
����������
�������

Citation: Wang, G.; Yao, W.; Zhang,

X.; Li, Z. A Mean-Field Game Control

for Large-Scale Swarm Formation

Flight in Dense Environments.

Sensors 2022, 22, 5437. https://

doi.org/10.3390/s22145437

Academic Editors: Rajan Shankaran,

Wei Ni, Xiaojing Chen and

Bochun Wu

Received: 19 June 2022

Accepted: 18 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Mean-Field Game Control for Large-Scale Swarm Formation
Flight in Dense Environments

Guofang Wang 1,2,3 , Wang Yao 2,4,∗ , Xiao Zhang 1,2,3 and Ziming Li 1,2

1 School of Mathematical Sciences, Beihang University, Beijing 100191, China;
wangguofang@buaa.edu.cn (G.W.); xiao.zh@buaa.edu.cn (X.Z.); zimingli@buaa.edu.cn (Z.L.)

2 Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education,
Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University,
Beijing 100191, China

3 Peng Cheng Laboratory, Shenzhen 518055, China
4 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
* Correspondence: yaowang@buaa.edu.cn

Abstract: As an important part of cyberphysical systems (CPSs), multiple aerial drone systems
are widely used in various scenarios, and research scenarios are becoming increasingly complex.
However, planning strategies for the formation flying of aerial swarms in dense environments
typically lack the capability of large-scale breakthrough because the amount of communication and
computation required for swarm control grows exponentially with scale. To address this deficiency,
we present a mean-field game (MFG) control-based method that ensures collision-free trajectory
generation for the formation flight of a large-scale swarm. In this paper, two types of differentiable
mean-field terms are proposed to quantify the overall similarity distance between large-scale 3-D
formations and the potential energy value of dense 3-D obstacles, respectively. We then formulate
these two terms into a mean-field game control framework, which minimizes energy cost, formation
similarity error, and collision penalty under the dynamical constraints, so as to achieve spatiotemporal
planning for the desired trajectory. The classical task of a distributed large-scale aerial swarm system
is simulated by numerical examples, and the feasibility and effectiveness of our method are verified
and analyzed. The comparison with baseline methods shows the advanced nature of our method.

Keywords: large-scale UAV swarm; multiagent coordination; formation flight; collision avoidance;
MFG control; distributed decisions

1. Introduction

As an important part of cyberphysical systems (CPSs), multiple aerial drone systems
have shown great advantages and value in performing tasks such as environmental re-
connaissance, information transmission & reception, and target tracking in the fields of
disaster rescue, geological exploration, and smart cities [1]. Compared with common
multi unmanned aerial vehicle (UAV) systems, hundreds or thousands of larger-scale UAV
swarms have better maneuverability performance and mission realization efficiency [2].
When the drone swarm performs actual missions, it will fly in formation as needed. In the
process of approaching the target, it not only needs to avoid obstacles in time but also needs
to consider the trajectory collision avoidance between the drones in the swarm. As a result,
the drone swarm requires a large amount of communication and computing resources to
guarantee real-time communication information interaction and perception information
calculation, which will grow exponentially with the scale.

Research work on the flight control of aerial swarms is extensive. A large number of
research studies focus on the formation flight, trajectory planning, and obstacle avoidance
of the swarm, and their combination forms are more common. Specifically, Zhang et al. [3]
proposed a formation control method based on the communication consensus mechanism
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and leader–follower strategy, which realized the efficient flight of multiple UAVs in forma-
tion around a single static obstacle. In the same year, Zhang et al. [4] proposed an obstacle
avoidance control algorithm based on virtual structure and 3-D spatial leader–follower
strategy, which realized a triangular formation of multiple UAVs flying through multiple
static obstacles with high efficiency. Shao et al. [5] proposed an improved particle swarm
optimization algorithm for formation-obstacle avoidance-trajectory planning in a 3-D envi-
ronmen and completed an experiment in which multiple UAVs formed a formation after
avoiding the static cone and ellipsoid obstacles. Combined with an improved artificial
potential field method (APF), Wu et al. [6] performed a swarm control for multiple UAVs
based on a virtual core structure, solved the local minima problem in APF, and success-
fully achieved the swarm control of multiple UAVs and the flexible obstacle avoidance
of adaptive formation flight in an urban environment. In 2021, the Fei Gao team [7] pro-
posed a distributed swarm trajectory optimization method for formation flight in a dense
environment, which realizes multiple UAVs maintain formation flight through unknown
obstacle-rich scenarios. Peng et al. [8] put forward a perception sharing and swarm tra-
jectory global optimal algorithm, which experimentally showed that the success rate of
obstacle avoidance in a dense obstacle environment could reach at least 80%. In the
latest research so far, the formation-obstacle avoidance scenarios of multi-UAV systems
have become more and more complex, and the continuously developed optimal control
algorithms provide decision-making guarantees for mission flight in the corresponding
scenarios. However, the current situation shows that the research schemes in the above
literature are all limited by the large-scale of UAVs because the traditional optimization and
control technologies deal with the dynamic interaction between individuals, respectively.
With the increase of the number of UAVs, the difficulty of solving the optimal strategy will
increase significantly.

For the large-scale UAVs flight control problem, some researchers have contributed
interesting work. For example, [9] used the mean-field game (MFG) model to solve the
real-time flight control problem of large-scale UAVs on the 2-D plane, and the proposed
algorithm effectively realizes interaircraft collision avoidance and reduces the energy con-
sumption of UAVs. Shiri et al. [10] combined a federal learning method that can share the
parameters of neural network models on UAVs and completed a simulation experiment
based on the MFG model for large-scale-UAV swarms flying to the destination under
2-D conditions. Chen et al. [11] proposed a mean-field trust-region policy optimization
control method based on multi-agent reinforcement learning, which solved the problem of
limited communication range for large-scale UAV flight control. Xu et al. [12] proposed a
dual-fields approach, in which the improved APF method overcomes the failure of tradi-
tional APF in collision avoidance; the MFG method greatly reduces the communication
interference of the UAV group, couples these two methods to adjust the flight trajectory
and power consumption, and realizes the flight obstacle avoidance of large-scale UAVs
in multiple static obstacles with height differences. Gao et al. [13] proposed an energy-
efficient velocity control algorithm for a large number of UAVs based on MFG, which
expressed the speed control of large-scale UAVs as a differential game and used the original
double mixed gradient method to solve the problem. Their experiments completed that
large-scale UAVs bypassed static obstacles in the case of 2-D while minimizing energy con-
sumption. The above documents all use the mean-field method to convert the traditional
control 1-vs.-N game into a 1-vs.-1 game, which greatly reduces the interaction frequency
of agent systems. Thus, they can deal with large-scale mission scenarios to effectively
reduce the communication resources and flight energy consumption. However, it should
be pointed out that the state quantities in their numerical solution of the mean-field are all
low-dimensional, and the relevant numerical solution problems can be solved using the
grid-based method. In terms of solving high-dimensional MFGs, [14] perfectly avoids spa-
tial grids of high-dimensional MFGs based on the machine learning framework, but their
work is limited to the deterministic setting (σ = 0). Ref. [15] is the first document to solve
high-dimensional MFGs under a random setting (σ > 0), which exploits the natural con-
nection between MFGs and generative adversarial neural networks (GANs) [16]. Ref. [17]
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further proposed a numerical solution for solving multi-population high-dimensional
stochastic MFGs, a coupled alternating neural network (CA-Net). The numerical exper-
iments completed the coordinated flight of large-scale multipopulation quadcopters to
the destination and realize the intergroup interaction and intragroup collision avoidance.
The MF method, MFG model, and its numerical solution methods gathered from these
documents provide a preliminary solution idea for the flight control problem of large-scale
aerial drones in 3-D scenes. However, the current situation shows that these large-scale
control research schemes are limited by complex scenarios because most of the state quanti-
ties in MF terms are directly used for real-time error measurement. With the complexity of
application scenarios, a large number of UAV states may change frequently, resulting in a
significant decline in mission success rate.

To summarize, a large-scale agent trajectory planning method that can effectively
manage both formation and obstacle avoidance in dense environments is lacking in the
literature. On the one hand, obstacle-dense avoidance control for aerial swarm navigation in
formation needs to break through the large-scale restrictions; on the other hand, large-scale
UAV flight control methods cannot be directly applied to complex scenarios. In practice,
a single agent will stay away from obstacles for safety. However, when formation imposes
agents tracking targets, it may oppose obstacle avoidance, that is, sometimes formation and
obstacle avoidance are contradictory; large-scale itself has the difficulty of communication
and calculation, which is exacerbated by frequent formation–neighbor communication
and obstacle avoidance environment interactions. How to systematically trade off the
conflicting requirements of large-scale, formation, and obstacle avoidance is the key point
to accomplishing large-scale noncolliding formation flights.

To bridge the gap, we propose a large-scale agent trajectory optimization method
capable of navigating large-scale swarms in formations while avoiding dense obstacles.
First, extending the formation method in [7], we model the formation using undirected
graphs based on probability densities and define a mean-field-based differentiable metric
that assesses the difference between large-scale formation shapes in 3-D workspaces. Our
formation similarity metric also retains the translation, rotation, and scale invariance of the
formation methods in [7], enabling quantitative evaluation of the overall performance of
large-scale formation maintenance. To solve the communication and computing difficulties
caused by complex scenarios of large-scale multiagent systems and formulate the trade-offs
between formation and obstacle avoidance in large-scale contexts, we design a mean-
field game control framework that simultaneously satisfies the dynamic constraints and
minimizes energy cost, formation similarity error, and collision penalty. The latter two of
them serve as mean-field terms directly related to complex environments, and the functional
form we define provides greater flexibility for agent maneuvering. Finally, to verify the
effectiveness and practicability of the method, we conduct extensive simulation experiments
of distributed aerial large-scale UAVs.

Our main contributions are summarized as:

• A differentiable graph-theory-based mean-field term that quantifies the similarity dis-
tance between large-scale three-dimensional formations; a differentiable ellipsoid-based
mean-field term that inscribes the potential energy value of dense three-dimensional
obstacles.

• A general control framework for complex scenarios of large-scale multiagent systems—
mean-field game control, which jointly takes the amount of communication and com-
putation, operating energy consumption, formation similarity, and obstacle avoidance
into account.

• A series of simulations with a distributed large-scale aerial swarm system validates
the efficiency and robustness of our method. The comparison with baseline methods
shows the advanced nature of our method.
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2. Two Types of Mean-Field Terms

An aerial swarm formed by a large number of UAVs is considered in this paper,
which is traversing an obstacle-rich area in an expected formation. Herein, two types
of differentiable mean-field terms for formation similarity metric and obstacle potential
energy value engraving are constructed in the following two subsections.

2.1. Formation Mean-Field Term

The large-scale system N with N agents have a probability distribution of the spatial
state x varying with time t, that is, the mean field ρ(x, t), where x = [x1, x2, x3, ..., xn] ∈
Rn ∼ ρ. Usually the position vector p = [x, y, z] = [x1, x2, x3]. A formation of N agents is
modeled by an undirected graph G = (V , E), where V := {1, 2, . . . , N} is the set of vertices,
and E ⊂ V × V is the set of edges [7]. In graph G, the vertex i represents the ith agent
with position vector pi = [xi, yi, zi] ∈ R3. An edge eij ∈ E that connects vertex i ∈ V and
vertex j ∈ V means the agent i and j can measure the geometric distance between each
other. In this work, each agent communicates with all other agents, thus, the formation
graph G is complete. Each edge of the graph G is associated with a non-negative number
as a weight. The weight of edge eij is given by

wij =
∥∥pi − pj

∥∥2, (i, j) ∈ E , (1)

where ‖ · ‖ denotes the Euclidean norm. Now, the adjacency matrix A = (Aij) ∈ RN×N

and degree matrix D = (Dij) ∈ RN×N of the formation G are determined,

Aij = wij, (2)

Dij =

{
∑j Aij if i = j
0 otherwise .

(3)

Thus, the corresponding Laplacian matrix is given by

L = D−A. (4)

With the above matrices, the symmetric normalized Laplacian matrix of the graph G is
defined as

L̂ = D−1/2LD−1/2 = I−D−1/2AD−1/2, (5)

where I ∈ RN×N is the identity matrix.
As a graph representation matrix, Laplacian contains information about the graph

structure [18]. To achieve the expected formation for the large-scale swarm, we propose a
formation similarity metric as

F 1(ρ(x, t)) =
∫

Ω

∫
Ω

f 1(x, x̂)dρ(x, t)dρ(x̂, t), (6)

f 1(x, x̂) =
∥∥L̂(x)− L̂e(x̂)

∥∥2
F = tr

{(
L̂− L̂e

)T(L̂− L̂e
)}

, (7)

where Ω denotes state space of x, tr{·} is the trace of a matrix, L̂ is the symmetric normalized
Laplacian of the current swarm formation, and L̂e is the counterpart of the expected
formation. Frobenius norm ‖ · ‖F is used in our distance metric.

Remark 1. The function F 1 is invariant to the translation, rotation, and scale of the formation
because F 1 is an integral of f 1. f 1 is natively invariant to translation and rotation of the formation
since the corresponding graph is weighted by the absolute distance between agent positions; scaling
invariance is achieved by normalizing graph Laplacian with the degree matrix in (5) [7].
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2.2. Obstacle Mean-Field Term

The large-scale system N with N UAVs needs to traverse an obstacle-rich area. There
are K static obstacles. The position of UAV is available. We assume that obstacles can
be detected by the UAV vision sensor. In a 3-D urban environment, without loss of
generality, obstacles can be considered rectangular solids Ωobs,k = {(x, y, z)||x− x0,k| ≤
v1,k, |y − y0,k| ≤ v2,k, |z − z0,k| ≤ v3,k}, k = 1, ..., K where (x0,k, y0,k, z0,k) is the center of
corresponding obstacle, (±v1,k,±v2,k,±v3,k) are its vertices that are parallel to the x, y, z-
axis, respectively. For training, we formulate obstacles as

Ωobs,trn,k : Qk(x, y, z) =
1

3v2
1,k

(x− x0,k)
2 +

1
3v2

2,k
(y− y0,k)

2 +
1

3v2
3,k

(z− z0,k)
2 ≤ 1.1 k = 1, ..., K. (8)

We encode ellipsoidal repulsion of obstacles for the generic UAV as

f 2(x) =

{
∑K

k=1 γobs,k
1

Qk
if x ∈ Ωobs,trn

0 otherwise ,
(9)

where γobs,k, k=1, ..., K, is repulsive force gain coefficient between the generic UAV and
other obstacles, Ωobs,trn =

⋃K
k=1 Ωobs,trn,k.

Remark 2. The cuboid obstacle repulsion is encoded as the unit circumscribed ellipsoid repulsion
making this function differentiable [19]. Ωobs,trn contains an obstacle radial bound ten percent more
than in circumscribed ellipsoid of Ωobs because we found this additional training buffer alleviates
collisions during validation. By training with ellipsoidal repulsion, which has gradient information
within the obstacles, we incentivize the model to learn trajectories avoiding the obstacles [20].

To achieve all obstacles avoidance for the large-scale swarm, we propose an obstacle
potential energy function as

F 2(ρ(x, t)) =
∫

Ω
f 2(x)ρ(x, t)dx. (10)

Remark 3. The function F 2 can avoid dense obstacles for large-scale swarms, which benefits from
the proper construction of 3-D obstacles on the one hand, and the organic combination of obstacle
potential and mean-field method on the other hand.

3. A Mean-Field Game Control Framework for Complex Scenarios

In this section, we find the optimal state control for large-scale UAVs which can
systematically weigh the energy consumption, formation similarity, and obstacle avoid-
ance of each UAV when it travels complex scenarios. Specifically, we first formulate the
optimal control problem for a single UAV. The interaction relationship between drones
forms an N-agent noncooperative differential game. As the number of UAVs grows large,
the complexity of solving the differential game in the optimal control problem can increase
significantly as traditional methods need to separately deal with the increasing interac-
tions. Therefore, we reformulate the large-scale UAVs optimal state control problem in
complex scenarios as a mean-field game control problem. Subsequently, we propose a
generative-adversarial-network (GAN)-based algorithm to solve the mean-field game.

3.1. Single-UAV Optimal Control Problem

We consider that the continuous-time state x of the ith UAV has the dynamic–kinematic
equation of the following form

dxi = hi(xi, x−i , ui)dt + σdωi(t), (11)

where x−i denotes the states of all other UAVs, ui ∈ Ui is the control input (strategy).
In the stochastic case, we add a noise term to the dynamics, σ is a volatility term—a fixed
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coefficient matrix, and ωi(t) denotes a Wiener process (standard Brownian motion), which is
identical and independent among all UAVs. The interpretation here is that we are modeling
the situation when the quadcopter suffers from noisy measurements [15]. For example,
under wind perturbations, σ can be the covariance matrix of the wind velocity [10,13].

Without loss of generality, denoting gravity as g, the acceleration of a UAV with mass
m can be written as

ẍi =
ui
m (sin(ψi) sin(ϕi) + cos(ψi) sin(θi) cos(ϕi))

ÿi =
ui
m (− cos(ψi) sin(ϕi) + sin(ψi) sin(θi) cos(ϕi))

z̈i =
ui
m cos(θi) cos(ϕi)− g

ψ̈i = τψ i
θ̈i = τθ i
ϕ̈i = τϕ i

, (12)

where (x, y, z) is the spatial position of the UAV, (ψ, θ, ϕ) is the angular orientation with
corresponding torques τψ, τθ , τϕ, and u is the main thrust directed out of the bottom of the
aircraft [21]. To fit a control framework, the above second-order system can be turned into
a first-order system

ẋi = hi(xi, x−i , ui) =⇒



ẋi = vxi
ẏi = vyi
żi = vzi
ψ̇i = vψ i
θ̇i = vθ i
ϕ̇i = vϕ i
v̇xi =

ui
m (sin(ψi) sin(ϕi) + cos(ψi) sin(θi) cos(ϕi))

v̇yi =
ui
m (− cos(ψi) sin(ϕi) + sin(ψi) sin(θi) cos(ϕi))

v̇zi =
ui
m cos(θi) cos(ϕi)− g

v̇ψ i = τψ i
v̇θ i = τθ i
v̇ϕ i = τϕ i

, (13)

where x = [x, y, z, ψ, θ, ϕ, vx, vy, vz, vψ, vθ , vϕ]T ∈ R12 is the state with velocities v,
and u = [u, τψ, τθ , τϕ]T ∈ R4 is the control.

For the ith UAV, we consider the cost function of the following form

Ji
(
xi, x−i , ui

)
=
∫ T

0
Li(xi, ui) +Fi

(
xi, x−i

)
dt + Gi

(
xT

i

)
, (14)

where Li is a running cost incurred by the ith UAV based solely on its actions, Fi is a
running cost incurred by the ith UAV based on its interactions with the rest of the swarm,
and Gi is a terminal cost incurred by the ith UAV based on its final state.

The running cost Li is given by

Li(xi, ui) = c1‖ui(xi, t)‖2, (15)

where c1 is a constant. The running cost Li denotes the control effort implemented by the
ith UAV. The terminal cost Gi is given by

Gi

(
xT

i

)
= c2‖xT

i − x0‖2, (16)

where c2 is a constant, xT
i is the final state of the ith UAV, and x0 is the target state on which

we want the UAVs to reach the objective. The terminal cost Gi denotes the distance between
UAV i’s target state and the desired state. The interaction cost Fi is given by

Fi
(
xi, x−i

)
= l1F 1

i
(
xi, x−i , t

)
+ l2F 2

i
(
xi, x−i , t

)
+ l3F 3

i
(
xi, x−i , t

)
, (17)
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where l1, l2, l3 are constants, F 1
i
(
xi, x−i , t

)
is UAV i’s formation cost,

F 1
i
(
xi, x−i , t

)
=

1
N

N

∑
i=1

1
N

N

∑
j=1

∥∥∥L̂(xi, x−i , t)− L̂e(x̂j, x̂−j , t)
∥∥∥2

F
, (18)

F 2
i
(
xi, x−i , t

)
is UAV i’s obstacle avoidance cost,

F 2
i
(
xi, x−i , t

)
=

1
N

N

∑
i=1

{
∑K

k=1 γobs,k
1

Qk(xi ,t)
if xi ∈ Ωobs,trn

0 otherwise ,
(19)

F 3
i
(
xi, x−i , t

)
is UAV i’s collision avoidance cost,

F 3
i
(
xi, x−i , t

)
=

1
N

N

∑
j 6=i

1
‖E

1
2 (xi(t)−x−i (t))‖≤e0

, (20)

1A(ξ) =

{
1 if ξ ∈ A
0 otherwise ,

where 1 means the indicator function, e0 is the safe distance between UAVs, E = diag(1, 1, 1/c)
transforms Euclidean distance into ellipsoidal distance. The interaction cost Fi denotes the
sum of formation maintenance and trajectory collision loss about UAV i.

In summary, the optimal control problem faced by UAV i is given by

infui∈Ui Ji
(
xi, x−i , ui

)
s.t. dxi = hi(xi, x−i , ui)dt + σdωi(t).

(21)

To this end, the cooperative control of a large number of UAVs in complex environ-
ments is formulated as a noncooperative differential game. Therefore, this is an N-player
noncooperative game whose well-known solution is the Nash equilibrium (NE), i.e., the
control decisions under which no UAV can unilaterally decrease its cost [22].

3.2. Mean-Field Game Control Formulation

As the UAV-swarm number N increases, the complexity of solving the differential
game in (21) will increase significantly. Mean-field games (MFGs) are a class of problems
that encode large populations of interacting agents into systems of coupled partial differ-
ential equations, which overcomes the difficulties of large-scale and information sharing.
For the current UAV, the neighborhood interaction of formation and collision avoidance,
and the environment interaction of obstacle avoidance will cause the UAV to need a great
amount of communication resources and computing resources. Traditional optimization
and control methods need to separately deal with the increasing interactions, which leads
to the problem of dimensionality explosion. Therefore, we reformulate the large-scale UAVs
optimal state control problem in complex scenarios as a mean-field game control (MFGC)
problem. Under the framework of MFGC, a generic agent only react to the collective
behaviors (mean-field) of all agents instead of the behavior of each agent, which greatly
reduces the amount of communication and computation. Now, we can drop the index i
since agents are indistinguishable in MFG. Let ρ(x, t) denote the probability of state x at
time t; then, the cost functional (14) is now transformed into

J (x, ρ, u) =
∫ T

0

{∫
Ω

L(x, u)ρ(x, t)dx +F (x, ρ(x, t))
}

dt + G(ρ(·, T)). (22)

Meanwhile, the state dynamics in (11) are transformed into

dx = h(x(t), ρ(x, t), u(x, t))dt + σdω(t). (23)



Sensors 2022, 22, 5437 8 of 16

According to Ito’s lemma [23], (23) can be represented in terms of the mean field ρ(x, t)
and then will be equivalent to the Fokker–Planck equation given by

∂tρ−
σ2

2
∆ρ +∇ · (ρh) = 0. (24)

with cost functional (22) and the Fokker–Planck equation in (24), the high-dimensional
MFG which describes the complex-scenario cooperative control of a large number of UAVs
is summarized as

infρ,u J (x(t), ρ(x, t), u(x, t))

s.t. ∂tρ− σ2

2 ∆ρ +∇ · (ρh) = 0

ρ(x, 0) = ρ0(x),

(25)

where ρ0(x) is the initial probability distribution of the UAV swarm’s states. To this end,
the state control for a large number of UAVs is formulated as a high-dimensional MFG. The
agents forecast a distribution of the population {ρ(·, t)}T

t=0 and aim at minimizing their
cost. Therefore, at a Nash equilibrium, we have that, for every x ∈ Rn,

J (x, ρ, û) ≤ J (x, ρ, u), ∀u ∈ U , (26)

where û is the equilibrium strategy of an agent at state x. Here, we assume that agents are
small, and their unilateral actions do not alter the density ρ [14]. With finite UAVs, it yields
an MF approximation that achieves the ε-NE [10,22].

3.3. GAN-Based Algorithm for Complex-Scenario MFGs

In this section, we propose a generative-adversarial-network (GAN)-based approach to
solving the high-dimensional MFG in (25). Inspired by Wasserstein GANs [24], APAC-Net [15,25],
we use the variational primal–dual structure of MFG and phrase (25) as a convex–concave
saddle-point problem. Then, we propose a GAN-based algorithm to solve the complex-scenario
MFG in (25).

Now, we show the underlying primal–dual structure of the complex-scenario MFG
and derive the convex–concave saddle-point problem equivalent to (25). Denote φ as the
Lagrange multiplier, we can put the differential constraint in (24) (Fokker-Planck equation)
into the cost function in (22) to obtain the following extended cost function

sup
φ

inf
ρ,u

∫ T

0

{∫
Ω

ρ(x, t)L(x, u(x, t))dx +F (ρ(·, t))
}

dt + G(ρ(·, T))−
∫ T

0

∫
Ω

φ(x, t)
(

∂tρ−
σ2

2
∆ρ +∇ · (ρ(x, t)h(x, t))

)
dxdt. (27)

Minimizing concerning u to get the Hamiltonian via H(x, p) = infu{ph + L(x, u)}
and integrating by parts, we can rewrite (27) as

inf
ρ

sup
φ

∫ T

0

{∫
Ω

(
∂tφ +

σ2

2
∆φ + H(x,∇φ)

)
ρ(x, t)dx +F (ρ(·, t))

}
dt +

∫
Ω

φ(x, 0)ρ0(x)dx−
∫

Ω
φ(x, T)ρ(x, T)dx + G(ρ(·, T)). (28)

The Formular (28) is the cornerstone of our algorithm.
We solve (28) by training a GAN-like neural network. Although the idea is inspired by

Wasserstein GANs [24] and APAC-Net [15,25], the loss function of our algorithm considers
the formation similarity F 1 and dense obstacle avoidance F 2, which provides greater
flexibility for large-scale agents maneuvering; details are shown in Algorithm 1. We show
the structure and training process of our GAN-based neural network in Figure 1.
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Algorithm 1 GAN-based algorithm for complex-scenario MFGs
Require: σ diffusion parameter, H Hamiltonian, g terminal cost, f interaction term.
Require: Initialize neural networks Nω and Nθ , batch size B.
Require: Set φω and Gθ as in (29).
while not converged do

train φω:

Sample batch {(zb, tb)}B
b=1 where zb ∼ ρ0 and tb ∼ Unif(0, T)

Obtaining generated data {(xb, tb)}B
b=1, xb ← Gθ(zb, tb).

Update discriminator parameters ω to minimize `total = `0 + `t + `HJB

ω ← ω− η1∇`total (ω)

train Gθ :

Sample batch {(zb, tb)}B
b=1 where zb ∼ ρ0 and tb ∼ Unif(0, T)

Update generator parameters θ to minimize ζt

θ ← θ − η2∇ζt(θ)
end while

  

  

Figure 1. Visualization of the structure and training process of our GAN-based neural network. Its
training process is divided into two coupled alternating training parts—generator and discriminator.

First, we initialize the neural networks Nω(x, t) and Nθ(z, t), then set

φω(x, t) = (1− t)Nω(x, t) + tg(x), Gθ(z, t) = (1− t)z + tNθ(z, t), (29)

where z ∼ ρ0 are samples drawn from the initial distribution. The formulation of φω and Gθ

in (29) automatically satisfy the terminal and initial condition, respectively. Moreover, our
algorithm encodes the underlying structure of complex-scenario MFGs via (28) and (29),
which absolves the neural networks learning for the entire solution of the MFG from scratch.
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Our approach for training neural networks includes parallel alternately training
Gθ (the state density distribution) and φω (the value function). In order to obtain the
equilibrium of the complex-scenario MFG, we train φω by first sampling a batch {zb}B

b=1
from ρ0, and {tb}B

b=1 uniformly from [0, T]. Then, we compute the push-forward states
xb = Gθ(zb, tb) for b = 1, · · · , B. The main loss item for training the discriminator φω is

lossφ =
1
B

B

∑
b=1

φω(xb, 0)︸ ︷︷ ︸
`0

+
1
B

B

∑
b=1

∂tφω(xb, tb) +
σ2

2
∆φω(xb, tb) + H(∇xφω(xb, tb), xb)︸ ︷︷ ︸

`t

, (30)

where we can optionally add a regularization term

`HJB = λ
1
B

B

∑
b=1
‖∂tφω(xb, tb) +

σ2

2
∆φω(xb, tb) + H(∇xφω(xb, tb), xb) + f (xb, tb)‖ (31)

to penalize deviations from the HJB equations. This extra regularization term has also
been found effective in, e.g., Wasserstein GANs. Finally, we backpropagate the total loss
to update the weights of the discriminator φω. To train the generator, we again sample
{zb}B

b=1 and {tb}B
b=1 as before. The loss of the generator is given by

lossG =
1
B

B

∑
b=1

∂tφω(Gθ(zb, tb), tb) +
σ2

2
∆φω(Gθ(zb, tb), tb) + H(∇xφω(Gθ(zb, tb), tb), xb) + f (Gθ(zb, tb), tb)︸ ︷︷ ︸

ζt

. (32)

At last, we backpropagate this loss to update the weights of Gθ . In conclusion, in each time
slot t ∈ [0, T], the neural networks will be trained. The generator Gθ will generate the state
distribution at time t and the discriminator φω will get the result of the value function at
time t.

4. Simulation Results

In this section, to verify the effectiveness and robustness of our method, we conduct a
series of simulation experiments of distributed aerial large-scale UAVs. To demonstrate the
competitiveness of our method, we compare it against baseline methods regarding their
performances at last.

4.1. Simulation Parameters

For the model hyperparameters, we set c1 = 0.5 (the weight of the control effort
in (15)), c2 = 5 (the weight of the terminal cost in (16)), and l1 = 5, l2 = 10, l3 = 5 (the
weights of the interaction cost in (17)). For the neural networks, there are three linear
hidden layers with 100 hidden units per layer in both networks. Residual neural networks
(ResNet) are used for both networks, with a skip connection weight of 0.5. Tanh activation
function is used in φω while ReLU activation function is used in Gθ . We choose ADAM as
the optimizer with β = (0.5, 0.9), η1 = 4× 10−4 (the learning rate for φω), η2 = 1× 10−4

(the learning rate for Gθ), weight decay of 10−4 for both networks, batch size 25, and λ = 1
(the weight of the HJB regularization term in (31)).

4.2. Formation Performance of Large-Scale UAVs

To validate the feasibility and robustness of our method for large-scale UAVs formation,
we simulated twenty-five drones flying in desired formations from the bottom left side to
the top right side in the 3-D scene, as shown in Figure 2. We experimented with two forms
of formations—spiral formation and wave formation, which could confirm the generality of
our approach. In Figure 2a, we set the initial points of the drones as (2cos( 2πi

25 ), 2sin( 2πi
25 ) +

18, 5i
24 − 10), i = 0, 1, ..., 24; the target points of the drones are (2cos( 2πi

25 ), 2sin( 2πi
25 )− 18, 5i

24 +

5), i = 0, 1, ..., 24. In Figure 2b, the initial points of the drones are ( 20i
25 − 10, sin( 20i

25 − 10) +
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18, 5i
24 − 10)), i = 0, 1, ..., 24; the target points of the drones are ( 20i

25 − 10, sin( 20i
25 − 10)−

18, 5i
24 + 5)), i = 0, 1, ..., 24.
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(a) Spiral formation
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(b) Wave formation

Figure 2. A large-scale desired formation consisting of twenty-five quadrotors traverses a 3-D
environment from the bottom left side to the top right side.

The test results are shown in Figure 3, which demonstrates that our method can
maintain the formation of large-scale swarms in 3-D environments. To certify the generality
of our approach in large-scale formations, we design two forms of formations consisting of
twenty-five quadrotors—spiral and wave formations. As depicted in Figure 3a,b, the xoy
-plane projections illustrate the shape contour of the formation maintenance, which means
that the swarm maintains the desired formation well during the flight.
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(a) Spiral-formation trajectories
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(b) Wave-formation trajectories

Figure 3. The visualization of the executed trajectories for the formation flight of large-scale UAVs.
The xoy-plane projections represent the outline of the shape.

The convergence of our proposed MFG control algorithm and the effectiveness and
stability of formation control under different forms of formations are shown in Figure 4.
In Figure 4a, we plot the HJB residual errors, i.e., `HJB in Algorithm 1, which shows the
convergence of MFGC. Without an efficient strategy control, the HJB residuals under
different formations are relatively high. HJB residuals drop fast after we apply a series of
controls. After around 5× 104 iterations, the error curves tend to be stable when we obtain
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an optimal control for UAVs. In Figure 4b, we plot the formation loss. Without a proper
design of the formation cost term, there is no effective formation control, and the formation
loss under different formations is relatively high. Formation loss drops fast after we apply
our formation cost term. After around 1× 105 iterations, the error curves tend to be stable
when we obtain an optimal formation control for UAVs.
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(a) Log HJB residual errors
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(b) Log formation similarity errors

Figure 4. Illustration of MFG convergence and formation stability.

4.3. Effect of Volatility Term σ on Formation

We investigate the effect of the volatility term σ on the behavior of the MFGC
solutions—the executed trajectories for the formation flight of large-scale UAVs. In Figure 5,
we show the solutions for MFGCs using σ = 0,

√
2× 10−1 and

√
10× 10−1. As σ increases,

the density of UAVs widens along the paths, and the desired formation maintenance of
UAVs decreases due to the added diffusion term in the MFG control equations in (25).
From Table 1, it can be seen that larger volatility σ corresponds to greater formation cost
F 1, but the collision avoidance cost F 3 is almost invariant. These results are consistent
with those in Figure 5.
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(b) σ2 = 0.02
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Figure 5. Comparison of the executed trajectories for the formation flight of large-scale UAVs about
volatility parameter σ = 0,

√
2× 10−1 and

√
10× 10−1.

Table 1. Comparison with interaction costs.

Volatility Parameter σ Formation Cost F 1 Collision Avoidance Cost F 3

0 1.41× 10−3 6.35× 10−2
√

2× 10−1 6.34× 10−2 6.34× 10−2
√

10× 10−1 4.30× 10−1 6.14× 10−2

4.4. Performance of Dense Obstacle Avoidance for Large-Scale UAVs Formation Flying

To verify the effectiveness of our method with large-scale UAVs formation flying
through an obstacle-rich area, we design a spiral formation consisting of twenty-five
quadrotors. A packed area of nine cuboid obstacles is set up in the simulation. As depicted
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in Figure 6, the swarm successfully avoids the obstacles and the desired formation is well
preserved during the flight. Under our MFG control, the formation similarity error is
steadily close to 0 as shown in Figure 7a; the executed trajectories are zero-collision, which
can be seen from Figure 7b,c.
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Figure 6. The visualization of the executed trajectories for large-scale UAVs formation flying through
an obstacle-rich area. (a) Full view of the trajectories. (b) xoy-plane projection trajectories.

0 10 20 30 40 50 60
Time

0.0

0.5

1.0

1.5

2.0

Fo
rm

at
io
n 
sim

ila
rit
y

(a)

0 10 20 30 40 50 60
Time

0

1

2

3

4

M
in
im

um
 d
ist
an

ce

(b)

0 10 20 30 40 50 60
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in
im

um
 d
ist

an
ce

(c)

Figure 7. Illustration of the performance of interaction terms for MFG control (F1, F2, F3). (a) For-
mation similarity error. (b) Minimum distance between UAVs and obstacles. (c) Minimum distance
between UAVs.

4.5. Comparison with Baselines

In the last part of the simulation results, we verify the superiority of our method by
comparing it to some typical baseline methods in Table 2. From Table 2, it can be seen
that our approach simplifies large-scale communication and handles the most complex
application scenarios. For more details of these baseline methods, please refer to the related
documents [4,7,9,13], etc.
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Table 2. Comparison with baseline methods.

Method Scene Scale of UAVs Scene Complexity Communication

[4] Formation flight and
obstacle avoidance Small 0.67 1 O(N) 2

[9] Cluster flight Large 0.5 O(1)

[13] Cluster flight and
obstacle avoidance Large 0.67 O(1)

[7]
Formation flight and

dense obstacle
avoidance

Small 0.83 O(N)

Ours
Formation flight and

dense obstacle
avoidance

Large 1 O(1)

1 The measurement method of scene complexity is as follows: here it is a scoring system, [cluster flight, formation
flight] = [1

′
, 2
′
]; [obstacle avoidance, dense obstacle avoidance] = [1

′
, 2
′
]; [small, large] = [1

′
, 2
′
]. We accumulate

the scores for each literature experiment scene according to each item and finally normalize them. 2 O() is
infinitesimal of the same order.

5. Conclusions

In this paper, we propose a large-scale agent trajectory optimization method capa-
ble of navigating large-scale swarms in formations while avoiding dense obstacles. First,
two types of differentiable mean-field terms are developed, where the overall similarity
distance between large-scale 3-D formations and the potential energy value of dense 3-D
obstacles are quantified respectively. Second, we embed these two terms into a designed
mean-field game control framework that simultaneously satisfies the dynamic constraints
and minimizes energy cost, formation similarity error, and collision penalty. This frame-
work solves the communication and computing difficulties caused by complex scenarios
of large-scale multiagent systems and formulates the trade-offs between formation and
obstacle avoidance in large-scale contexts. Finally, the solid performance of our method in
simulations of the formation and dense obstacle avoidance for large-scale UAVs validates
its practicality and efficiency. The comparison with baseline methods shows the advanced
nature of our method. In the future, we will consider the application and adaption of this
mean-field game control framework in more complex scenarios of multiagent systems, such
as complex communication conditions (time-varying, partial rejection) and dense mixed
obstacles (static, dynamic).
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Abbreviations
The following abbreviations are used in this manuscript:

CPSs Cyberphysical Systems
MF Mean Field
MFG Mean-Field Game
MFGC Mean-Field Game Control
2-D Two-Dimensional
3-D Three-Dimensional
UAV Unmanned Aerial Vehicle
APF Artificial Potential Field
GANs Generative Adversarial Neural Networks
CA-Net Coupled Alternating Neural Network
HJB Hamilton–Jacobi–Bellman (partial differential equation)
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