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Abstract: The core of underwater acoustic recognition is to extract the spectral features of targets.
The running speed and track of the targets usually result in a Doppler shift, which poses significant
challenges for recognizing targets with different Doppler frequencies. This paper proposes deep
learning with a channel attention mechanism approach for underwater acoustic recognition. It is
based on three crucial designs. Feature structures can obtain high-dimensional underwater acoustic
data. The feature extraction model is the most important. First, we develop a ResNet to extract
the deep abstraction spectral features of the targets. Then, the channel attention mechanism is
introduced in the camResNet to enhance the energy of stable spectral features of residual convolution.
This is conducive to subtly represent the inherent characteristics of the targets. Moreover, a feature
classification approach based on one-dimensional convolution is applied to recognize targets. We
evaluate our approach on challenging data containing four kinds of underwater acoustic targets with
different working conditions. Our experiments show that the proposed approach achieves the best
recognition accuracy (98.2%) compared with the other approaches. Moreover, the proposed approach
is better than the ResNet with a widely used channel attention mechanism for data with different
working conditions.

Keywords: feature extraction; target recognition; neural networks; underwater acoustic signals

1. Introduction

The traditional methods of target recognition include feature extraction techniques
based on mathematical modeling [1]. Using the entropy theory [2,3] as a feature to extract
the radiation noise of a ship is one of the most common mathematical modeling methods.
Additionally, a critical approach to recognition is to analyze the peaks of the spectrum to
obtain the physical features, such as the propeller speed cavitation noise of the engine [4,5].
The spectrum will be distorted because of the Doppler effect when the ship moves toward
the hydrophone receivers [6]. Wang proposes the multi-method spectra based on audi-
tory feature extraction from the human ear and effectively extracts stable feature points
under the Doppler effect [7]. Modeling the Doppler power spectrum of non-stationary
underwater acoustic channels is another method to reduce the impact of the Doppler effect
in underwater acoustic target recognition [8]. The information extracted by traditional
methods is limited when the spectrum of signal changes with the Doppler effect. Li [9] uses
the square root unscented Kalman filter to attenuate the Doppler phenomena in underwater
acoustic signals.

Deep learning has an advantage in extracting the spectrum feature compared with
the traditional method. However, it is often difficult to collect enough underwater acoustic
signal data for training, which significantly limits the performance of deep neural networks
in underwater target recognition. Nevertheless, researchers are still exploring the applica-
tion of deep learning in underwater target recognition with the constraints of the available
underwater acoustic data. Yang [10] et al. use deep auto-encoder networks combined with
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long short-term networks to extract target features and set different gates according to the
temporal characteristics of underwater acoustic to extract feature information effectively.
Auto-encoder networks can downscale high-dimensional data to low-dimensional data
while retaining sufficient feature information, but the number of parameters is enormous.
The convolution neural network (CNN) method can significantly reduce the number of
parameters compared with DNN. Hence, CNN is better for underwater acoustic signals
with limited samples. Hu [11] uses CNN to reduce the number of parameters and obtain
better experimental results. Wang [12] investigates the intrinsic mechanism of convo-
lution networks for underwater acoustic signals and displays the relationship between
the waveform of the original data and the convolution kernel. Hu builds an underwater
acoustic recognition model based on separable convolution operations according to the
information collection mechanism of the auditory system, which is the first time grouped
convolution models are applied in underwater acoustic recognition. Tian [13] applies a
deep convolution stack to optimize CNN networks, which solves the lack of depth and
structural imbalance of the networks. However, the above CNN model extracts single-scale
features with the fixed size of the convolution kernel, which lose a lot of feature informa-
tion. Hong [14] proposes a deep convolution stack network with a multi-scale residual
unit (MSRU) to extract multi-scale features while exploring using generative adversarial
networks (GAN) to synthesize underwater acoustic waveforms. The method modifies two
advanced GAN models and improves their performance. GAN network with generators
model and adversaries model uses the idea of the game to optimize the network. The
generators can generate underwater acoustic samples when reaching the Nash equilibrium
between the generators and adversaries models. We propose [15] an underwater acous-
tic target recognition model based on GAN, optimizing the recognition model with two
model adversaries. The experiment verifies the better recognition ability of GAN than the
other networks with small samples. The number of neural network layers has increased
due to the urgent need to identify underwater acoustic data under different spatial and
temporal conditions. Doan [16] applies the dense convolutional neural network to identify
the target class, which addresses the over-fitting problem in a deep convolutional neural
network with a limited number of samples. Gao [17] increases the number of samples using
the GAN model, extracting underwater acoustic features with small samples in deeper
network layers. To solve the recognition problem with a limited number of samples in
deep networks, He [18,19] first proposes a ResNet model in image recognition, which
uses the residual function to eliminate the gradient disappearance effectively. Wu [20]
conducts deeper research in terms of the depth and width of ResNet models. Liu [21]
applies the ResNet model to the study of underwater acoustic signals and acquires good
experimental results.

Hu [22] first proposes the SE (squeeze and excitation) network, which uses channel
weighting to discriminate the importance of information in different channels of ResNet.
This network is a channel attention mechanism approach that can assign weights to differ-
ent channel information according to their effectiveness and effectively remove channels
with similar features. The channel attention mechanism can again adaptively optimize the
neural network models, and different channel attention mechanisms for different research
objects are required. Because of the low-pass filtering properties of the underwater acous-
tic channel, the high-frequency spectrum of the signal is decreased when increasing the
distance between the target signal and the hydrophone. So, the underwater acoustic signal
contains the spectrum of low frequency and the continuous spectrum. The continuous
spectrum contains the ocean background noise signal, and the spectrum of low frequency
contains the ship’s radiation noise, propeller noise, machine noise, and other hull self-noise.
Yang [23,24] uses an auditory inspired for ship type classification. The core of the under-
water acoustic target recognition method is to extract the low-frequency spectrum [25,26].
However, the distance changes between the target and the hydrophone lead to a Doppler
shift, which makes the information in the low-frequency spectrum disappear. This paper
designs a camResNet (ResNet with channel attention mechanism) model to extract the
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low-frequency spectrum of underwater acoustic signals when the Doppler shift occurs.
The channel attention mechanism of camResNet is divided into two parts. First, the signal
channels are weighted by analysis of channel information. Second, the valid information
points in each channel are extracted, and the complete information is weighted.

This paper is organized as follows. Section 2 introduces the structure of the SE_ResNet
network. Section 3 describes the details of the underwater acoustic target recognition method
based on camResNet. Section 4 describes the experimental data and shows the experimental
results. Section 5 concludes the advantages and disadvantages of the proposed method.

2. Structure of ResNet

The ResNet model deals with network degradation caused by network layer deepening
using residual learning methods. Hong [27] studied the characteristics of underwater
acoustic signals and increased the recognition rate with an 18-layer residual network
(ResNet18), which contains an embedding layer.

The ResNet model consists of many residual modules; the input of the modules is
x, and the output of the convolutional structure of multi-layer stacking is H(x), called
the learned features. The learned features are difficult to optimize by backward gradient
propagation with a network having too many layers, even if the nonlinear activation
function performs very well. He finds that function F(x) = H(x)− x, called the residual
function, is easier to optimize H(x). The output of residual modules is the complex feature
function F(x) + x, which is the residual function learned by the network summed with the
original signal, and the output of residual modules is the input of the following residual
modules. Figure 1 shows the architecture of the ResNet model, in which H(x) is the
residual function, and the mathematical expression is defined as

H(x) = x + wNδ(wN−1(δ(. . . δ(w1x)))) (1)

The w1 · · ·wN in this equation denotes the weight of each module in the residual
network. The function for x mathematical expression is defined as

∂H(x)
∂x

= 1 +
∂(wNδ(wN−1(δ(· · · δ(w1x)))))

∂x
(2)

The first term of Equation (2) equals 1, and the second term is the gradient value of
the weight function to x. Since it contains 1, the function ∂H(x)

∂x will not equal 0, even if the
second term is small.
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Figure 1. The architecture of the ResNet model.

3. Architecture of camResNet in Underwater Acoustic Target Recognition Method
3.1. Architecture of camResNet

The camResNet model is excellent for extracting classification-related feature infor-
mation because it adds the channel attention mechanism based on the ResNet model. The
process of the camResNet model includes three steps: feature structure building, feature
extraction, and feature classification, as shown in Figure 2.
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The low-dimensional underwater acoustic signal limits the ability of convolution net-
works to extract high-dimensional abstract features. So, the feature structure building mod-
ule decomposes the input acoustic signal into base signals using a set of one-dimensional
convolutions as deep convolution filters, which can obtain high-dimensional input data.
Different convolution kernels of N are set in the deep convolution filters F(F1, F2 · · · FN),
and each convolution layer contains a two-dimensional convolution kernel. The output of
the feature module contains 16 groups of signals, so 16 one-dimensional convolution layers
are needed. The specific formula is as follows:

ym
i = f (xm ×ωm

i + bm
i ) (3)

where xm is the m-th input sample, ωm
i denotes the convolution kernel of the i-th out-

put channel of the m-th sample, bm
i denotes the bias function of the i-th output channel

of the m-th sample, and ym
i is the i-th channel output value of the m-th sample. The

symbol ×means dot product. Finally, the output feature group of the i-th layer is ym
i ,

formed through the ReLU function f (·).
The number and frequency of the spectrum are the primary basis for underwater

acoustic signal target recognition. The spectrum energy that will shift with the change of
distance between the target and the hydrophone is called unstable spectra. The spectrum
energy that will not shift with the change of distance between the target and the hydrophone
is called stable spectra. The camResNet model can extract the stable spectrum of the
underwater acoustic target as the feature to recognize the target category accurately when
the spectra of the target are shifted due to the Doppler effect. The stable spectra contain
many harmonic signals. The fundamental frequency is the shaft frequency signal of the
propeller, and the relationship of the harmonic groups is the multiplier. For a B-bladed
propeller, each B is a set of pulses with a period T, and the repetition period of the pulses is
T/B. The 2N + 1st set of pulses in the time domain signal is selected, and its k-th Fourier
transform is denoted as Fk

N(ω). The specific formula of power spectral density by this
random process is as follows [28]:

s(ω) = E{sk(ω)} = E
{

lim
N→∞

1
(2N + 1)T

∣∣∣F(k)
N (ω)

∣∣∣2}
= |g(ω)|2

{
(2N + 1)(U1 −U2) +

2N
∑

p=−2N
(2N + 1− |p|) cos ωpT[U2 + U3 · 2 cos ω(T/2) + U4 · cos ω(T/4)]

} (4)

where E{·} is the expected value, ω denotes angular frequency g(ω) Fourier spectrum,
representing the time domain waveform. The specific formula of U is as follows:
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U1 = a2

0 + a2
1 + a2

2 + a2
3

U2 = a2
0 + a2

1 + a2
2 + a2

3
U3 = a0 · a1 + a1 · a3
U4 = a0 · a1 + a1 · a2 + a2 · a3 + a3 · a0

(5)

where ai denotes the amplitude of the pulse number i in a set of signals. ai denotes the
average value of ai. The fundamental frequency and the first group of harmonic signals
can be used as stable signal characteristics because the modulation spectrum of the actual
vessel radiation noise decays rapidly with the increasing number of groups of spectra. The
obtained multidimensional information with the feature structure building module is called
the original information, which is the input of the feature extraction module. The feature
extraction module contains two ResNet models with the channel attention mechanism. A
convolution kernel size of 1× 64 is a good trade-off between the quality of the recognition
and the computational cost of the model for underwater acoustic. The first layer of the
residual network contains two convolutions. Each convolution operation maps 16 sets of
base signals to another 16 sets of base signals to extract the deep features of the signal. The
convolution operation consists of 16 convolution layers, each containing 16 different filters
F(F1, F2 · · · FN). So, 16× 16 one-dimensional convolution layers are needed. The specific
formula is as follows:

ym
i =

N

∑
k=1

f (xm
k ×ωm

ik + bm
ik) (6)

where xm
ik denotes the input value of the k-th channel in the m-th sample, ωm

ik denotes the
k-th convolution kernel of the i-th layer convolution of the m-th sample, bm

ik denotes the k-th
bias function of the i-th layer convolution of the m-th sample, and ym

ik is the output of the
i-th layer convolution of the m-th sample. The symbol ×means dot product. The output
feature group of the k-th convolution of the i-th convolution layer is formed through the
activation function f (·), which uses the ReLU function.

Finally, all the convolution outputs in the i-th layer are summed up as the convolution
output value of the i-th layer. The second convolution is the same as the first convolution
operation in order to obtain deeper underwater acoustic features. A channel attention
mechanism is added to each one-residual network to enhance the stable spectrum features
and further enhance the network’s performance in extracting underwater acoustic signals.

Section 3.2 describes the channel attention mechanism of the feature structure building
module in detail.

The feature classification uses a fully convolutional network to map the high-dimensional
features from the output of the feature extraction module to a lower dimension with the
size of the classification class. The details are listed as follows.

Stage 1: In feature structure, the data shape of the input layer is a four-dimensional
matrix 64× 1× 1× 800. The shape changes from 64× 16× 1× 800 to 64× 16× 1× 800
by convolutional layer. The batch normalization layer is applied, followed by a ReLU
activation function and max pooling with the stride of 2 × 1.

Stage 2: The feature extraction module contains two residual modules, called block-1
and block-2. The input shape of block-1 is 64× 1× 1× 400. The shape changes from
64× 16× 1× 400 to 64× 16× 1× 400 by two convolutions with a convolution kernel of
64× 1 and a stride of 1× 1. Batch normalization is applied after each convolution and
connected between the two convolutions using the activation function ReLU. Finally, add
the channel attention mechanism, marked with the dashed yellow box in Figure 2, which
will be described in detail in Section 3.2 of the paper. The obtained data are summed with
the original data as the output of block-1.

Stage 3: The input shape of block-2 is 64× 1× 1× 400. The shape changes from
64× 16× 1× 400 to 64× 16× 1× 200 by convolution with a convolution kernel 64× 1
and a step of 2× 1. Batch normalization and a ReLU activation function are applied. The
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second convolution does not change the shape of the data and adds the channel attention
mechanism. The obtained data are summed with the original data as the output of block-2.

Stage 4: This paper uses a fully convolutional networks model, in which a cubic
convolutional network is used to map high-dimensional features to low-dimensional
features in the decision module.

3.2. Structure of Channel Attention Mechanism Based on Underwater Acoustic of camResNet

The changes in the distance between the target and the hydrophone lead to a Doppler
effect, which is the frequency move. The Doppler frequency compensation is challenging,
as the underwater acoustic channel is low-frequency filtering. The method in this paper
can extract the stable spectral features under the Doppler frequency shift by the channel
attention mechanism, which can automatically acquire the critical information in each
feature channel by learning to enhance the valuable features and suppress the less useful
features for the current task.

The amount of information on the channels is different, and the channel attention
mechanism increases the weight to that of the channel with high information. It can
improve the model’s capability. First, squeeze the information out of each channel and
then add a lightweight gating system to optimize the channel information and output
the channel weights. The channel attention mechanism of this paper is divided into two
parts. Figure 3 shows the channel attention mechanism model. The first part is the primary
part, which weighs each channel, and the second part is the auxiliary part of formation
extraction, which is another channel information after transposing the information.
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The first part analyzes the waveform features in each channel separately. First, process
the data with a convolution kernel H ×W and the stride of W; the shape changes from
H×W × C to 1× 1× C. Where H represents the length of the input data, W represents the
width of the input data. The specific formula is as follows:

x(m) =
M

∑
i=1

N

∑
k=1

f
(

x(m)
k ×ω

(m)
ik + b(m)

ik

)
(7)

where x(m)
k denotes the k-th channel data in the input information of the channel attention

mechanism module, ω
(m)
ik denotes the weight of the k-th channel of the i-th layer of convo-

lution, b(m)
ik denotes the bias of the k-th channel of the i-th layer of convolution, and x(m+1)

denotes the output value of x(m) after one convolution.
The data of each channel characterize the global features of each channel. In order

to be able to learn the nonlinear characteristics between the channels independently, this
paper uses a gating system with an activation function. The specific formula is as follows.

x(m+3) =
M

∑
i=1

N

∑
k=1

σ
(

δ
(

x(m+1)
k ×ω

(m+1)
ik + b(m+1)

ik

)
×ω

(m+2)
ik + bm+2

ik

)
(8)
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where x(m+1)
k is the global feature of size 1× 1× C. ω

(m+1)
ik and ω

(m+2)
ik are the weights of

the network mapping. In order to obtain the features of the network channel, convolutional
mapping is used, and the feature points before mapping are r times after mapping, so
ω
(m+1)
ik ∈ R

c
r×c, ω

(m+2)
ik ∈ Rc× c

r . δ is the ReLU activation function, and σ is the sigmoid
activation function.

The second part synthesizes the signal characteristics in all channels. Process the data
with a convolution kernel 1× 64 and the stride of 1; the shape changes from H ×W × C to
H ×W × 1. The multi-layer convolutional network has a solid ability to extract sufficient
recognition information, and the output of the network contains a large number of stable
signals with a small number of unstable signals. One-dimensional data of the same size are
extracted from the network’s output as the channel weights of the original signal, which
can effectively enhance the spectrum energy contained in the channel.

The two parts of the channel attention mechanism weigh the signal features from
different perspectives. Finally, the two weighted pieces of information are fused as the
output of the channel attention mechanism.

4. Model Evaluation
4.1. Dataset

The eight hydrophones are fixed at the same level in eight different places at the same
interval. This paper randomly selects four sets of hydrophones at equal intervals as input
data. The data used in the experiments contain four classes of vessels, and the third of the
four types of signals is the radiated noise of the iron vessel, while the first, second and
fourth types are vessels of the same material and similar hull size.

To study the recognition effect of camResNett under different Doppler frequency shifts,
four different working conditions were intercepted in each class of experimental data. Each
class of the data obtained has four modes of operation: straight ahead at a constant speed,
straight forward acceleration, straight-ahead deceleration, and turning. Figure 4 shows the
spectrogram of different working conditions by the fourth type of vessel.
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of turning movement.
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Figure 4a is the time-frequency relationship of the signal by the vessel of straight
motion. It shows that there is acceleration when the vessel is just starting, and the frequency
shifts to high frequency. The speed reaches stability within a brief period, and a stable
spectrum characteristic appears, which contains line and continuous spectra. The formula
with the Doppler shift is as follows:

f = f0 ·
1

1− u cos θ
v

(9)

where f0 is the original frequency of the vessel, v is the speed of the underwater acoustic
signal propagating in the channel, u is the speed of the vessel motion, and f is the frequency
after the Doppler shift. θ is the angle between the line of the vertical distance connecting
the ship and the hydrophone and the line connecting the ship and the hydrophone. The
signal will have a stable frequency shift when the vessel movement speed is constant. In
the passive recognition process, the stable spectrum feature after the frequency shift is the
primary information for recognizing the target. However, when the target accelerates, the
u keeps changing, and the f varies with the change of u. Figure 4b,c are time-frequency
diagrams of the ship in the motion state of acceleration and deceleration. The low-frequency
spectra are the stable spectra, and the spectrum above 400 Hz will change with time.
Figure 4d is the time-frequency diagram by the vessel of turning, and a large number of
unstable spectra appear in the time-frequency diagram because the θ keeps changing.

To further observe the energy distribution of the frequencies with the vessel for
different operating conditions, Figure 5 shows the power spectral density for the different
operating conditions by the fourth type of vessel, which is the Fourier transform of the
correlation function with the 0.5 s window length.
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of straight motion. (b) The power spectrum density of decelerating motion. (c) The power spectrum
density of accelerating motion. (d) The power spectrum density of turning movement.
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Figure 5 shows the power spectrum density by the fourth type of vessel. A set of
resonant waves at a fundamental frequency of 200 Hz occur stably under four different
operating conditions. High-frequency points are shifted when the vessel is in an accelerated
motion. The high-frequency spectral density varies significantly, and the low-frequency
spectral density is more stable than the high frequency under different working conditions.
Figure 5b,c show the acceleration and deceleration. Compared with Figure 5a, the power
spectral density in high frequency is higher than in the straight motion, and some frequency
points in the high frequency are changed. Figure 5d shows turning, and many spectral
density power spikes appear in the high frequency compared with Figure 5a.

The same class of targets contains different Doppler shift signals, which will increase
the difficulty of recognition, with the original signal compressed or broadened. This method
extracts the stable features of the same class of vessels under different working conditions.

To study the difference between the categories with four types, the straight motion
working condition of each type of vessel is chosen to exhibit a time-frequency relationship.
Figure 6 shows the pictures and time-frequency diagrams of the four types of vessels,
containing class I, class II, and class III and IV vessels. The background noise of the four
vessels has relatively apparent differences, but there are similar low-frequency spectra.

As can be observed in Figure 6b,d, a clear line spectrum in the low-frequency band is
very similar. Figure 6h has two precise line spectra, respectively, similar to the line spectra
in Figure 6b,d. No clear line spectrum is observed in Figure 6f, but the energy distribution
at low frequencies is similar to that in Figure 6h. Figure 6 shows that the spectrum is very
similar to the different vessel types, in which the spectrum energy is concentrated in the
low frequency and continuous. So, it is difficult to distinguish the vessel category with the
traditional method.

4.2. Data Pre-Processing

There are 800 feature points (0.1 s) for a frame and no overlap between frames. If
the maximum feature point of the sample is less than 0.1, eliminate the small value frame
sample, ensuring that the recognition results are not affected by the particular sample
points. After eliminating the small samples, the samples contain 7097 samples. Use 1/4 of
the data as the test set and 3/4 of the data as the training set after normalizing the samples.
The prepared data have 5322 samples as the training set and 1774 samples as the test set.
In total, 200 samples are randomly selected as the validation set in each class, and the
validation set contains 800 samples in total. The training method is a batch method, in
which 64 samples are randomly selected in each batch, and the selected samples will not be
used as alternative samples in the next batch.

4.3. Experimental Results
4.3.1. Discussion of Model Structure

This reports the experimental results of the model with Doppler shifts signals. The
straight condition is considered a signal without a Doppler shift. The other conditions are
considered a Doppler shift. The experiment chose four conditions as input data.

The first experiment illustrates the relationship between the recognition rate and the
number of residual layers, where the size of the number of residual layers changes in the set
of {1,2,3,4}. According to the results in Table 1, two residual layers have the best recognition
effect, and the recognition rate will decrease by increasing the number of residual layers.

Table 1. Recognition rate for different numbers of residual layers.

Residual Layers. 1 2 3 4

Recognition rate of test set 96.3% 98.2% 96.5% 91.4%
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II vessel. (e) the pictures of class III vessel. (f) the spectrogram of class III vessel. (g) the pictures of
class IV vessel. (h) the spectrogram of class IV vessel.
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Two residual layers are appropriate for the number of samples in the experiment, and
the different number of samples matches the different number of layers. If the ResNet
network is not over-fitted or under-fitted, the over-fitting phenomenon will occur and
decrease the recognition accuracy when adding the channel attention mechanism. If the
ResNet network is under-fitted, adding the channel attention mechanism will compensate
for this under-fitting phenomenon. The number of model parameters needs to match the
number of samples, and the number of parameters increases after adding the channel
attention mechanism.

The second experiment illustrates the relationship between the recognition rate and
the size of the convolutional kernel. The size of the 1D convolutional kernel varies in the
set of {3, 5, 7, 9, 11, 15, 17, 21, 25, 33, 41, 49, 57, 64, 75, 85, 95}. Table 2 shows that a kernel
size of 64 is best for the recognition rate. The scale size of the target needs to match the
actual perceptual field after the addition of convolutional kernels because the underwater
acoustic target is submerged in background noise, and a large amount of ocean background
noise is extracted if there is no match.

Table 2. Recognition rate for convolution kernels of different sizes.

Convolution Kernels Recognition Rate of Validated Set Recognition Rate of Test Set

1× 3 91.6% 91.1%
1× 5 92.0% 91.5%
1× 7 94.3% 92.1%

1× 11 97.1% 92.3%
1× 15 98.2% 93.1%
1× 17 97.9% 93.5%
1× 21 97.8% 95.3%
1× 25 98.1% 95.3%
1× 33 98.1% 95.9%
1× 41 98.2% 96.1%
1× 49 98.3% 96.3%
1× 57 99.5% 97.4%
1× 64 99.9% 98.2%
1× 75 98.9% 97.1%
1× 85 98.3% 96.4%
1× 95 99.5% 95.9%

4.3.2. Classification Experiment Results

In the experimental data, four-vessel classes are used to train different deep-learning
network models, and the information of each network model is described below.

(1) The DBN model has an input layer, three hidden layers, and one output layer. The
number of nodes in the input layer is 199, the number of nodes in the three hidden
layers is 100, 50, and 20, and the number of nodes in the output layer is the number of
sample categories. Each pair of adjacent layers constitutes an RBM network, and the
three RBM networks are trained separately first, followed by the whole network. A
batch method with a batch size of 64 is used for training. A gradient descent algorithm
with a learning rate of 0.01 is used to optimize the training process.

(2) The GAN network model consists of two modules: generation and discrimination.
The generation module consists of three convolutional layers, and the discrimination
module consists of convolutional layers. The generative module comprises three
convolutional layers, with 64, 128, and 800 filters with a filter size of 1× 4 and a step
size of 4. The discriminative model is a single-layer convolutional neural network
with 16 filters with a filter size of 1× 4 and a step size of 4. Batch training with a batch
size of 64 is used, and the learning rate is 0.001.

(3) The DenseNet model is made up of three modules, each of which has three layers of a
convolutional neural network. The data are normalized before each convolutional
operation, and after convolution, the data are nonlinearly mapped using the elu
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activation function. The convolutional operation with a convolutional kernel size of
1× 64 and a step size of 1 is chosen. The batch method with a batch size of 64 is used
for training. The optimization method is chosen during training using a gradient
descent method, and the learning rate is 0.001. For optimization, the gradient descent
algorithm is used.

(4) The U_Net model is made up of three down-sampling modules and three up-sampling
modules. Each down-sampling module contains two convolutional layers and a
pooling layer of the specified size of 1× 2. There is a splicing layer, a deconvolution
layer, and a pooling layer with a pooling size of 1× 1 in each up-sampling module.
The batch method is used for training, with a batch size of 64 and an optimization
method of gradient descent with a learning rate of 0.001.

(5) The SE ResNet network is set up and trained in the same way as the camResNet
UAS model network, with the exception that the channel attention mechanism is a
three-layer auto-encoder network model.

A test set was used to evaluate the model’s recognition ability. Table 3 shows the
recognition rate with straight motion and four different working conditions. The recog-
nition rate of amRestNet and SE_ResNet are similar when the data contain straight data.
The recognition rate of amRestNet is higher than SE_ResNet when the data contain four
different working conditions. Both amRestNet and SE_ResNet can extract valid feature
information when the data contain a single working condition. However, the SE_ResNet is
not as effective as amRestNet in extracting stabilization features when different working
conditions are included and have different Doppler frequencies.

Table 3. Recognition rate of proposed model and compared models with straight motion data and
four different working conditions.

The Input Models
Recognition Rate

Straight Motion Data Four Different Working Conditions

Time domain signal camResNet 98.9% 98.2%
Frequency domain signal DBN 85.6% 82.4%

Time domain signal GAN 96.6% 96.3%
Frequency domain signal DenseNet 97.3% 96.1%

Time domain signal U_Net 93.9% 93.6%
Time domain signal SE_ResNet 98.8% 97.1%

Table 3 shows that the camResNet model has a recognition rate of 98.2%, which is
1.1–15.8% higher than the other networks. The DBN model is a basic neural network model
based on probabilistic statistics, and its input signal is a frequency domain signal. The
GAN model is the adversarial model, which mainly contends with small-sample data, and
its input signal is the time domain signal. The DenseNet model can simplify the network
complexity and reduce network parameters by designing the dense block, and its input
signal is the frequency domain signal. The ResNet model uses residual learning to update
the network parameters, and its input signal is the time domain signal. The U_Net model
uses up-sampling and down-sampling to extract multi-scale features, which can improve
the recognition effect, and its input signal is the time domain signal.

The DBN model has different optimization methods compared to other models, which
use probabilistic models to optimize the parameters, so the recognition rate of the DBN
model is lower than other networks. The recognition rate of U_Net is lower than the GAN
model and the DenseNet model because the up-sample and down-sample can lose some
feature information. The SE_ResNet model has an excellent performance in recognition
rate because the ResNet model has the balance between network depth and recognition
rate of small samples. The camResNett model is better than the other models in terms
of the recognition rate because the channel attention mechanism deals with underwater
signals’ sparsity and multi-scale characteristics.



Sensors 2022, 22, 5492 13 of 19

In the display of recognition experiment results, we use recognition accuracy, recall
rate, precision, and F1-score to evaluate the recognition performance of the networks. The
formulae for each indicator are as follows.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

F1-score =
2TP

2TP + FP + FN
(13)

TP, TN, FP, and FN are true positive, true negative, false positive, and false negative. Table 4
shows the precision, recall rate, F1-score, and accuracy of the test sample, while Table 5
shows the confusion matrix.

Table 4. Recognition results of camResNet.

Precision Recall F1-Score Accuracy

Class I vessel 0.996 0.991 0.993 0.996
Class II vessel 0.984 0.981 0.982 0.991
Class III vessel 0.978 0.982 0.980 0.990
Class IV vessel 0.993 0.998 0.995 0.997

Table 5. Confusion matrix of camResNet.

Class I Vessel Class II Vessel Class III Vessel Class IV Vessel

Class I vessel 1783 1 7 9
Class II vessel 2 1764 32 2
Class III vessel 3 24 1772 1
Class IV vessel 2 0 1 1769

Class I of the vessel includes three acceleration signals, three deceleration signals,
five straight-ahead signals, and seven turn signals. Class II of the vessel includes three
acceleration signals, three deceleration signals, three straight-ahead signals, and six turn
signals. Class III consists of three acceleration signals, deceleration signals, straight-ahead
signals, and five turn signals. Class IV consists of three acceleration signals, deceleration
signals, straight-ahead signals, and turn signals. The vessels of the different categories
have similar sizes but different materials, and the third category material is significantly
different to the materials from the other three. In Table 5, the probability of incorrectly
recognizing Class II of the vessel as Class III of the vessel is the highest. This is followed by
the probability of incorrectly recognizing Class III of the vessel as Class II of the vessel. This
indicates that camResNet extracts shallow physical features and deep category features,
which is related to the Doppler effect. Class II of the vessel and Class III of the vessel contain
the most similar samples in the composition structure of working conditions, resulting in
many samples with similar Doppler shifts. Table 4 shows that the recognition effects of
Class I of the vessel and Class IV of the vessel are better than Class II of the vessel and
Class III of the vessel, which may appear confusing.

The precision of Class I of the vessel is the highest, and the probability of incorrectly
recognizing Class I of the vessel as Class I of the vessel is the highest because Class I of
the vessel contains many straight samples and has a prominent stable spectrum without a
Doppler shift. Class IV of the vessel has the highest recall, which indicates that the samples
of different working conditions in Class IV are more balanced than the others and have
more stable Doppler shift characteristics than the others.
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4.3.3. Visualization of Energy Distribution by the Architecture of camResNet
Power Spectral Density

To further assess the feature extraction capability of the camResNet model, the trained
camResNet model was fed by Class IV of the vessel because the spectrogram and the
power spectral density are displayed in Figures 4 and 5. Figure 7 shows the time-frequency
diagram and the power spectral density of the output.
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Figure 7. The spectrogram and power spectrum density of Class IV with camResNet. (a,c,e) The
spectrogram of extracted features for Class IV vessel by camResNet; (b,d,f) The power spectrum
density of extracted features for Class IV vessel by camResNet.

Figure 7a,c,e show the signal after the camResNet model by Class IV of the vessel, and
Figure 4 shows the spectrogram of the original signal from Class IV vessel. The comparison
indicates that the energy of the feature is still concentrated in the low frequency after the
camResNet model. Figure 7b,d,f show the power spectrum density of Class IV of the
vessel after processing the camResNet model, and Figure 5 shows the power spectrum
density of the original signal for Class IV of the vessel. The comparison indicates that the
apparent fundamental frequency signal in the original signal still exists after processing
the camResNet model. In Figure 7, the camResNet model’s output contains not only stable
signals but also some high-frequency signals, which indicates the camResNet model can
avoid extracting unstable signals that are quickly Doppler shifted and recovers stable
signals that are submerged in high frequencies.
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t-SNE Feature Visualization Graphs

The above experiment shows that the camResNet model can extract signals of stable
frequencies in underwater acoustic signals. To further analyze the ability to extract features
by camResNet, the distance of the original features and camResNet output features is
visualized using the t-SNE method. Figure 8 shows the distance characteristics of the
original signal and the output of the camResNet model when different working conditions
are used as the input data. Figure 8a shows the t-SNE of the original underwater acoustic
signal, which indicates that the original underwater acoustic signal has weak separability.
Figure 8b shows the t-SNE of the output signals with the input of four different working
conditions in the camResNet model. Figure 8c–f show the t-SNE of the output signals
after putting straight motion, acceleration, deceleration, and turning conditions into the
camResNet model, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 20 
 

 

putting straight motion, acceleration, deceleration, and turning conditions into the 

camResNet model, respectively. 

From the figures, it can be seen that the camResNet model can classify all the working 

condition signals well and classify each kind of working condition signals well. In partic-

ular, the camResNet model can still classify the signals of acceleration conditions well 

when the acceleration conditions contain a large number of unstable Doppler shift signals. 

The classification maps show that the camResNet model can extract abstract and stable 

internal features under different conditions. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8. The t-SNE visualized graphs. (a) The t-SNE visualized graphs of original hydroacoustic 

signal; (b) The t-SNE visualized graphs’ output by camResNet; (c) The t-SNE visualized graphs of 

straight motion by camResNet; (d) The t-SNE visualized graphs of accelerating motion by camRes-

Net; (e) The t-SNE visualized graphs of decelerating motion by camResNet; (f) The t-SNE visualized 

graphs of turning movement by camResNet. 

4.3.4. Recognition Results for Different Data of camResNet 

Figure 8. The t-SNE visualized graphs. (a) The t-SNE visualized graphs of original hydroacoustic
signal; (b) The t-SNE visualized graphs’ output by camResNet; (c) The t-SNE visualized graphs of
straight motion by camResNet; (d) The t-SNE visualized graphs of accelerating motion by camResNet;
(e) The t-SNE visualized graphs of decelerating motion by camResNet; (f) The t-SNE visualized
graphs of turning movement by camResNet.
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From the figures, it can be seen that the camResNet model can classify all the working
condition signals well and classify each kind of working condition signals well. In particular,
the camResNet model can still classify the signals of acceleration conditions well when
the acceleration conditions contain a large number of unstable Doppler shift signals. The
classification maps show that the camResNet model can extract abstract and stable internal
features under different conditions.

4.3.4. Recognition Results for Different Data of camResNet

Three different network models were used to compare the recognition results of
underwater acoustic signals, which contained four working conditions. The models of
DenseNet and SE_ResNet have a more extraordinary ability to recognize and were used for
comparison with the camResNet model. The training method determines that the training
and test data are the same—one of four working conditions. The recognition results were
averaged by repeating the test five times, and the obtained experimental results are shown
in Figure 9. The solid blue line is the recognition rate, which uses the data of straight motion
working conditions as the training data and test data. The blue dotted line is the recognition
rate, which uses the data of turn working conditions as the training data and test data. The
solid red line is the recognition rate, which uses the data of deceleration working conditions
as the training data and test data. The yellow dashed line is the recognition rate, which
uses the data of acceleration working conditions as the training data and test data.

(1) The recognition rate of the camResNet model is higher than that of both the DenseNet
model and the SE_ResNet model. The camResNet model can extract stable features
that are effective for recognition.

(2) The recognition rate of the camResNet model under the straight motion condition is
higher than under the other conditions, which indicates that the Doppler shift can
affect the recognition of camResNet.

(3) There are different recognition rates with different working conditions containing
different Doppler shifts. The maximum recognition rate of camResNet is 0,998; the
minimum recognition rate is 0.994. The maximum recognition rate of DenseNet is
0.985, and the minimum recognition rate is 0.971. The decrease in recognition rate
due to different Doppler shifts is smaller in the camResNet model than in the other
models, which shows that the camResNet model has a better extraction of signals
with Doppler shifts.
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Figure 9. Recognition rate of cooperation targets.

The network is trained and tested using data under one working condition, which is
easy to overfit by a deeper model of DenseNet. The SE_ResNet model uses self-coding to
compress channel features but does not consider the sparse characteristics of underwater
acoustic targets. The camResNet model builds two different channel attention mechanisms,
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which fully consider the sparsity of underwater acoustic signal and the continuity spectrum,
and they have better recognition results than the other models.

The distributions of the training and test sets in the above experiments were identical.
To further verify the recognition performance of the camResNet model, three network mod-
els were trained using four working conditions and tested under one working condition.
The recognition results were averaged by repeating the test five times, and the obtained
experimental results are shown in Figure 10. The solid blue line is the recognition rate,
which uses the data of straight motion working conditions as the test data. The blue dotted
line is the recognition rate, which uses the data of turn working conditions as the test
data. The solid red line is the recognition rate, which uses the data of deceleration working
conditions as the test data. The yellow dashed line is the recognition rate, which uses the
data of acceleration working conditions as the test data.

(1) The maximum recognition rate of camResNet is 0,976; the minimum recognition rate
is 0.965. The maximum recognition rate of DenseNet is 0.957, and the minimum
recognition rate is 0.95. The recognition rate of the camResNet model is higher than
that of the DenseNet model and the SE_ResNet model, and the performance is most
evident under the deceleration condition.

(2) The recognition rates of the three network models vary smoothly under different
working conditions, indicating that all three network models can extract stable signals
from the initial signals and remove unstable frequency shifts. The camResNet model
has the most robust ability from the recognition results.

(3) Compared with identical distributions of the training and test sets, the decrease in
recognition rate due to different Doppler shifts becomes more prominent when the
distributions of the training and test sets are not identical. This indicates that the
recognition capabilities of the camResNet model with a Doppler shift are related to
the distribution of training and test sets.
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Figure 10. Recognition rate of non-cooperation targets.

SE_ResNet uses compressed information to obtain channel weights to obtain certain
stable features, so the recognition ability under different working conditions is better than
that of DenseNet. The stable signal of the Doppler shift represents multi-scale information,
which causes extract information with one scale to lose helpful information. The camResNet
model uses convolution operation to extract channel information from two aspects. The first
part uses the convolution kernel superposition to expand the perceptual field and extract
features of different scales. The second part extracts the feature from the local features of
all information. Fusing the two features as the weights of channels can comprehensively
extract the stable features under the Doppler frequency shift. Hence, the camResNet model
has better recognition results for different working conditions data containing the Doppler
frequency shift information.
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5. Conclusions

The camResNet model adds a channel attention mechanism to the ResNet model based
on the characteristics of underwater acoustic signals. This channel attention mechanism can
enhance the stable spectral features and remove the unstable signals caused by the Doppler
shifts. The experiments compare the recognition ability of six different deep-learning
models under different Doppler shift frequencies. The results show that the recognition rate
of the camResNet model is higher than that of the other network models. The camResNet
model has a recognition rate of 98.2%, which is 1.1–15.8% higher than the other networks.
The precision, recall rate, F1-score, and accuracy are used to demonstrate that the data
used in the experiments are balanced between the classes and that the experimental results
are valid. Test the effectiveness of the proposed method with the same distribution and
different distributions for the training and test sets. The three network models with
better recognition results are selected for testing. In the same training set and test set
distribution, the recognition rate of camResNet varies from 0.003 to 0.023 for different
working conditions. In contrast, the recognition rate of DenseNet varies from 0.015 to
0.019 for different distributions of the training set and test set. The results show that the
proposed method is more suitable when the training and test sets are identically distributed.
Further, using visualization methods to learn the features of the signal extracted by the
camResNet model, the results show that the camResNet model can extract the stable
multi-group harmonic signals and restore some weak high-frequency stable signals in the
original signal.

The camResNet model can effectively extract the features of underwater acoustic
signals with the Doppler shift. The following work will use the camResNet model to
recognize the underwater acoustic signals with the Doppler shift for small samples, solving
the problem of data-driven underwater acoustic signals in deep learning.
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