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Abstract: Aiming to avoid personal injury caused by the failure of timely medical assistance following
a fall by seafarer members working on ships, research on the detection of seafarer’s falls and timely
warnings to safety officers can reduce the loss and severe consequences of falls to seafarers. To
improve the detection accuracy and real-time performance of the seafarer fall detection algorithm,
a seafarer fall detection algorithm based on BlazePose–LSTM is proposed. This algorithm can
automatically extract the human body key point information from the video image obtained by the
vision sensor, analyze its internal data correlation characteristics, and realize the process from RGB
camera image processing to seafarer fall detection. This fall detection algorithm extracts the human
body key point information through the optimized BlazePose human body key point information
extraction network. In this section, a new method for human bounding-box acquisition is proposed.
In this study, a head detector based on the Vitruvian theory was used to replace the pre-trained SSD
body detector in the BlazePose preheating module. Simultaneously, an offset vector is proposed to
update the bounding box obtained. This method can reduce the frequency of repeated use of the head
detection module. The algorithm then uses the long short-term memory neural network to detect
seafarer falls. After extracting fall and related behavior data from the URFall public data set and FDD
public data set to enrich the self-made data set, the experimental results show that the algorithm can
achieve 100% accuracy and 98.5% specificity for the seafarer’s falling behavior, indicating that the
algorithm has reasonable practicability and strong generalization ability. The detection frame rate
can reach 29 fps on a CPU, which can meet the effect of real-time detection. The proposed method
can be deployed on common vision sensors.

Keywords: BlazePose; long short-term memory neural network; fall detection; deep learning

1. Introduction

With the deepening of generalized cognition of the “blue belief” of marine power
proposed in the report of the 19th National Congress of the Communist Party of China, the
issue of personnel safety in maritime traffic has attracted increasingly extensive attention.
According to the “2021 Annual Overview of Marine Casualties and Incidents,” published
by the European Maritime Agency (EMSA) [1], from 2014–2020 a total of 550 people went
missing in accidents, and 367 people were identified as dead; 89.1% of the victims were
seafarers. All but 9.8% of the casualties were due to falling into the water, whereas the rest
were due to human slips, trips, and falls. A fall is a sudden, involuntary, unintentional
change in body position, falling to the ground or a lower surface, but it does not include
behavior resulting from a violent blow, loss of consciousness, stroke, or seizure [2]. Falls
can cause non-fatal and fatal injuries to seafarers. Seafarer falls can lead to minor injuries,
such as sprains and abrasions. If a fall occurs under special operating conditions, it will
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also lead to severe injuries, such as fractures and cerebral hemorrhage, which will affect the
navigation status of the ship and increase the economic burden on the corresponding family.
It also affects seafarers’ quality of life. In order to reduce the injuries and consequences
caused by the seafarer’s fall, it is becoming increasingly important to accurately detect
the fall of the seafarer onboard and treat the fallen seafarer in a timely manner. Therefore,
research on detecting seafarers’ falls has very significant social importance.

The seafarer fall detection algorithm, based on common vision sensors, such as an RGB
camera, refers to the process of judging whether a seafarer member falls, after collecting
continuous video image frames through RGB camera equipment for intelligent image
processing. The main process is as follows: First, preprocess the original video image (such
as box plot [3] data cleaning), and then extract features from the preprocessed data, and
finally use a pre-trained classification algorithm (such as long short-term memory neural
network [4,5]) to perform fall detection based on the features.

Because the human body key point information extraction algorithms now commonly
used, such as OpenPose [6], AlphaPose [7], and other networks, are easily affected by
factors such as occlusion caused by seafarer operations, many important features that
can represent the current state of the seafarer will be lost. Therefore, this study uses the
BlazePose human body key point information extraction network [8] to extract feature
information. Although BlazePose can solve the occlusion problem very well, when the
network restarts the pre-trained SSD body detection model to obtain the human bounding
box, it causes the loss of human key point information. To address this issue, we propose a
method that uses an offset vector to update the human body bounding box obtained by the
optimized head detector, which greatly guarantees the stability of network extraction of
key point information and reduces the weight of the network to a certain extent, making it
more suitable for layouts on mobile devices and ordinary vision sensors.

The judgment of fall behavior not only requires the data of the fall but also relies
heavily on the data before the fall. Based on this, this paper presents a fall detection
algorithm based on a long short-term memory neural network that is suitable for dealing
with long-term dependency problems. This network can avoid gradient disappearance and
gradient explosion problems caused by ordinary recurrent neural networks. Experiments
show that the BlazePose–LSTM seafarer fall detection model proposed in this paper can
be better applied to the seafarers’ working environment and can be arranged on general
computing power equipment.

The main contributions of this paper are as follows: (1) A new seafarer fall detection
model based on optimized BlazePose–LSTM is proposed. Fall discrimination depends on
a long sequence; therefore, LSTM was used for fall discrimination. Owing to its special
gating unit, the long-dependence problem is well resolved. (2) The offset vector is used to
update the human body bounding box generated by the optimized head detector, which
reduces the need to repeatedly start the head detection model, speeding up the fall detection
efficiency of the model, and making it possible to arrange onboard RGB vision sensors with
lower computing force. (3) The method proposed in this paper can solve the problem of
the inability to perform fall detection owing to occlusion and self-occlusion, and it still has
good generalization ability in complex work environments.

2. Related Works

Currently, methods for realizing seafarer fall detection can be roughly divided into
three types: (1) seafarer fall detection methods based on environmental sensors, (2) seafarer
fall detection methods based on wearable sensors, and (3) seafarer fall detection methods
based on vision sensors. The seafarer fall detection method based on environmental
sensors mainly arranges relevant equipment in the seafarer activity environment to record
seafarer activities in the current environment, and then fuses the information collected
by environmental sensors, such as pressure sensors and acoustic sensors [9], to detect
seafarer falls. However, this method is easily affected by the environment, requires more
information monitoring equipment, and can only detect seafarer falls in fixed areas [10],
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such as indoors. Wearable sensor-based seafarer fall detection methods mainly use specific
wearable MEMS devices [11–13], such as belts and smart watches, to monitor various
physical signs of seafarers. If there was an abnormality in various indicators of the body,
and the abnormality was consistent with the characteristics of a fall, it was judged as a
fall. For example, Desai et al. [14] designed a belt using a simple 32-bit micro-controller.
This belt can not only detect falls for the first time, but also send distress information to
the family members of the fallen person via the GSM module. In addition, it can also be
equipped with real-time safety mechanism gear to minimize injury in the case of a fall.
However, most seafarer members wear safety helmets, safety ropes, and life jackets while
working on ships. If one continues to wear other wearable devices, not only will one obtain
inaccurate data owing to the influence of the work equipment, but it will also affect the
seafarer’s work.

With the development of vision algorithms, an increasing number of new lightweight
classification networks have been deployed on vision sensors, and vision tasks can be
achieved without relying on computing power. The video image data acquired by common
vision sensors, such as RGB cameras, are then used for seafarer fall detection using the
trained classification model. For example, H. Abdo et al. [15] used RetinaNet to detect
people in videos and obtain motion features and human shape features (including the aspect
ratio of the human bounding box and motion history images), and then input the improved
mobile nets to determine whether they fell or not; Y. Chen et al. [16] used an OpenPose–
SVM combination algorithm to detect people falling, which can accurately determine
whether people tend to fall. The experiments proved that they achieved recognition
rates of 92.5% and 95.8% on the two public data sets of MCFD and URFD, respectively;
Ramirez et al. [17] used the AlphaPose–kNN combination algorithm to detect people
falling. First, AlphaPose was used to obtain the skeleton information of the human body;
the information was then input into the kNN network for classification. An accuracy rate
of 99.51% was obtained on the public UP-Fall dataset.

Among seafarer fall detection methods based on vision sensors, commonly used fall
detection algorithms are based on the threshold method [18] and machine learning [19].
The threshold method mostly extracts human body features that can characterize human
motion information, preprocesses them with statistical methods, and then compares them
with a preset threshold, where the threshold is more dependent on the extracted motion
information. The fall detection algorithm, centered on the machine learning algorithm,
converts the seafarer’s fall behavior into a multi-classification problem to classify the
falling behavior and other similar behaviors. The threshold method extracts features
from the preprocessed data, and uses machine learning algorithms to build a seafarer
detection model. Common machine learning algorithms include random forests [20],
artificial neural networks [21], and decision trees [22]. For example, Younis et al. [23] used
a support vector machine as the core and a novel feature discriminatory trait of fall and
non-fall events. These features were then used to train the support vector machine for
classification. Experiments show that the proposed method is highly effective for detecting
falls. However, these two methods are highly dependent on the features extracted by
the experimenter and are subjective and arbitrary. Therefore, the feature selection will
be biased, and the movement state of the seafarer cannot be well represented. The deep
learning method can be used to extract fall features to reduce the experimental bias caused
by the experimenter. Many studies have focused on deep learning algorithms to realize the
fall detection of seafarers. Commonly used deep learning methods include convolutional
neural networks [24], recurrent neural networks [25], and long short-term memory neural
networks [26]. For example, Maitre et al. [27] proposed a fall behavior recognition algorithm
based on a hybrid CNN and LSTM model. The model adopts a two-layer structure. The
radar data were fed into the network in groups of 15, with 95% overlap between each group
of data. The CNN extracts the spatial features of the video sequence. The LSTM extracts the
features in the temporal dimension of the data, and finally uses the SoftMax classifier for
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recognition. Experiments showed that this method could effectively improve the accuracy
of fall recognition, reaching a recognition accuracy of 98.5%.

3. Fall Detection Algorithm for Shipboard Seafarers Based on BlazePose and LSTM
3.1. Human Body Key Point Extraction Network Based on BlazePose

Existing human key point extraction networks, such as OpenPose, AlphaPose, and
OpenPifPaf [28], are extremely vulnerable to dense crowd occlusion or human self-occlusion,
resulting in the low performance of human key point detectors.

In order to solve this problem, this study selects the BlazePose human body key point
extraction network to extract human body key point information. BlazePose is a lightweight
convolutional neural network. Unlike most convolutional neural networks, NMS cannot
be used for post-processing because human behaviors, such as waving and walking, have
a large degree of freedom. Inspired by the Vitruvian theory [29], in the process of obtaining
the key points of the entire human body in BlazePose, its warmup module first obtains
the shoulder center and hip center of the human body through the pre-trained SSD body
detection model, and uses this to predict the remainder of the human body topology key
points. According to further research on the Vitruvian theory, it was found that the ratio
of the human head to the entire human body is close to 1:7.5 in Figure 1. In order to cope
with the particularities of different people, this study used a ratio of 1:8 to represent the
entire human body, with the human head, so that a head detector can be used to replace
the pre-trained SSD body detector.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18 
 

 

classifier for recognition. Experiments showed that this method could effectively improve 
the accuracy of fall recognition, reaching a recognition accuracy of 98.5%. 

3. Fall Detection Algorithm for Shipboard Seafarers Based on BlazePose and LSTM  
3.1. Human Body Key Point Extraction Network Based on BlazePose 

Existing human key point extraction networks, such as OpenPose, AlphaPose, and 
OpenPifPaf [28], are extremely vulnerable to dense crowd occlusion or human self-occlu-
sion, resulting in the low performance of human key point detectors. 

In order to solve this problem, this study selects the BlazePose human body key point 
extraction network to extract human body key point information. BlazePose is a light-
weight convolutional neural network. Unlike most convolutional neural networks, NMS 
cannot be used for post-processing because human behaviors, such as waving and walk-
ing, have a large degree of freedom. Inspired by the Vitruvian theory [29], in the process 
of obtaining the key points of the entire human body in BlazePose, its warmup module 
first obtains the shoulder center and hip center of the human body through the pre-trained 
SSD body detection model, and uses this to predict the remainder of the human body 
topology key points. According to further research on the Vitruvian theory, it was found 
that the ratio of the human head to the entire human body is close to 1:7.5 in Figure 1. In 
order to cope with the particularities of different people, this study used a ratio of 1:8 to 
represent the entire human body, with the human head, so that a head detector can be 
used to replace the pre-trained SSD body detector. 

 
Figure 1. Vitruvian theory of the human body. 

In the process of the key point information regression of the optimized BlazePose 
human key point network, we will obtain the head bounding-box information ( xf , yf , 

wf , hf ) and the coordinates of the midpoint of the hip ( xh , yh ). According to the Vitru-
vian body theory, we can obtain the bounding-box information of the human body ( xb , 

yb , wb , hb ) and its rotation angle. The derivation formula is as follows: 

0.5 4x x w hb f f f= + × − ×  (1)

Figure 1. Vitruvian theory of the human body.

In the process of the key point information regression of the optimized BlazePose
human key point network, we will obtain the head bounding-box information ( fx, fy, fw,
fh) and the coordinates of the midpoint of the hip (hx, hy). According to the Vitruvian body
theory, we can obtain the bounding-box information of the human body (bx, by, bw, bh) and
its rotation angle. The derivation formula is as follows:

bx = fx + 0.5 × fw − 4 × fh (1)

by = fy (2)
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bw = 8 × fh (3)

bh = 8 × fh (4)

θ = arctan
hx − ( fx + 0.5 × fw)

hy − ( fy + 0.5 × fh)
(5)

The training process of the BlazePose network is mainly divided into two parts: key
point detection and key point regression. During the training process of the network, the
entire network adopted a combination of heat map, offset, and regression, corresponding to
the heat map in Figure 2 (left), offset in Figure 2 (middle), and regressing in Figure 2 (right).
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Figure 2. The network structure of BlazePose.

First, the network used heatmaps and offsets for training. However, during the
regression training, the network clipped the output branch shown in Figure 2 (left). This
not only effectively uses the heatmap to supervise the training process, but also improves
the inference speed of the entire network without losing accuracy.

Compared with the 17 human key points of the COCO Pose, the BlazePose human
key point extraction network predicted 33 human key points (including confidence) for
each human body. The topology of the human key points is shown in Figure 3. Owing
to the richer semantic features obtained, the accuracy of fall detection in this study was
also guaranteed.
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In order to arrange the human fall detection algorithm designed in this study on
ordinary visual sensors, this study optimizes the preheating module of BlazePose and uses
the offset vector to update the bounding box of the moving human body, thereby reducing
the detection frequency of the human body, and improving the speed of human key point
information detection. Figure 4 shows the image processing using the traditional BlazePose
human body key point extraction network. First, after the video stream is input to the
network, the pre-trained SSD body detector preset in the network will obtain the human
body bounding box in the first frame image, as shown in Figure 4 (top), in the first frame.
At this point, we can clearly observe the human key point information extracted by the
BlazePose network in the current frame image with the naked eye, and this bounding box
will be used in subsequent frame images. In this case, we observed the next 50 frames
of images, and exported the image rendering results every 10 frames. In the process, we
observed that after the video stream was continuously input to the network, the first frame
of the current segment was always used for human detection and subsequent human key
point information. We found that after more than 20 frames, the human body within the
bounding box begins to become mutilated. In order for BlazePose to efficiently obtain the
key points of the human body, it primarily needs to determine the shoulder center point
and the hip center point, but the human body in the bounding box has begun to no longer
satisfy these conditions. Although BlazePose has superior prediction ability, the network
can still predict the key point information of the incomplete part of the human body, but
the quality of the key point information is not satisfactory. The cropped rendering of the
bounding box in Figure 4 (bottom) clearly shows that a fall occurred when this video clip
was input into the network for more than 20 frames. However, based on the information
obtained, it was difficult to complete the fall assessment in the current state. After this
happens to the network, the network restarts the pre-trained SSD body detection module
to obtain a new human body bounding box. However, because the semantic information in
the previous bounding box is lost, it can easily cause misjudgment.
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3.2. Optimized Bounding-Box Detector Based on Offset Vector

To solve the above-mentioned defects of the BlazePose network and reduce the depen-
dence of the network on computing power, this study adopts the method of updating the
bounding box with the offset vector. This method ensures that the human body obtained
by the first frame processing is always maintained in the center of the entire bounding box.
This process is illustrated in Figure 5.
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In this study, the images were still taken every 10 frames for comparison. We observed
that the position of the bounding box was updated using the offset vector. During these
50 frames, the head detection module was not restarted to obtain the human bounding
box, and the person in the image was always kept in the middle of the image. After the
optimization of the network, the use of rigid feature detectors is reduced, which greatly
reduces the dependence of the human body on key point information extraction based on
the BlazePose network on computing power. Simultaneously, owing to the reduction in the
activation of the head detector, the speed of the key point information extraction of each
frame of the image is improved by 0.04 s.

Through the optimized human body key point information extraction based on
BlazePose, we can obtain more stable key point information. From this information, we
selected four key points with relatively low degrees of freedom, namely the left shoulder,
right shoulder, left hip, and right hip. As the time sequence changed, the information
change curves of the four key points are shown in Figure 6. The abscissa of each subgraph
is the image in time series, and its unit is the frame. Combined with the title of the picture,
the ordinate is the x or y pixel position of the key point information of the human body.
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By cleaning the data using the boxplot method, abnormal data, such as missing key
point information due to restarting the head detector, are optimized. According to the Panax
notoginseng criterion of deep learning, it can be guaranteed that a classification model with
better generalization ability can be obtained after feeding into the long short-term memory
neural network for seafarer behavior classification training.

3.3. Long Short-Term Memory Neural Networks

Falls and other human behaviors can often be viewed as continuous sequences,
whose spatial and temporal characteristics are very important. Recurrent neural net-
works (RNN) [30,31] are particularly powerful for processing time-series data because of
their excellent memory. To solve the problem of gradient explosion and disappearance
of RNN to process long sequence data, this study uses a long short-term memory neural
network (LSTM) [32] to judge whether a person produces falling behavior. The LSTM is a
special RNN that can effectively solve long-term dependence problems. This study used a
self-made gesture dataset (4 K, 60 frames), and inputted the LSTM and RNN networks for
training. The results are presented in Table 1.

Table 1. Comparison of LSTM and RNN.

Network
Comparison

Accuracy Verify Image Image Resolution

LSTM 89% 500 1920 × 1080
RNN 36% 500 1920 × 1080
LSTM 97% 100 720 × 480
RNN 91% 100 720 × 480

As shown in the table, the validation accuracies of the two networks for sequence data
with more than 120 frames of images are very different, and that of the RNN network is
as low as 36%, which obviously does not meet the requirements of this study. In contrast,
LSTM can obtain good results in both designed experiments.

The basic unit of LSTM is a memory block mainly formed by a memory cell and three
gate control units (including an input gate (it), an output gate (ot), and a forget gate ( ft)) [33].
The internal structure of each unit is shown in Figure 7. The memory unit is represented by
the horizontal straight line at the top of Figure 7, which is used to receive information from
the previous moment and transfer the processed information to the next moment.
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For each LSTM cell, the first step is to decide which information from the previous
LSTM unit needs to be forgotten. This decision was made by the forget gate. The gating
unit reads ht−1 and xt, and then outputs a value ft between 0 and 1 to update the state Ct−1
of the current LSTM unit. In the process of fall detection, the forget gate selectively stores
and forgets the information transmitted by the previous LSTM unit, and the information
transmitted by the input gate. Then, the forget gate stores the series of frame images that
are determined to fall in behavior recognition. The calculation formula is as follows:

ft = σ(Utht−1 + W f xt) (6)

kt = ct−1 � ft (7)

where xt is the human body key point information group passed by the input gate, ht−1
is the output of the previous LSTM cell, σ is the sigmoid layer, Ut is the input coefficient
matrix of the forget gate, W f is the network coefficient matrix of forget gate, ct−1 is the cell
state of the previous LSTM cell, and kt is the output of the forget gate, which is used to
update the current cell state.

After forgetting the current state information of the LSTM unit, the input gate pro-
cessed the information input into the current unit. First, it is necessary to use ht−1 and xt
to combine with the sigmoid layer to determine the information that needs to be updated
in the current unit. Second, the activation function tanh is used to process ht−1 and xt to
obtain new candidate unit information as supplementary information. The calculation
formula is as follows:

it = σ(Uiht−1 + Wixt) (8)

gt = tanh(Ught−1 + Wgxt) (9)

jt = gt � it (10)

ct = jt + kt (11)

where it is the output information after parallelization; gt is the candidate input information;
Ui is the input coefficient matrix of input gate; Wi is the network coefficient weight matrix
of the input gate; Ug is the candidate input information weight coefficient matrix; Wg is
the weight coefficient matrix of the input gate; jt is the output of the input gate, which will
used to update the current cell state; and ct is the updated unit status.

Finally, the current LSTM unit determines the output value. First, the sigmoid layer is
used to obtain the output judgment condition, and then a layer tanh is used to obtain an
inter-decision vector in [−1, 1]. This vector was multiplied by the result obtained from the
input gate to obtain the final LSTM unit output value. In the process of fall detection, the
output gate normalizes the final information to classify falls and other actions. The specific
formula is as follows:

ot = σ(Uoht−1 + Woxt) (12)

ht = tanh(ct)� ot (13)

where ot is the output information after parallelization, Uo is the input coefficient matrix of
the output gate, Wo is the network coefficient weight matrix of the output gate, and ht is
the output information of the current LSTM cell.

Therefore, LSTM has unique advantages in processing long-sequence data compared
with RNN. The experiments conducted in this study achieved sufficiently good results.

4. Dataset and Experimental Analysis
4.1. Experimental Dataset

When seafarers work on ships, their behaviors are not as complicated as those on land,
and activities such as crouching down and lying down are rare. Therefore, the main human
activities in the videos captured in this study were walking, standing, sitting, and falling.
This study constructed a self-developed dataset based on these four activities. This study
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selected two male samples and one female sample. Of the three samples, two were younger
and their data were taken in the field, and the other was from a seafarer whose data was
taken in the cabin. The specific information is shown in Table 2. The body types of the three
people were different. It is representative.

Table 2. Self-developed dataset construction.

Sample Age Height Weight Sex Environment

Sample 1 24 168 cm 62 Kg Male Field
Sample 2 25 162 cm 47 Kg Female Field
Sample 3 39 176 cm 74 Kg Male Cabin

To enrich the datasets, we extracted all the videos about these four kinds of activities
from the URFall public dataset and the FDD public dataset. Then, we processed all the
videos. We extracted and labeled the human body key point information for each frame
image. Finally, 11,292 groups were obtained, of which 3370 groups were from our own
videos, 2995 groups were from the URFall public dataset, and 4527 groups were from the
FDD public dataset. The detailed distribution of the dataset is presented in Table 3:

Table 3. Dataset source statistics.

Dataset Source Data Quantity Data Proportion Data Acquisition
Equipment

Self-made dataset 3770 33.38% RGB Camera
URFall public dataset 2995 26.52% Kinect Camera
FDD public dataset 4527 40.09% RGB Camera

Finally, we divided all the obtained data into training dataset, validation dataset, and
test dataset, at a ratio of 7:2:1. The training set accounted for 70% of the total dataset, and
approximately 7904 sets of key point information. The validation set accounted for 20% of
the total data, approximately 2258 sets of key point information, and the remaining 10%
contained about 1129 sets of key point information as the test set.

4.2. Experimental Environment

Table 4 lists the experimental conditions of the data training completed in this study.

Table 4. Experimental hardware configuration.

Experimental Conditions Parameters

CPU Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50 GHz 3.50 GHz
GPU GeForce GTX970

Memory 8 G
Hard disk 1 T

System Windows 10 Professional Edition
Language python3.8

Frame TensorFlow1.15.5
Software Jupyter Notebook

4.3. Experimental Results

To make the seafarer fall detection algorithm designed in this study efficiently appli-
cable in a real shipboard operating environment, the dataset used in this study contains
the daily activities of walking, falling, sitting, and standing associated with falls. The
Adam optimization method was used to optimize the network, and the ReLU method
was used between the network layers to improve the generalization ability of the model.
Finally, the fully connected layer and the SoftMax classifier were used to calculate the final
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classification results. Figures 8 and 9 show the variation curves of the loss and accuracy of
the training and validation sets with the iteration process during the training process.
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According to the change in the curve, it is appropriate to use the left shoulder, right
shoulder, left hip, and right hip to describe the movement state of the personnel.

Because accidental falls are a significant threat to personal safety in various work
scenarios, this study allows other behaviors to be falsely detected as falls. This means that
specificity is less than 1, but the accuracy and sensitivity indicators must be as optimal as
possible. A fuzzy matrix was used in this study to analyze the final results. The results are
shown in Figure 10:
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As shown in the figure above, the human fall detection algorithm proposed in this
study can effectively distinguish the fall situation from the daily situation. The sitting
behavior is similar to the falling behavior, and misjudgment occurs in it, but the desired
effect of the algorithm designed in this study has been obtained well. Moreover, the
optimized human body key point information extraction, based on the BlazePose network,
in this study can reach a frame rate of 25+ FPS, provided by Google Labs on the experimental
equipment described in this study, without using a GPU. This can be effectively placed
on mobile devices, as well as on common RGB cameras for real-time detection and cost
savings. We rendered some of the running results using the video dataset, and the detection
results are shown in Figure 11.
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Based on the BlazePose–LSTM seafarer fall detection model, the accuracy rate of
seafarer falls in this study reached 100%, the recognition rate for non-falls reached 97.95%,
and the average detection frame rate reached 29 frames/s. It can be proved that the
BlazePose–LSTM network model proposed in this study has high recognition accuracy and
a fast frame rate for the experimental data set. Table 5 shows a performance comparison
between the model in this study and the methods used in other studies, which further
shows that this method exhibits a certain degree of improvement in accuracy, specificity,
and sensitivity [35]. The calculation formulae for the three indicators are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (14)

Sensitivity = TP/(TP + FN)× 100% (15)

Speci f ity = TN/(TN + FP)× 100% (16)

Table 5. Performance comparison between BlazePose–LSTM seafarer fall detection model and other
models.

Models Accuracy Specificity

OpenPose-YOLO 95.43% 96.8%
CNN 96.97% 95.44%

Stacked LSTM 96.94% 97.15%
BlazePose–LSTM

(Ours) 100% 98.5%

According to the statistics and comparison information in the above table, the
BlazePose–LSTM seafarer fall detection network structure proposed in this study increased
the accuracy, specificity, and sensitivity by 4.57%, 1.7%, and 9%, respectively, compared
with the OpenPose-YOLO [36] fall detection network. The fall recognition rate for seafarers
increased by nearly five percentage points, and the false alarm rate was much lower. Com-
pared with CNN [37], the performance also exhibits a certain improvement. Compared
with the stacked LSTM [38], the accuracy, specificity, and sensitivity increased by 3.06%,
2.06%, and 3.66%, respectively.

In summary, the seafarer fall detection model based on BlazePose–LSTM proposed
in this study can obtain better detection accuracy and frame rate. In addition, for the fall
detection of seafarer members on ships, the purpose of using the algorithm is to detect
all fall behaviors so that medical rescue can be performed in time, to prevent irreversible
physical damage to the seafarer members. Therefore, it is possible to have a fall-like
behavior and be misjudged as a fall, but it is impossible to miss the detection of a fall
behavior; therefore, the accuracy and sensitivity indicators are also very important.

4.4. Generalization Experiment of Seafarer Fall Detection on Ships Underway

Note that our experiments were carried out under the condition that the ship’s sailing
state is relatively stable. In order to verify the generalization ability of the algorithm in this
study in an actual ship environment, we collected videos of several volunteers simulating
ship operations on the Wu Song cargo ship. All the videos were captured using onboard
RGB cameras. The detection results for one of the video sequences are shown in Figure 12:
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In this video sequence, it can be detected that the current image of the seafarer member
is “SD,” which is the standing state label in the first 30 frames. When the seafarer starts
to walk, the algorithm can quickly respond and output “WK,” which is the walking label.
When the detection reaches about the 90th frame, the algorithm detects that the current
seafarer member has demonstrated the features of a fall, and quickly outputs the “FL” label,
which shows that the seafarer member in the current image has fallen. The above analysis
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shows that the BlazePose–LSTM seafarer fall detection algorithm proposed in this study
has a good generalization ability in actual ship seafarer fall detection.

5. Conclusions

Based on the optimized BlazePose–LSTM seafarer fall detection model, this study first
uses the human body key point information extraction based on the optimized BlazePose
network to detect the head and obtain the human body feature information. In this study,
according to the Vitruvian theory, a head detector was designed to replace the pre-trained
SSD body detector. After obtaining the human bounding box, an offset vector is designed
to update the human body bounding box, so that the head detector built into the network
does not need to be repeatedly enabled. Subsequently, the extracted information is cleaned
by the box plot, and then the LSTM is used to determine whether the seafarer has fallen.
At the same time, this study verifies the method proposed in this paper on the URFall
public data set and the FDD public data set, which proves that the method can obtain a
high accuracy and detection frame rate. In the future, we will evaluate the performance of
our method in the case of multiple falls. In addition, the algorithm can be arranged on a
mobile device to realize industrial applications.
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