFN

BLSTM-
DFN

10

8

6

4

2

0

Figure 8. Estimated log-posteriors of sentence S2 for the target state s∗t , with additive noise at −9 dB.
All abbreviations are the same as in Table 3. The whiskers show the maximum and minimum values;
the upper and lower bounds of the green blocks represent the respective 25th and 75th percentile; the
yellow line in the center of the green block indicates the median.

Figure 9 gives an overall comparison of the performance of the audio-only model
and AVSR models in different noise conditions. Our proposed fusion strategy improved
the Word Error Rate (WER) in every SNR environment and even for the clean acoustic
data. In worse SNR conditions, the proposed DFN reduced the WER over 10%. The DFN
with BLSTM layers outperformed the—realistically unachievable—oracle weighting (OW)
in many cases, while the latter is based on the ground-truth transcription information of
the test set and could be considered as the upper limit for the dynamic stream-weighting
method (as described in Equation (3)).

9 6 3 0 3 6 9 clean
SNR (dB)
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BLSTM-DFN

Figure 9. WER (%) on the test set of the LRS2 corpus in different noise conditions.
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Table 4 gives the detailed results of all our experiments under additive noise. The aver-
age WERs of the visual models exceeds 80%, which means that lipreading is still difficult for
the large-vocabulary task. One potential reason is that the video input is highly correlated
in each frame, making the GMM model challenging to train. We also aimed to improve the
performance of the visual models by using the pre-trained spatio-temporal visual front-end
from [44] to extract high-level visual features but without seeing improvements.

Table 4. Word error rate (%) on the LRS2 test set under additive noise.

Model
dB −9 −6 −3 0 3 6 9 Clean Avg.

AO 48.96 41.44 33.07 30.81 22.85 18.89 16.49 10.12 27.83
VA 85.83 87.00 85.26 88.10 87.03 88.44 88.25 88.10 87.25
VS 88.11 90.27 87.29 88.88 85.88 85.33 88.58 87.10 87.68

EI 40.14 32.47 23.96 26.59 20.67 16.68 14.76 10.02 23.16

MSE 46.48 37.79 27.45 27.47 19.52 16.58 15.09 9.42 24.98
CE 45.79 37.14 26.32 28.03 19.40 16.68 14.76 9.42 24.65
OW 30.33 26.47 15.41 21.25 13.66 11.66 10.45 7.54 17.10

LSTM-DFN 33.30 27.22 21.26 21.25 19.17 13.97 15.84 10.32 20.29
BLSTM-DFN 27.55 23.11 17.89 16.35 14.93 10.25 10.78 7.84 16.09

Early integration (EI) showed a relative WER reduction of 16.78%; however, the
improvement was not as significant as the proposed DFN approach. Comparing the
BLSTM-DFN and the LSTM-DFN, the former showed the better performance for non-real-
time decoding. Both the LSTM- and BLSTM-DFN used recurrent layers with 1024 cells. A
BLSTM-DFN using 512 memory cells per layer was also tested to balance the number of
the model parameters. The average WER of this was 16.14%, which is still better than that
of the LSTM-DFN with 1024 cells.

We tested the improvements that we were seeing for statistical significance, comparing
in each case, with the audio-only model by using the NIST Scoring Toolkit SCTK (https:
//github.com/usnistgov/SCTK, accessed on 28 October 2021). All results are summarized
in Table 5. As can be seen, the BLSTM-DFN yielded highly significant improvements over
the audio-only model (AO). In contrast, the early integration model, EI, only considerably
improved the performance at lower SNR conditions (at SNRs < 3 dB).

Table 5. Asterisks indicate a statistically significant difference compared with the audio-only model
(AO). *** denotes p 6 0.001, ** shows 0.001 < p 6 0.01, * corresponds to 0.01 < p 6 0.05, and ns
indicates results where p > 0.05.

Model
dB −9 −6 −3 0 3 6 9 Clean Avg.

EI *** *** *** * ns ns ns ns ***

MSE * *** *** ns * ** ** ns ***
CE ns *** *** ns * ** ** ns ***
OW *** *** *** *** *** *** *** *** ***

LSTM-DFN *** *** *** *** * *** ns ns ***
BLSTM-DFN *** *** *** *** *** *** *** * ***

Far-field AVSR (by artificially reverberating the audio data through convolutions with
measured impulse responses) was also evaluated. According to Table 6, the BLSTM-DFN
still outperformed the other fusion strategies; however, in this case, it did not reach the
performance of oracle weighting (which uses oracle knowledge for optimal weighting,
see Section 2.1.3). One reason for this may be an insufficient amount of reverberant acoustic

https://github.com/usnistgov/SCTK
https://github.com/usnistgov/SCTK
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training signals—while the (non-realistic, upper-bound) OW setup requires few parameters
to be estimated, the DFN actually learns an optimal, non-linear fusion strategy, for which
more data may be required.

As can also be seen, all audiovisual models significantly improved the performance
compared with the AO model. Here, again, the improvement of early integration was
inferior to the other proposed models, rendering DFN as the most effective of all practical
approaches. It can also be noted that the unidirectional LSTM-DFN was successful for
this dataset, which would thus allow for real-time implementations as well. Overall, the
introduced DFN was generally superior to instantaneous dynamic stream weighting.

Table 6. Far-field AVSR WER (%) and statistically significance compared with the AO model on the
LRS2 dataset. *** denotes p 6 0.001, ** shows 0.001 < p 6 0.01

AO EI MSE CE OW LSTM-DFN BLSTM-DFN

23.61 19.15 (**) 19.54 (***) 19.44 (***) 12.70 (***) 15.67 (***) 15.28 (***)

It is also interesting to analyze which kinds of reliability measures are the most infor-
mative and effective. Therefore, after comparing the performance between our proposed
model and the baseline models, we also conducted experiments, in which we utilized
different reliability measure sets in our proposed BLSTM-DFN model. Both model-based
and signal-based reliabilities were taken into consideration. Table 7 lists the experimental
results based on different reliability indicator groups.

Our experimental results indicate that image distortion estimates were actually detri-
mental to performance (RV and All in Table 7). Consequentially, we repeated the BLSTM-
DFN model training without these estimates (RṼ and Ãll in Table 7). Both audio- and
video-based reliability indicators were able to improve the model performance. The audio-
based measures outperformed the video-based measures on average. However, combining
both audio- and video-based measures led to the best performance (Ãll), achieving a
relative word-error-rate reduction of 50.59% compared to the audio-only model.

Table 7. BLSTM-DFN word error rates (%) on the LRS2 test set under additive noise. All: apply all
reliability indicators as shown in Table 1; RA: all audio-based reliability indicators; RV: all video-
based reliability indicators; RṼ: using the video-based reliability indicators, excluding the image
distortion estimates; Ãll: using all reliability indicators except for image distortion estimates; None:
proposed model without reliabilities. Avg: Average performance, together with the significance of
improvements (compared with None). ns: not significant and ***: p 6 0.001.

R dB −9 −6 −3 0 3 6 9 Clean Avg.
All 27.55 23.11 17.89 16.35 14.93 10.25 10.78 7.84 16.09 ns

RA 23.39 17.96 14.51 15.68 12.97 8.44 10.67 6.94 13.82 ***
RV 98.12 98.50 98.76 98.22 99.43 98.79 99.46 98.81 98.76
RṼ 25.97 21.23 17.66 17.58 14.24 10.85 9.70 7.54 15.60 ns

None 24.48 21.70 17.55 18.35 16.07 9.35 12.07 8.43 16.00

Ãll 22.20 18.52 14.40 15.46 13.66 8.04 9.91 7.84 13.75 ***

We also tested the improvements that were obtained when adding reliability infor-
mation for their statistical significance. While the visual reliabilities slightly boosted the
performance relative to the model without reliability information (None), these improve-
ments were not statistically significant. This stands in contrast with the effect of acoustic
reliability indicators, which provided highly significant improvements by themselves as
well as in combination.
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6.2. E2E Model

To compare the performance of the hybrid model and the E2E model directly, and an
additional audio-only model was trained on the LRS2 corpus. The E2E audio-only model
yielded a WER of 3.7%, while the hybrid audio-only model showed a WER of 11.28%.
Table 8 shows the experimental results in all noise conditions. As expected, the audio-only
model outperformed the video-only model. Comparing the performance between the
baseline by [9] and our proposed AVSR model, our introduced DFN resulted in a better
performance in all noise environments. Even in clean acoustic conditions, the proposed
model clearly reduced the WER.

On average, the new system gained a relative word error rate reduction of 43%
compared to the audio-only setup and 31% compared to the audio-visual end-to-end
baseline. Table 9 also shows the results of the NIST statistical significance tests between
different model setups.Our work compares the AV baseline and the DFN with the audio-
only model and shows the difference between the AV baseline and the proposed DFN, all
in different noise augmentation types.

The AV baseline only significantly improved the performance compared with the
AO model in lower noise conditions (SNR < 0 dB). In contrast, our proposed DFN model
substantially outperformed both the AO recognizer and the AV baseline, not only in most
noise environments but also in clean acoustic conditions. It was also effective at information
integration with blurred or noisy video data, again significantly improving over audio-only
recognition as well as over the AV baseline model.

Table 8. Performance of the audio-visual and uni-modal speech recognition (WER [%]). AO: audio
only. VO: video only. AV: AV baseline [9]. DFN: proposed DFN fusion. m: music noise. a: ambient
noise. vc: clean visual data. gb: visual Gaussian blur. sp: visual salt-and-pepper noise.

Model
dB −12 −9 −6 −3 0 3 6 9 12 Clean Avg.

AO (m) 18.9 13.7 11.2 8.4 6.3 6.8 4.5 4.1 4.3 4.2 8.2
AO (a) 25.7 23.4 18.5 11.6 8.2 9.0 5.9 3.8 4.4 4.2 11.5
VO (vc) 58.7 61.0 61.7 69.6 69.6 63.5 64.6 63.6 66.6 61.9 64.1
VO (gb) 66.6 69.2 71.0 68.5 68.5 71.1 62.7 69.4 67.6 66.9 68.2
VO (sp) 68.5 72.5 73.7 70.1 70.1 70.6 68.3 69.1 73.1 67.9 70.4

AV (m.vc) 14.6 11.8 6.4 7.9 7.9 6.3 5.2 4.4 3.4 4.0 7.2
DFN (m.vc) 11.1 8.7 5.5 4.8 4.8 4.5 3.6 3.3 2.2 2.4 5.1

AV (a.vc) 19.1 19.0 14.3 7.3 6.3 6.0 5.7 4.5 4.9 4.0 9.1
DFN (a.vc) 14.3 11.9 8.1 4.8 4.0 5.4 3.7 2.8 3.6 2.4 6.1

AV (a.gb) 20.6 18.9 15.0 7.7 6.8 7.5 5.9 3.9 4.8 4.0 9.5
DFN (a.gb) 14.9 12.8 9.4 5.2 4.2 5.5 3.8 3.0 4.1 2.6 6.6

AV (a.sp) 19.5 19.9 15.3 7.7 7.2 6.3 5.6 4.4 4.6 4.3 9.5
DFN (a.sp) 15.4 12.8 9.9 5.2 4.7 5.5 3.4 2.6 4.0 2.5 6.6

For the E2E model, we also tested the effect of the different groups of reliability measures.
Again, both model-based and signal-based reliabilities were taken into consideration. Table 10
shows that the models with the audio- or video-based reliability indicators (RA and RV)
outperformed those without reliability measures (None). The audio-based reliabilities were,
again, more effective than the video-based measures, particularly in high-SNR conditions.

Furthermore, as in the hybrid model, combing the audio- and video-based reliability
indicators delivered the best performance (All in Table 10). The last column in Table 10
shows the results of a statistical significance test of those improvements. The audio-
based reliability measures are clearly more effective than the visual ones. Similarly to
the hybrid model in Table 7, using all reliability measures jointly led to the best overall
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performance, with highly significant improvements in comparison to the case without
reliability information.

Table 9. Statistical significance tests, comparing the results of different model setups *** denotes
p 6 0.001, ** shows 0.001 < p 6 0.01, * corresponds to 0.01 < p 6 0.05, and ns indicates results where
p > 0.05; the other abbreviations are described in Table 8.

Model
dB −12 −9 −6 −3 0 3 6 9 12 Clean Avg.

AO-AV (m.vc) * ns *** ns ns ns ns ns ns ns ***
AO-DFN (m.vc) *** *** *** ** ns ** ns ns * *** ***
AV-DFN (m.vc) ** ** ns ** *** * ns * ns ** ***

AO-AV (a.vc) *** ** ** ** ns ** ns ns ns ns ***
AO-DFN (a.vc) *** *** *** *** *** *** ** ns ns *** ***
AV-DFN (a.vc) ** *** *** * * ns ** ns ns ** ***

AO-DFN (a.gb) *** *** *** *** *** *** * ns ns ** ***
AV-DFN (a.gb) *** *** *** * ** * ** ns ns * ***
AO-DFN (a.sp) *** *** *** *** ** ** *** ns ns ** ***
AV-DFN (a.sp) * *** *** * * ns ** * ns ** ***

Table 10. Performance of the proposed E2E DFN fusion (WER [%]), based on the different E2E
reliability indicator configurations. Among these, RA applies only audio-based reliability indicators
and RV applies only video-based reliability indicators. None: proposed model without reliability
information; All: use all reliability indicators. Other abbreviations as defined in Table 8. Avg:
Average performance, together with the significance of improvements (compared with None). ns: not
significant, ***: p 6 0.001, **: 0.001 < p 6 0.01 and *: 0.01 < p 6 0.05.

Model

dB
−12 −9 −6 −3 0 3 6 9 12 Clean Avg.

RA (m.vc) 11.2 9.4 6.5 4.3 5.4 5.5 3.6 3.1 2.3 2.4 5.4 *
(a.vc) 14.9 14.5 10.0 6.6 4.2 5.8 4.3 2.8 2.8 2.4 6.8 ns

(a.gb) 16.4 14.3 10.7 6.3 4.8 6.0 4.6 3.0 2.6 2.5 7.1 **
(a.sp) 17.1 15.7 11.3 6.6 4.4 6.1 4.5 2.8 2.9 2.5 7.4 ns

RV (m.vc) 10.1 8.5 6.2 5.3 5.3 5.6 3.7 3.1 2.6 2.7 5.3 *
(a.vc) 14.3 14.9 11.0 6.4 5.6 6.6 5.2 3.3 3.6 2.7 7.4 ns

(a.gb) 16.4 15.2 11.3 6.9 4.9 6.4 4.7 3.6 3.4 2.6 7.5 ns

(a.sp) 16.1 15.0 11.4 6.6 5.3 6.1 5.1 3.1 3.4 2.5 7.5 ns

None (m.vc) 11.8 8.8 6.7 7.5 6.0 5.6 3.6 3.6 3.0 3.7 6.0
(a.vc) 14.9 15.2 11.3 6.0 5.2 5.9 5.6 3.8 3.3 3.7 7.5
(a.gb) 17.2 15.1 12.6 6.8 5.7 6.3 6.6 4.4 3.6 3.6 8.2
(a.sp) 16.7 16.6 12.4 6.1 6.0 5.9 5.7 3.4 3.4 3.5 8.0

All (m.vc) 11.1 8.7 5.5 4.8 4.8 4.5 3.6 3.3 2.2 2.4 5.1 **
(a.vc) 14.3 11.9 8.1 4.8 4.0 5.4 3.7 2.8 3.6 2.4 6.1 ***
(a.gb) 14.9 12.8 9.4 5.2 4.2 5.5 3.8 3.0 4.1 2.6 6.6 ***
(a.sp) 15.4 12.8 9.9 5.2 4.7 5.5 3.4 2.6 4.0 2.5 6.6 ***

7. Conclusions

Large-vocabulary end-to-end speech recognition still faces a number of difficulties.
However, as our experiments have shown, fusing the audio and video stream can bring
a significant benefit to this task. For realizing those benefits, stream integration is a
key possibility. Here, to optimally combine the audio and video information, a new decision
fusion net (DFN) was proposed. This architecture utilized the posterior probabilities of
the acoustic and visual model as stream representations for integration. Corresponding
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reliability measures of both streams were used to guide the DFN in estimating optimal
multi-modal posteriors.

This fusion strategy was applied on both the conventional hybrid model, using the
Kaldi toolkit, and on the joint CTC/transformer E2E model, based on the ESPnet toolkit.
Comparing both experimental setups, the proposed DFN with reliability measures showed
notable improvements in all noise conditions. In the hybrid AVSR setup, our system
resulted in a relative word-error-rate reduction of 51% over audio-only recognition, also
outperforming all baseline models.

Our proposed model was even superior to oracle stream weighting, which is consid-
ered a theoretical upper bound for instantaneous stream weighting approaches. In the joint
CTC/transformer E2E architecture, the proposed model again surpassed the audio-only sys-
tem, as well as the AV baseline models, achieving a relative word-error-rate reduction of 43%
compared to the audio-only setup and 31% compared to the audio-visual end-to-end baseline.

Future work on stream integration still needs to answer many open questions. While
our architecture is highly effective when sufficient training data is available for all con-
ditions, we believe that information integration will truly come into its strengths when
encountering new conditions that are unseen in training. In such scenarios, we also believe
that uncertainty information and well-calibrated models will be essential. If all of these
are appropriately designed, however, we are optimistic that information integration can
pave the way towards robust models that are capable of operating successfully in unseen
environments and capitalizing on their potential for multi-modal disambiguation and
self-guided adaptation.
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