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Abstract: In indoor positioning, signal fluctuation is one of the main factors affecting positioning
accuracy. To solve this problem, a new method based on an integration of the empirical mode
decomposition threshold smoothing method (EMDT) and improved weighted K nearest neighbor
(WKNN), named EMDT-WKNN, is proposed in this paper. First, the nonlinear and non-stationary
received signal strength indication (RSSI) sequences are constructed. Secondly, intrinsic mode
functions (IMF) selection criteria based on energy analysis method and fluctuation coefficients is
proposed. Thirdly, the EMDT method is employed to smooth the RSSI fluctuation. Finally, to further
avoid the influence of RSSI fluctuation on the positioning accuracy, the deviated matching points are
removed, and more precise combined weights are constructed by combining the geometric distance
of the matching points and the Euclidean distance of fingerprints in the positioning method-WKNN.
The experimental results show that, on an underground parking dataset, the positioning accuracy
based on EMDT-WKNN can reach 1.73 m in the 75th percentile positioning error, which is 27.6%
better than 2.39 m of the original RSSI positioning method.

Keywords: RSSI fluctuation; EMD; WKNN; indoor positioning

1. Introduction

Due to non-line-of-sight obstacles such as roofs and walls, the global navigation
satellite system (GNSS) fails to achieve desirable positioning in indoor environments [1].
With the emergence of a large number of indoor applications, scholars have conducted
numerous studies. Indoor positioning technologies can be divided into two categories
according to whether it requires dedicated infrastructure. Indoor positioning technologies
that require dedicated infrastructures are radio frequency identification (RFID) [2], Blue-
tooth low energy (BLE) [3], light (invisible and infrared light [4]), sund (audible sound and
ultrasonic [5]), ultra-wide band (UWB) [6] and others. Indoor positioning technologies
that do not require dedicated infrastructures include wi-fi [7], computer vision [8], motion
sensors [9], and so on. The type of positioning technology determines the method to obtain
location. The common methods include the path loss distance model, angle of arrival (AOA),
time of arrival (TOA), and fingerprint [10]. In infrared, the user transmits an infrared signal to
an infrared receiver, and the TOA of the ultrasonic pulse can estimate the location from the
transmitter to the receiver. In wi-fi, based on the received signal strength indication (RSSI)
from wi-fi access points (AP), the location can be easily estimated by using the path loss
distance model or the fingerprint methods. In addition, motion sensors can provide informa-
tion about direction, speed, and acceleration. The location can be continuously updated by
integrating the motion sensor information. Computer vision captures images from the user’s
perspective and compares them with database images to estimate the user’s location.

Among these wireless systems, wi-fi fingerprint positioning is favored in indoor
positioning because most mobile devices have the function of receiving wi-fi signals,
and APs are widely deployed indoors. The wi-fi fingerprint positioning method has its
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advantages: no additional hardware, easy deployment, wide coverage, and low cost [11]. In
wi-fi fingerprinting, the reference point (RP) or test point (TP) receives the RSSIs from each
AP, and these RSSIs compose the fingerprint. The main idea of wi-fi fingerprint positioning
is to match the TP fingerprint with the RP fingerprint in the fingerprint dataset and predict
the coordinates of the TP according to the matched RP coordinates.

However, the RSS fluctuation is one of the important reasons that lead to the severe
degradation of indoor positioning system performance. In the actual environment, due to the
complex and changeable indoor environment, other equipment interferences, and multipath
effects, the RSSI values fluctuate [12]. Furthermore, due to changing environment, it is difficult
for APs to transmit signals with a fixed power, which leads to the time-varying RSSI [13].
Therefore, the RSSI sequence has complex nonlinear and non-stationary characteristics.

The mean filter and Gaussian filter are classic methods to address RSSI fluctuation.
However, the mean filter does not have high confidence when dealing with sharp fluctua-
tion in RSSI. The Gaussian filter can also reduce the impact of noise with small probability
and strong interference. Still, RSSI does not strictly conform to the normal distribution,
and there are multi-peaked distribution states or skewed distribution [14]. The authors
in [15] set the upper limit of signal fluctuation T according to the RSSI value. When the
RSSI difference between TP and RP is greater than T, the RSSI difference between TP and
RP is recorded; otherwise, the RSSI difference is set to 0. But the value of T is difficult
to choose. Considering the insufficiency of a single filter, the authors in [16] proposed a
moving mean-Kalman filter. The filter sets a mean value and its borders, and if a new
RSSI is over the specified range, the new RSSI is assigned to the mean RSSI value. The
authors in [17] proposed the particle filter-extended Kalman filter, which first uses the
particle filter to obtain the user location, then uses the extended Kalman filter to smooth
the user location, thereby reducing the fluctuation in location estimate resulting. Although
these filtering methods improved the positioning accuracy, these methods only alleviate
linear or nonlinear fluctuation and cannot effectively deal with the dynamic changes of
the indoor environment. Another method to deal with RSSI fluctuation is based on the
relationship between RSSIs. Based on the spatial correlation of RSSIs measured at adjacent
RPs and the temporal correlations of RSSIs measured at the same RP at different times, a
low-rank fingerprint dataset was constructed to remove the outliers and noise [18]. Because
the dynamic environment and device differences have almost the same impact on the
RSSI value, a robust NS-RSS fingerprint based on the RSSI differences between adjacent
RPs was constructed to eliminate RSSI fluctuation due to the environment and device
differences [19]. These reconstructed fingerprint datasets based on the relationship RSSIs
require complex calculations. In addition, the authors in [20] measured the noise floor
in different environments to mitigate RSSI fluctuation caused by noise. But this method
is not quite feasible in a real environment, not only as the noise floor has to reset every
time, but also because the noise floor varies greatly in different time periods in the same
environment. Alternatively, some solutions to RSSI fluctuation are developed based on
machine learning. The authors in [21] used a singular value decomposition (SVD) method
to suppress noise-related subspaces to smooth RSS fluctuation. The authors in [22] pro-
posed a convolutional neural network (CNN) model to extract the RSSI fluctuation patterns
and learn the nonlinear mappings from the RSSI features. However, to achieve good
performance, RSSI smoothing methods based on machine learning require a large amount
of RSSI data.

According to the signal propagation model, our previous work [23] proposed a Q-
based RSS transformation to smooth RSSI fluctuation. This method is more advantageous
when the RSSI fluctuates sharply due to environmental changes. But Q value is an em-
pirical parameter and cannot be dynamically adjusted according to the real environment.
Therefore, we propose an empirical mode decomposition [24] threshold smoothing method
(EMDT) to smooth RSSI fluctuation. The EMDT does not need pre-determined basis
functions as it derives basis functions from the data itself [25].
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In this paper, the EMDT is adopted to deal with RSSI fluctuation while using the
improved weighted K nearest neighbor (WKNN) method is used to revise positioning
accuracy further. The main contributions of this paper are listed as follows.

• To deal with RSSI fluctuation, the RSSIs need to be integrated into nonlinear and
non-stationary RSSI sequences. Then an EMD method for adaptively decomposing
the RSSI sequence is proposed.

• We set the fluctuation coefficients of intrinsic mode functions (IMF) that can reflect the
degree of IMF fluctuation. Then new criteria of IMF selection are proposed based on
energy analysis and fluctuation coefficients. The method divides IMFs decomposed
by EMD into the fluctuation-domain IMFs (FD-IMF) and the effective IMFs (E-IMF)
according to the characteristics of IMFs.

• An improved WKNN method is proposed: a secondary selection method is used to
remove the matching RPs far from the geometric center of the K initial matching RPs.
The Euclidean distance of the matching RPs and the Euclidean distance of fingerprints
are combined to obtain more precise weights. The improved WKNN avoids the
deviated matching RPs due to RSSI fluctuation and further corrects the positioning
accuracy by combined weights.

The positioning experiment was carried out on the underground parking dataset of
North China Electric Power University. The experimental results show that the indoor
positioning algorithm based on EMDT-WKNN increased the positioning accuracy.

The subsequent sections of this paper are organized as follows. Section 2 provides a
brief description of EMD and indoor positioning principle. Section 3 details the construction
rules for RSSI sequences and the proposed EMDT-WKNN. In Section 4, the roles of EMDT
and WKNN on RSSI fluctuation are demonstrated, and indoor positioning experiments are
conducted to verify the improvement of positioning accuracy by EMDT-WKNN. Finally,
Section 5 concludes with a summary of the conclusions.

2. Related Work
2.1. EMD

The EMD, first introduced by Huang et al., is a time-frequency signal decomposition
tool that is useful to analyze nonlinear and non-stationary data [25]. The EMD algorithm
assumes that any signal consists of different intrinsic modes of oscillations, and the EMD can
adaptively decompose any complex signal into a set of IMFs from high to low frequencies
and a residual function. For each IMF, it must satisfy the following stopping criteria: first,
the number of local extrema and the number of zero-crossings differ at most by one; second,
the upper envelopes defined by local maxima and the lower envelopes defined by local
minima are locally symmetric with the time axis [26].

The procedure of EMD adaptive decomposition of a signal X(t) is as follows.

1. Find out all the local maxima in X(t), and interpolate them to form an upper envelope.
In the same way, form a lower envelope according to all the local minima.

2. Calculate the mean envelopes m(t) by averaging the upper and lower envelopes.
3. Calculate a temporary local oscillation h(t):

h(t) = X(t)−m(t). (1)

4. If h(t) meets the IMF stopping criteria, then obtain the first IMF: im f1(t) = h(t),
otherwise repeat Steps (1) to (2) for h(t) until im f1(t) is obtained.

5. Calculate the residue r1(t):

r1(t) = X(t)− im f1(t). (2)

6. Repeat Steps (1) to (5) by using r1(t) to obtain im f2(t), im f3(t), . . . , im fn(t) until rn(t)
approaches zero or shows a monotonic trend.
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After EMD-based decomposition, the original signal X(t) can be represented as follows:

X(t) = ∑n
i=1 im fi(t) + rn(t), (3)

where i = 1, 2, . . . n is the number of IMFs; rn(t) is the residual function. The flow chart of
the EMD algorithm is shown in Figure 1.
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2.2. Fingerprint Positioning Principle

The wi-fi fingerprint positioning is mainly divided into offline sampling and online
positioning processes. In the offline sampling process, the main task is to construct a
location fingerprint database. The RP fingerprint is composed of the RSSIs from different
APs measured at the same RP; the fingerprint database is composed of RP fingerprints
and RP coordinates. In the online positioning process, the main work is to predict the TP
coordinates: match the fingerprint measured at TP with the fingerprint database according
to a matching algorithm, and predict the TP coordinates based on the matching RPs [27].
The flow chart of wi-fi fingerprint positioning is shown in Figure 2.

Suppose APi represents the i-th AP, RPj represents the j-th RP, and RSSI
RPj
APi

represents
the RSSI from APi measured at RPj. The numbers of APs and RPs are n and m, respectively.
The TPj fingerprint is shown in Equation (4) and the RPj fingerprint is shown in Equation (5):

FPTPj =
(

RSSI
TPj
AP1

RSSI
TPj
AP2

. . . RSSI
TPj
APn

)
(4)

FPRPj =
(

RSSI
RPj
AP1

RSSI
RPj
AP2

. . . RSSI
RPj
APn

)
(5)

RPj has coordinates
(

xj, yj

)
and the fingerprint database includes the fingerprint and

coordinates of RPj:

FPDBi =
(

RSSI
RPj
AP1

RSSI
RPj
AP2

. . . RSSI
RPj
APn

xj yj

)
. (6)
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3. The Proposed Method
3.1. RSSI Sequence

Before using EMD to decompose the RSSI sequence, it is necessary to construct a
time-based nonlinear and non-stationary RSSI sequence. In this paper, the nonlinear and
non-stationary RSSI sequence is constructed according to the RSSIs from a single AP
measured at a single RP. Because the amount of fingerprint data measured by each time on
each RP is too small in actual measurement, it is necessary to integrate the fingerprint data
measured each time. Therefore, to obtain the RSSI sequences, all the fingerprint data are
integrated according to the RP, and then the fingerprint data is integrated according to the
AP. Figure 3 is the flow chart of integrating RSSIs from AP1 measured at RP1.
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In Figure 3, the upper red rectangle indicates the integration of all weeks of fingerprints
measured at RP1; the lower red rectangle indicates that according to the integrated RP1
fingerprint data, the RSSIs from AP1 are selected to construct nonlinear and non-stationary
RSSI sequence. The curve graph visualizes the RSSI sequence, with the horizontal axis
being the number of measuring times and the vertical axis being the RSSI value.

3.2. EMDT

EMDT is a data reconstruction method. The EMDT consists of four main steps: decom-
posing RSSI sequence by EMD, dividing IMFs into FD-IMFs and E-IMFs by IMF selection
criteria, performing soft threshold processing on the FD-IMFs, and reconstructing the RSSI
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sequence by the processed FD-IMFs, E-IMFs, and residual function. In the following section,
the IMF selection criteria based on energy analysis method and fluctuation coefficients, and
the construction of the smoothed RSSI will be described in detail.

3.2.1. IMF Selection Criteria

After EMD decomposition, the RSSI sequence X(t) becomes multiple IMFs and a
residual function. The frequency of each IMF decreases as the order number of the IMF
increases, and the fluctuating components of X(t) are mainly distributed in the high-
frequency IMFs [28]. Thus, these IMFs can be divided into two groups: FD-IMFs and
E-IMFs. The FD-IMFs are high-frequency IMFs that are usually used to represent noisy
data and fluctuating information; the E-IMFs mostly are low-frequency IMFs. The E-IMFs
and the residual functions are usually used to represent features of the original signal. The
result above can be expressed as:

X(t) =
j

∑
i=1

im fi(t) +
n

∑
i=j+1

im fi(t) + rn(t) (7)

where the im f1, im f2, . . . , im f j are FD-IMFs; the im f j+1, im f j+2, . . . , im fn are E-IMFs; j is the
boundary of FD-IMFs and E-IMFs.

It is very important to determine the boundary j. The traditional energy analysis [29]
method uses the energy transfer model to estimate the possible fluctuation-only energy
in im fi. If the possible fluctuation-only energy in im fi is below the fluctuation energy of
im fi. The im fi is regarded as E-IMF. However, the energy transfer model is estimated
by analyzing the characteristics of the EMD decomposed Gaussian white noise, and the
characteristics of fluctuation in the actual signal are usually unknown [30]. In addition,
the parameters of the energy transfer model require manual intervention. This paper sets
a coefficient, which is determined according to the characteristics of the IMF itself, and
the coefficient can reflect the fluctuation of IMFs. In this paper, the coefficient is named as
fluctuation coefficient.

On the one hand, the IMF energy analysis method is to compare the fluctuation
energy of IMFs with the possible fluctuation-only energy. The im f1 is a high-frequency
component that contains the most fluctuation, and the fluctuation energy of im f1 can be
used as a benchmark [31]. On the other hand, the fluctuation coefficient is constructed
by using the standard deviation and the fluctuation standard deviation for each IMF.
The fluctuation coefficient can reflect the fluctuation degree of IMFs, and the larger the
coefficient, the smaller the fluctuation in the IMF. The possible fluctuation-only energy of
each IMF is estimated by using the fluctuation coefficient and the fluctuation energy of
im f1. Find the first im fi that the fluctuation energy is less than the possible fluctuation-only
energy, and take this im fi as the boundary, consider im f2, im f3, . . . , im fi−1 as FD-IMFs, and
im fi, im fi+1, . . . , im fn as ED-IMFs. The details of the improved energy analysis method are
described as follows.

1. Estimate the standard deviation σ̂i of the fluctuation in im fi by using a robust estima-
tor [32] based on the IMF median

σ̂i =
median

(∣∣∣im fi(t)− im fi(t)
∣∣∣)

0.6745
, i = 1, 2, . . . n; t = 1, 2, . . . , N (8)

where i = 1, 2, . . . , n is the number of IMFs; t = 1, 2, . . . N is the sampling point of X(t).

im fi(t) =
1
N

N

∑
t=1

im fi(t) (9)
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2. Calculate the fluctuation energy Ei of the im fi:

Ei = σ̂i
2, i = 1, 2, . . . , n. (10)

3. Calculate the standard deviation σi of im fi:

σi =

√
1

N − 1 ∑N
n=1

(
im fi(t)− im fi(t)

)2
, i = 1, 2, . . . n; t = 1, 2, . . . , N. (11)

4. Construct the fluctuation coefficient Ki of the im fi:

Ki =

σi
σ̂1

+ σ̂i
σi

2
, i = 1, 2, . . . , n. (12)

5. Estimate the possible fluctuation-only energy according to the fluctuation coefficient
and the fluctuation energy of im f1. The possible fluctuation-only energy Êi of the im fi
is approximately as

Êi = Ki × E1, i = 1, 2, . . . , n. (13)

The FD-IMFs are chosen by comparing the fluctuation energy Ei of each IMF with the
possible fluctuation-only energies Êi. If Ei < Êi and Ei−1 > Êi−1, the im f2, im f3, . . . , im fi−1
are judged to be FD-IMFs, and im fi, im fi+1, . . . , im fn are judged to be E-IMFs.

3.2.2. Threshold Smoothing

After dividing IMFs into FD-IMFs and E-IMFs, threshold-based smoothing techniques
are used to remove fluctuation inherent in FD-IMFs. For threshold-based smoothing
techniques, two types of thresholding operators have been used for the processing of
FD-IMFs: hard thresholding and soft thresholding [33]. The mathematical expression of
the hard threshold method is defined as

˘im fi(t) =
{

im fi(t), |im fi(t)| ≥ THi
0, |im fi(t)| < THi

(14)

THi = C
√

2EilnN, (15)

where ˘im fi(t) is the smoothed version of im fi(t), THi is the threshold of im fi(t), N is the
number of data samples of the RSSI sequence X(t), C is an empirical constant that makes
the THi more flexible. In this study, C is set to 0.5 [34]. The mathematical expression of the
soft threshold method is defined as

˘im fi(t) =
{

sign(im fi(t))× (|im fi(t)| − THi), |im fi(t)| ≥ THi
0, |im fi(t)| < THi

(16)

sign(x) =
{

1, x > 0
−1, x < 0

. (17)

Because the hard thresholding method may lead to the smoothed signal discontinu-
ity [35]. Moreover, there may be useful information in FD-IMFs, and discarding FD-IMFs
will cause a loss of useful information. For these deficiencies, this paper uses the soft
threshold method to deal with FD-IMFs.

Finally, the FD-IMs after soft thresholding, ED-IMFs, and the residual function are
reconstructed to obtain the smoothed RSSI sequence

X f (t) =
j

∑
i=1

˘im f i(t) +
n

∑
i=j+1

im fi(t) + rn(t) (18)

where X f (t) is the smoothed RSSI sequence.
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Based on the characteristics of the signal itself, the X f (t) can filter out fluctuation data
of X(t), retain the local characteristics of X(t), and effectively smooth fluctuation.

According to the above description, the EMDT contains four steps: RSSI sequence
decomposition by EMD, IMF selection, FD-IMFs soft threshold, and smoothed RSSI recon-
struction. Figure 4 shows the schematic diagram of EMDT.
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3.3. Improved WKNN

The common fingerprint positioning algorithm is based on the KNN algorithm. The
KNN positioning algorithm finds the K RPs the most similar to the TP fingerprint in the
fingerprint dataset and uses the average coordinates of the K RPs as the TP prediction
coordinates. As an improvement of the KNN algorithm, the WKNN positioning algorithm
calculates the weights of each RP according to the similarity between the RP fingerprint
and the TP fingerprint, and then predicts TP coordinates according to the Equation (19):

(x̂, ŷ) =
K

∑
i=1

Wi ∗ (xi, yi), (K ≥ 2) (19)

Wi =

1
di

∑K
i=1

1
di

(20)

di =

√
∑n

l=1

(
RSSIRPi

APl
− RSSI

TPj
APl

)2
, i = 1, 2, . . . , K, (21)

where i = 1, 2, . . . , K is the number of RPs, di is the Euclidean distance between TPj and
RPi fingerprints, and is named fingerprint similarity metric, Wi is the weight of RPi; (xi, yi)
is the RPi coordinates, and (x̂, ŷ) is the TPj predicted coordinates.

However, due to the RSSI fluctuation, there may be some deviated matching RPs in the
K initial matching RPs. By using these RPs to predict the TPj coordinates will directly affect
the positioning result. The improved WKNN fingerprint positioning algorithm proposed
in this paper:

1. Obtain the K initial matching RPs by WKNN: RP1, RP2, . . . , RPK.
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2. Geometry analysis of the initial matching RPs, calculating the Euclidean distance d ic
between RPi coordinates and the center coordinates (xc, yc).

(xc, yc) =
1
K

K

∑
i=1

(xi, yi) (22)

dic =

√
(xi − xc)

2 + (yi − yc)
2, i = 1, 2, . . . K. (23)

3. Secondary selection: setting a threshold D, and if dic > D, the RPi is judged to be a
deviated point and should be removed, finally obtaining the K′ RPs with the closest
distance from the (xc, yc). The value of D is discussed in Section 4.

4. Calculate the center coordinates (x′c, y′c) and Euclidean distance d′ic,

(
x′c, y′c

)
=

1
K′

K′

∑
i=1

(xi, yi) (24)

d′ic =
√
(xi − x′c)

2 + (yi − x′c)
2, i = 1, 2, . . . , K′. (25)

5. Combined weight: obtaining the combined weight W ′i according to fingerprints
similarity metric di and coordinates Euclidean distance d′ic,

W ′i =
1

d′ic
+ 1

di

∑K′
i=1 d′ic + ∑K′

i=1 di
. (26)

6. Predict TPj coordinates (x̂, ŷ)

(x̂, ŷ) = ∑K′

i=1 W ′i ∗ (xi, yi),
(
K′ ≥ 2

)
. (27)

Figure 5 is the flow chart of the improved WKNN fingerprint positioning algorithm.
The improved WKNN algorithm is divided into two aspects. The first is to use the secondary
selection method to remove the deviated matching RPs in the K initial matching RPs. The
second is to construct combined weights from the fingerprint similarity metric and the
Euclidean distance of matching RPs. The combined weights mitigate the impact of RSSI
differences on positioning accuracy.
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3.4. EMDT-WKNN

In order to mitigate the problem of RSSI fluctuation affecting indoor positioning
accuracy, this paper deals with RSSI fluctuation in the offline sampling process and the
online positioning process, respectively. In the offline sampling process, the nonlinear and
non-stationary RSSI sequences are constructed, and the EMDT method is used to smooth
the RSSI sequences to reduce or eliminate the influence of environmental factors on the
RSSI. Then the smoothed RSSI is stored in the fingerprint database. The EMDT method
can not only simply and effectively eliminate the fluctuation of RSSI but also retain the
characteristics of RSSI.

In the online positioning process, the WKNN method is used to obtain the K initial
matching RPs, a secondary selection is performed to remove the matching RPs that are far
from the center of the K initial matching RPs, and then combined weights are obtained
by combining the Euclidean distance of the matching RPs and the fingerprint similarity
metric. Finally the TP location is predicted by the retained matching RPs after the secondary
selection and combined weights. Figure 6 is an indoor positioning framework based on
EMDT-WKNN.
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4. Discussion
4.1. Experimental Environment

In order to verify the feasibility of the EMDT-WKNN, this paper conducts a positioning
experiment in the underground parking lot of North China Electric Power University.
Figure 7a shows the actual scene of the underground parking lot. The area is about 58 m
long, 42 m wide, and 5 m high. The experimental environment contains the entrance,
walkways, and parking spaces of the underground parking lot. Figure 7b is a structural
diagram of the experiment area, and the direction indicated by the blue arrow in the
walkways area is the RSSI collection direction. As shown in Figure 7b, a total of 10 APs
(the black ellipses) are evenly arranged in the experimental site, which are installed at
the height of 2 m from the ground. The 10 APs are routers of different brands, and each
AP transmits signals in two frequency bands, 2.4 GHz and 5 GHz. In walkways area, the
“x” represents RP, and the “o” represents TP. These RPs are divided into two groups of
training sets according to the outside (45 RPs) and inside (41 RPs), and the distance between
adjacent RPs in each group is 2 m; TP is divided into four groups of test sets according to
color (black, green, grey, yellow), and each test set has 21 TPs, and the distance between
same color TPs is 4 m.
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The experiment spanned 3 months, with 6 weeks of fingerprint data. The experi-
menters measured four weeks of data during the first month and one week of data each
month thereafter. Because the number of vehicles in the underground parking lot in the
afternoon is 2 to 3 times that in the evening, vehicles are not only obstacles that affect signal
propagation, but also devices such as CarLog, in-vehicle wi-fi, and Bluetooth interfere with
the AP’s WIFI signal. Therefore, RP and TP in each group were measured weekly in the
afternoon and evening, respectively, and the weekly collection order is shown in Table 1.
The weekly dataset includes 4 training sets and 8 testing sets.

Table 1. Weekly data collection time.

Time Monday Tuesday Wednesday Thursday Friday

14:00 Test_1 Test_3 Test_5 Train_1 Train_3
19:00 Test_2 Test_4 Test_6 Train_2 Train_4

In the process of fingerprint data collection, the experimenter placed a laptop on a
cart about 1 m above the ground and measure RSSI according to the collection direction.
To avoid errors caused by chance, the experimenter continuously measures 10 sets of
fingerprints at each RP or TP. The dataset of the underground parking lot contains a total of
20,400 ((45 + 41 + 21× 4)× 10× 2× 6 = 20400) wi-fi fingerprints, and each RP has a total
of 120 (10× 2× 6 = 120) wi-fi fingerprints. The dataset of the underground parking lot is
stored in the form of files, and the weekly data are stored in different folders. There are
4 files in CSV format for each test set or training set, holding fingerprint, location, time, and
unique identifier data, respectively. Next, we use the underground parking lot fingerprint
dataset for follow-up experiments.

4.2. Data Pre-Processing

In actual positioning, the RSSI presents strong fluctuation. In order to establish a
robust fingerprint database, the general method is to collect RSSI multiple times at each RP
within a certain period of time and remove abnormal RSSI. This paper uses 3σ criterion to
find abnormal RSSI and replaces the abnormal value with the mean of RSSI sequence.

The vector rss is all the RSSIs from APi measured at RPj:

rss =
[

1RSSI
RPj
APi

, 2RSSI
RPj
APi

, . . . , pRSSI
RPj
APi

]
. (28)
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Calculate the residual error γ for each element of rss and standard error σ of rss:

γk =
kRSSI

RPj
APi
− 1

p

p

∑
ik=1

ikRSSI
RPj
APi

, k ∈ [1, p] (29)

σ =

√(
1

p− 1 ∑p
k=1 γ2

k

)
, (30)

where kRSSI
RPj
APi

represents the RSSI for the k-th time from APi measure at RPj, γk represents

the residual error of kRSSI
RPj
APi

, and σ is the standard error of rss.

If |γk| > 3σ, the kRSSI
RPj
APi

is judged to be a gross error value and should be replaced
with the mean value of rss:

kRSSI
RPj
APi

=
1
p ∑p

ik=1
ikRSSI

RPj
APi

. (31)

4.3. EMDT Experiment
4.3.1. EMDT Smoothing RSSI Sequence

Before implementing the EMDT, it is necessary to construct the RSSI sequence X(t). In
the offline sampling process, the RSSI sequence j

i Xo f f (t) consists of the preprocessed RSSIs

from APi measured at RPj, and each j
i Xo f f (t) has a total of 120 RSSI data. The j

i Xo f f (t) is
shown in Equation (32):

j
i Xo f f (t) = tRSSI

RPj
APi

, t ∈ [1, 120]. (32)

In the online positioning process, the RSSI sequence j
i Xon(t) consists of the RSSI from

APi continuously measured at TPj, and each j
i Xon(t) has a total of 10 RSSI data. The j

i Xon(t)
is shown in Equation (33):

j
i Xon(t) = tRSSI

TPj
APi

, t ∈ [1, 10]. (33)

Taking the RSSI sequence 0
1Xo f f (t) = tRSSIRP0

AP1
, t ∈ [1, 120] as an example, the process

of smoothing RSSI fluctuation by EMDT is explained in the following sentences. Figure 8
is the visualization of the original RSSI value of 0

1Xo f f (t). It can be seen from Figure 8
that the RSSI measured at the same RPs always fluctuates. The RSSI fluctuates sharply at
measuring times [0,10] and [90,100], and the fluctuation range is about 12 dBm. The RSSI
fluctuation frequency is relatively slow at the measuring times [10,90] and [100,120].
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After EMD decomposition, 0
1Xo f f (t) is decomposed into 5 IMFs and a residual func-

tion, and the decomposition result is shown in Figure 9. The frequency of each IMF
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decreases as the order number of the IMF increases, and im f5 is the basically conforms to
the fluctuation trend of 0

1Xo f f (t).
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Figure 9. 5 IMFs and a residual function.

According to the IMF selection criteria proposed in this paper, IMFs are divided into
FD-IMFs and E-IMFs. Table 2 lists the fluctuation energy E , the fluctuation coefficient K ,
and the possible fluctuation-only energy Ê of all IMFs.

Table 2. The E, K, and Ê of each IMF.

IMF Ei Ki
^
Ei

im f1 2.06 0.89 1.84
im f2 0.85 0.39 0.80
im f3 0.53 0.27 0.56
im f4 1.22 0.73 1.51
im f5 1.98 0.62 1.28

It can be seen that E1 > Ê1, E2 > Ê2 and E3 < Ê3. According to the aforementioned,
im f1, im f2 are FD-IMFs and im f3, im f4, im f5 are E-IMFs. Then the thresholds TH1, TH2 are
calculated to smoothing the im f1, im f2. In Figure 10a, the blue curves are the decomposition
results of im f1 and im f2, and the red lines are the soft thresholds of TH1 and TH2. The soft
threshold-based smoothed results in im f1, im f2 are depicted in Figure 10b.
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Figure 10. Soft threshold results. (a) The soft threshold in im f1 and im f2. (b) Threshold-based
smoothed results in im f1 and im f2.

The RSSI sequence is reconstructed by smoothed im f1, im f2 and im f3, im f4, im f5, res,
and the smoothed RSSI sequence is show in Figure 11. In addition, Gaussian filter and
moving average filter are performed on 0

1Xo f f (t), and the result is shown in Figure 11. All
three methods can smooth RSSI fluctuation. At measuring times [0,10] and [90,100], the
RSSI fluctuates sharply, and the smoothing effects of EMDT and moving average filter
are basically the same; the Gaussian filter is too smooth to keep the difference of RSSI. At
measuring times [10,90] and [100,120], the fluctuation frequency of RSSI is relatively slow,
and the smoothing effects of EMDT and Gaussian filter are basically the same; the moving
average filter is less smooth. It can be seen that the EMDT algorithm is able to smooth the
data according to the degree of RSSI fluctuation and preserve the difference of RSSI.
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4.3.2. Processing of Outliers −105 dBm

The RSSI value will gradually attenuate with the increase of the propagation distance
during the sign propagation process. Because of the equipment’s limitations, generally when
the RSSI value is lower than −95 dBm, it is difficult to be measured by the equipment, that is,
if RSSI<−95 dBm, it means that the network signal coverage is very poor, and there is almost
no signal [36]. In this experiment, the unmeasured signal strength is taken as −105 dBm.
The −105 dBm represents the RSSI, which is useless for improving the positioning accuracy.
However, if the RSSI sequence X(t) containing−105 dBm is just processed by EMDT method,
the smoothed RSSI sequence may have abnormal values. As shown in Figure 12, EMDT is
performed on the RSSI sequence X(t)o f f = RSSIRP0

AP5
(t), t ∈ [1, 120], and the smoothed RSSI

values exceed −105 dBm.
In addition, it is inappropriate to perform EMDT smoothing on the RSSI sequence

containing −105 dBm, because −105 dBm does not represent the RSSI real value. In this
paper, the −105 dBm is replaced with the previous measuring RSSI value before smoothing
the RSSI sequence containing −105 dBm.
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4.4. Positioning Results and Comparison
4.4.1. Impact of EMDT

Different smoothing fluctuation methods improve the positioning accuracy differently.
We conducted comparative localization experiments on the original RSSI, Gaussian filter,
moving average filter, and EMDT methods. The testing data is the first testing dataset of
the first week. The cumulative distribution function (CDF) of positioning errors is shown
in Figure 13. In this experimental dataset, the highest positioning accuracy based on the
original RSSI and WKNN method is achieved when K is taken as 10, which is because TP
and RP in this experiment do not overlap, and the minimum distance between them is 1 m.
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It can find that all three methods of smoothing RSSI fluctuation can improve the posi-
tioning effect, and the EMDT positioning effect is the best. Within the positioning accuracy
of 1 m, the Gaussian positioning effect is poor because when the RSSI fluctuates sharply, the
Gaussian filter cannot maintain the difference between the RSSIs, resulting in the matched
RPs away from the TP. Within the positioning accuracy of 2~6 m, the positioning effects of
Gaussian and moving average are better than the original RSSI, indicating that smoothing
the RSSI fluctuation can improve the positioning accuracy. The EMDT localization effect
in Figure 13 is better than Gaussian and moving average, illustrating the importance of
maintaining RSSI differences on the basis of smooth fluctuation.

4.4.2. Impact of the Improved WKNN

The improved WKNN positioning algorithm uses the secondary selection method to
remove the matching RPs far from the geometric center of the K initial matching RPs and con-
structs the combined weights to predict the TP coordinates. The improved WKNN positioning
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algorithm makes the predicted TP coordinates closer to the true TP coordinates. Therefore, it is
very important to determine the distance threshold D for the secondary selection.

The testing data is the first testing dataset of the first week. There are 210 test finger-
prints in this experiment. Before the secondary selection, each TP will obtain 10 initial
matching RPs by WKNN method, so a total of 2100 initial RPs will be matched. Figure 14
shows the 75th percentile positioning error and mean positioning error for different distance
threshold values, and the D ranges from 15 to 55. The positioning error is the Euclidean
distance between the actual coordinates and the predicted coordinates, and the mean
positioning error is the mean Euclidean distance. The 75th percentile positioning error and
mean positioning error of the WKNN are 2.81 and 2.29, respectively. When D ≤ 15, about
half of the matching RPs are removed, and the 75th percentile positioning error and mean
positioning error rise compared to the WKNN. As the D value increases, the 75th percentile
positioning error and mean positioning error continue to fall. When the D is 25, about 20%
of matching RPs are judged as deviated RPs, and the 75th percentile positioning error and
the mean error are minimized, which are 2.32 and 2.06 respectively. When the D is 25~35,
the number of deviated RPs removed decreases, and the mean positioning error gradually
increases again. Until D ≥ 40, less than 5% of matching RPs are judged as deviated RPs, the
75th percentile positioning error gradually increases, but is still smaller than the WKNN
algorithm. This result indicates that the matching RPs exist deviated RPs far away from the
TP. In this paper, we set the distance threshold D to 25. The value of the D is closely related
to the fingerprint database, and the most suitable threshold value needs to be calculated
according to the actual situation.
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4.4.3. Impact of EMDT-WKNN

In the experiment, the wi-fi fingerprint positioning based on the Original RSSI, EMDT,
and EMDT-WKNN was implemented respectively on the underground garage dataset of
North China Electric Power University. The weekly 75th percentile positioning error is
shown in Figure 15.

It can be seen from Figure 15 that, compared with the original RSSI, the 75th percentile
positioning error of EMDT-WKNN achieves a decrease of 0.77 m, 0.63 m, 0.62 m, 0.71 m,
0.55 m, and 0.72 m, respectively. The average six-week 75th percentile localization errors of
EMDT-WKNN and original RSSI are 1.73 m and 2.39 m, respectively, and the localization
error of EMDT-WKNN achieved a 0.66 m drop, which is a 27.6% decrease. On the six-
week testing dataset, the weekly 75th percentile positioning error of EMDT-WKNN is the
smallest, and the improvement range is 0.55 m to 0.77 m, which shows the stability of the
EMDT-WKNN method.
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According to the experimental data of the first week, the CDF of positioning errors is
shown in Figure 16. It can be seen that the positioning accuracy of EMDT-WKNN is better
than EMDT and the original RSSI. Tables 3 and 4 respectively compare the positioning
accuracy of these three methods from different aspects.
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Table 3. Cumulative error probability of different algorithms under fixed accuracy limit.

Algorithm 1 m 1.5 m 2 m 2.5 m 3 m

Original RSSI 28.05% 58.04% 70.53% 78.45% 83.03%
EMDT 30.29% 70.35% 78.45% 85.29% 88.45%

EMDT-WKNN 40.77% 75.23% 82.67% 87.44% 90.71%

Table 4. Positioning errors under different measures metrics.

Algorithm Mean Error (m) 68% Error (m) 75% Error (m) 95% Error (m) Error SD (m)

Original RSSI 1.93 1.84 2.25 5.82 1.89
EMDT 1.62 1.41 1.74 4.61 1.61

EMDT-WKNN 1.52 1.34 1.48 4.52 1.48

Table 3 shows the cumulative error probability of the original RSSI, EMDT and EMDT-
WKNN under a fixed precision limit. The 1 m, 2 m, and 3 m respectively represent the
cumulative probability that the positioning error is less than 1 m, 2 m, and 3 m. Compared
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with the original RSSI, the positioning effect of EMDT is improved by 2.24%, 12.31%, 7.92%,
6.84%, and 5.42% in cumulative probability. It can be seen that the positioning effect of
EMDT algorithm is significantly improved within 1 m to 3 m. Compared with the EMDT,
the positioning effect of EMDT-WKNN is improved by 10.48%, 4.88%, 4.22%, 2.15%, and
2.26% in cumulative probability. The EMDT-WKNN positioning effect is significantly
improved within 1 m. It shows that when most of the matching RPs are close to the actual
position of TP, but some RPs are far away from the TP, EMDT-WKNN can effectively
remove these deviation RPs, and the positioning effect is greatly improved.

Table 4 shows the positioning errors under different measurement metrics. The
68th and 95th percentile positioning errors correspond to the basic positioning error and
the worst positioning errors [37]. Compared to the original RSSI, the mean error, the
68th percentile positioning error, the 75th percentile positioning error, the 95th percentile
positioning error, and the standard deviation (SD) based on the EMDT-WKNN decreased
by 21.2%, 27.2%, 34.2%, 22.3%, and 25.9%, respectively. The results show that the mean
error, the 75th percentile positioning error and the SD are reduced, indicating the stability
and effectiveness of EMDT-WKNN in improving localization performance.

5. Conclusions

We proposed an improved Wi-Fi indoor positioning method named EMDT-WKNN
for smoothing RSSI fluctuation. EMDT-WKNN consists of three steps to improve the
positioning accuracy. First, the EMDT is introduced to smooth the RSS fluctuation. Secondly,
the secondary selection method is adopted to remove the RPs far from the geometric center
of the K initial matching RPs. Finally, weights are calculated by combining the Euclidean
distance of the matching RPs and the fingerprint similarity metric. In the positioning
experiment of the underground garage of North China Electric Power University, the mean
of the six-week 75% probability positioning error based on EMDT-WKNN is 1.73 m, and the
positioning accuracy is improved by 27.6% compared with the original RSSI; the probability
of positioning error based on EMDT-WKNN method within 3 m reached 90.71%. The
results show that the indoor positioning method based on EMDT-WKNN simply and
effectively smoothed the RSSI fluctuation and improved the positioning accuracy.

However, the experimental data in this study only comes from the underground
garage dataset, and subsequent experiments will be carried out on other public datasets or
different scenes to further validate its improvement.
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