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Abstract: In general, the adoption of IoT applications among end users in healthcare is very low.
Healthcare professionals present major challenges to the successful implementation of IoT for provid-
ing healthcare services. Many studies have offered important insights into IoT adoption in healthcare.
Nevertheless, there is still a need to thoroughly review the effective factors of IoT adoption in a
systematic manner. The purpose of this study is to accumulate existing knowledge about the factors
that influence medical professionals to adopt IoT applications in the healthcare sector. This study
reviews, compiles, analyzes, and systematically synthesizes the relevant data. This review employs
both automatic and manual search methods to collect relevant studies from 2015 to 2021. A systematic
search of the articles was carried out on nine major scientific databases: Google Scholar, Science Direct,
Emerald, Wiley, PubMed, Springer, MDPI, IEEE, and Scopus. A total of 22 articles were selected as
per the inclusion criteria. The findings show that TAM, TPB, TRA, and UTAUT theories are the most
widely used adoption theories in these studies. Furthermore, the main perceived adoption factors
of IoT applications in healthcare at the individual level are: social influence, attitude, and personal
inattentiveness. The IoT adoption factors at the technology level are perceived usefulness, perceived
ease of use, performance expectancy, and effort expectations. In addition, the main factor at the
security level is perceived privacy risk. Furthermore, at the health level, the main factors are perceived
severity and perceived health risk, respectively. Moreover, financial cost, and facilitating conditions
are considered as the main factors at the environmental level. Physicians, patients, and health workers
were among the participants who were involved in the included publications. Various types of IoT
applications in existing studies are as follows: a wearable device, monitoring devices, rehabilitation
devices, telehealth, behavior modification, smart city, and smart home. Most of the studies about IoT
adoption were conducted in France and Pakistan in the year 2020. This systematic review identifies
the essential factors that enable an understanding of the barriers and possibilities for healthcare
providers to implement IoT applications. Finally, the expected influence of COVID-19 on IoT adoption
in healthcare was evaluated in this study.

Keywords: IoT; IoMT; IoT adoption; systematic review; adoption theories; adoption factors; Internet
of Things in healthcare; machine learning (ML); deep learning (DL)

1. Introduction

With increasing chronic illnesses, the number of patients in dire need of medical
intervention is rising rapidly. This has invariably put pressure on healthcare services and
delivery. Healthcare administrators, physicians, nurses, and other health professionals are
facing increasing pressure to respond to the growing demands of both the public and the
private sector on health-related matters. Additionally, the increasing cost of medical care has
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imposed a significant effect on the quality of people’s lives. The development of healthcare
systems requires a concerted effort to seamlessly integrate with the Internet of Things (IoT),
especially for ameliorating day-to-day challenges arising in the sector. Recent developments
in the health sector have consistently shown that combined technologies have the potential
to improve healthcare services and assist healthcare professionals in the optimal and
efficient delivery of healthcare solutions [1–3]. IoT is a new paradigm in technology which
provides a conglomerate of novel services for the next wave of technological innovations [4].
IoT enables things (such as devices, cars, houses, people, and animals) to communicate with
one another and with users over the internet network, thereby becoming an integral part
of the Internet [5,6]. Furthermore, cloud computing services are used in IoT applications
to create correct composite services by composing existing atomic services for IoT service-
based applications [7]. IoT applications also give users a lot of advantages, such as the
ability to choose the best opportunity in each situation, to make decisions, to manage
resources, and keep an eye on the environment’s cloud resources [8]. A big part of the
IoT is RFID, sensor technology, nanotechnology, and embedded intelligence technology.
Each of the aforementioned technologies are being used to advance IoT applications for
various purposes [2,9]. One of the major targets of the health sector is to realize high-quality
healthcare delivery with low cost; the IoT has the power to make this real. For instance, the
incorporation of sensor systems helps with better patient monitoring, leading to fewer tests,
fewer unnecessary appointments and, consequently, lower costs. Hence, IoT technology is
a key player in the early diagnosis and early intervention of diseases [10].

Significantly, the Internet of Medical Things (IoMTs) [11] or IoT (for the purposes
of this paper, the terms IoT in healthcare and IoMT will be used interchangeably) will
support the digital revolution, particularly in healthcare products. The developed IoMT
applications prototype such as wearable devices enable patients, elderly people, or people
with chronic diseases to remotely monitor their health status. In such cases, IoT applications
can help in an emergency to quickly warn and alert caregivers or physicians of the elderly
person [12].

Even though IoMT and its supporting technologies have been proven to mitigate
health problems, such as medical errors, failure, ineffective workflows, and all evident
benefits of IoT technologies in the healthcare sector, IoT systems are not fully integrated
into healthcare organizations yet [13]. Additionally, IoT developments in the health sector
have remained slow in terms of its implementation and adoption in other industries [14].

In light of the low adoption of IoT in the healthcare sector, it is difficult to implement it
if users are not ready. Moreover, the decision to adopt IoT application requires a structured
approach that is capable of identifying the technological and operational structures. In-
deed, technology adoption is one of the mature areas of research in information systems,
especially IoT adoption [15]. Huge investments are being made by companies and gov-
ernments to adopt innovations that have the potential of bringing a paradigm shift in the
user’s lifestyle; for instance, the IoT technologies [16]. Several studies expect that healthcare
professionals will have new responsibilities through using IoT [17]. Although the IoT can
provide an improved and better approach to healthcare management, its end-user adoption
is still very low especially among health-care professional staff [15].

Therefore, the objective of this work is to analyze and statistically classify the present
research on the adoption of IoT among professional staff in healthcare, and to gain a
comprehensive understanding of the adoption of IoT processes in healthcare. To meet the
aforementioned objectives, several research questions (RQs) were formed. The novelty
of this systematic literature review (SLR) provides the most recurrent adoption theories
for IoT and the most recurrent factors that have a significant effect on its adoption in
healthcare. This study classified IoT adoption factors into five categories which are related
to individual factors, technology factors, security factors, health factors, and environmental
factors. This paper provides an overview of the articles that are related to the adoption of
IoT applications in healthcare from 2015 to 2021. To the best of our knowledge, there is no
literature covering these points yet [18–22].
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This study is more distinguished and unique as it explores new areas that previous
studies rarely explore, or may have been referred to briefly. Furthermore, this study reviews
the effective factors and criteria influencing IoT healthcare systems adoption. It used
questionnaires, interviews, and expert opinions on the effective use of IoT. It also reviewed
prior related research that provided new conceptual models related to the intention to use of
IoT as a new technology. This SLR is constructed as follows: Section 2 provides an overview
of IoT in healthcare. Section 3 elucidates the advantages of IoT in healthcare systems. The
review strategy is provided in Section 4. Section 5 gives details on the characteristics of
the included studies. Section 6 reviews IoT for testing and tracing. Section 7 discusses
wearable devices used for IoT applications in healthcare. Section 8 includes regulations and
procedures for IoT during pandemics. Section 9 discusses the findings of this SLR, which
contains gaps and implications for future research, limitations, challenges of effective IoT’s
adoption, research directions, pervasive challenges across all verticals, healthcare during
COVID-19 pandemic challenges, and data protection and privacy. Finally, Section 10 wraps
up the paper with concluding remarks.

2. Overview of Deep Learning for IoT in Healthcare

IoT systems are made up of a large number of heterogeneous devices that are scattered
across the network and generate a constant stream of data [23]. To design successful IoT ap-
plications, we often follow a workflow model composed of five components: formulation of
the question, data gathering, data processing, visualization, and assessment. Even though
obtaining hidden information and inferences from IoT data is a promising way to im-
prove our lives, it is a difficult task that can not be done with traditional paradigms [24].
Indeed, with the birth of IoT devices, artificial intelligence (AI) has been introduced that
uses continuous monitoring to help in illness diagnosis, notifying caregivers or physicians
through an alert system. Apart from that, these gadgets may also be used to assist in
decision-making through a decision support system (DSS). A significant advantage of
this change was the transition of duties from a manual, stressful, and time-consuming
process to a more intelligent, automated, and time-efficient one. Moreover, there have
been occasions when medical practitioners have been unable to care for patients owing
to a lack of information about emergency situations, resulting in disastrous choices, if not
death. These machines are educated using specialized artificial intelligence algorithms,
most often referred to as machine learning (ML) and deep learning (DL) algorithms [25].
DL has been actively utilized in many IoT applications in recent years [26]. It is a subset of
machine learning (ML), and it is computationally intensive and costly. One of the issues
is integrating DL techniques with IoT in order to increase the overall efficiency of IoT
applications. Combining these strategies while maintaining a balance of computing cost
and efficiency is critical for the next-generation of IoT networks [24].

Deep learning (DL) will be critical in developing a smarter IoT because it has demon-
strated remarkable results in a variety of fields, including image recognition, information
retrieval, speech recognition, natural language processing, indoor localization, and physio-
logical and psychological state detection, amongst others. More also, these services serve
as the foundation for IoT applications. Indeed DL has been actively utilized in many IoT
applications in recent years [26,27].

3. Advantages of IoT in Healthcare Systems

The following are the primary benefits or advantages of IoT technologies in healthcare
systems that impact their adoption:

1. Cost savings: by being able to meet and assess patients remotely, the cost of in-person
visits can be lowered [28–30]. Furthermore, with the introduction of home care devices,
many patients can now be hospitalized and monitored at home.

2. Treatment outcomes: because the monitoring is consistent, continuous, and auto-
mated, all data is kept in the cloud and provided to the doctor on a regular basis;
the treatment processes were carried out correctly. The adoption of this strategy can



Sensors 2022, 22, 5377 4 of 28

ensure that medical care is provided as soon as possible to examine the recovery
process [31].

3. Disease management: by consistently recording and reporting a person’s health
indicators, diseases can be discovered and treated before they progress [32].

4. Error reduction: detailed and precise data collected automatically and free of human
error can significantly reduce the rate of medical errors and their associated financial
and critical costs [33,34].

5. Patient satisfaction: some factors such as the emphasis on the patient’s requirements,
data accuracy, timely treatment, cost reduction, reduction of repeated visits, recording
of the recovery process, and, most importantly, the patient’s active participation in
the treatment process, have a positive impact on the patient [35].

6. Medication management: IoT assists patients in the precise use of drugs, as well as
helping pharmacies and healthcare facilities in preventing drug waste [35,36].

4. Review Method

In this study, the SLR method was used, which is a way to find, analyze, and interpret
all of the papers that have been written about a certain topic or research question [37].
The SLR process includes recognizing research, research questions, search strategy, study
screening process and methods, quality evaluation, data extraction technique, and extracted
data synthesis [37]. This systematic review was conducted for capturing relevant literature
from different sources, focusing on the following objectives:

1. To explore conceptual frameworks for the adoption of IoT in healthcare.
2. To illustrate the future adoption of IoT in healthcare.

Overall, any SLR should be able to synthesize and analyze existing data on any subject,
look for research gaps, and suggest the future direction on that subject [37]. Through
investigating these objectives in detail, this review will make a significant enrichment
in understanding the future adoption of IoT applications in the healthcare domain.

4.1. Information Sources

For this SLR, the articles were searched for in the following nine digital databases:
Google Scholar, Science Direct, Emerald, Wiley, PubMed, IEEE, MDPI, Springer, and Scopus
as represented in Figure 1.

Figure 1. Nine Digital Data Bases.

We carried out a search of the literature published between 2015 and 2021 related to
IoT adoption among professional staff and IoT adoption in healthcare. Moreover, studies
were selected from the databases using the following keyword combinations: Adoption,
IoT, Nurses, (Adoption and IoMT and Nurses), (Adoption and IoT and Nursing care),
(Adoption and IoT and Physician), (Adoption and IoMT and Physician), (Adoption and
IoT in healthcare), and (Adoption and IoMT in healthcare).
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4.2. Selection Criteria

The inclusion criteria for included review papers are:

1-Published between 2015 and 2021.
2-Written in English.
3-Available as full text.
4-Published in a peer-reviewed journal.
5-Articles and conference papers.
6-Articles investigating the adoption of IoT in healthcare.

The exclusion criteria are:

1-Duplicate studies.
2-Not written in English.
3-Not related in the adoption of IoT in healthcare.
4-Not available as full text.
5-Outside the time frame.

4.3. Research Question

Specifically, the goal of this part is to define the study questions in order to better
understand the difficulties associated with the adoption of IoT in healthcare. The identifi-
cation of the research question aids in the definition of the scope and goals of this study.
The aims of this research are to investigate the area of IoT adoption in the healthcare sector
and how the results of this study can be used to create a vision of the factors that assist
the health industry in using IoT technology. To meet the research objective, the below four
research questions (RQ) are formulated:

RQ1: What are the primary adoption areas that were selected by studies (adoption of IoT
devices or end users’ adoption for the chosen studies)?

RQ2: What theories/models were used in the studies?
RQ3: What constructs are being employed in the studies?
RQ4: Which kind of techniques are employed for data analysis in the chosen studies?
RQ5: What are the research gaps on in the current studies which are related to the use of

IoT in the healthcare sector?

4.4. Quality Assessment

The quality assessment (QA) is defined as an accurate assessment about the general
quality of the selected papers (N = 22). Several initiatives aimed at improving the overall
quality of the search process were carried out throughout the assessment. Thus, to avoid any
potential effects from previous searches, the online searches were conducted in incognito
mode. The authors manually extracted relevant papers and articles from the first searches
they conducted. In addition, when the abstracts were reviewed in detail, it was determined
that certain publications had to be kept in the investigation and others needed to be
dropped. In addition, a quality process for this SLR is developed by formulating five QA
criteria as presented below:

Q1: Is the paper’s topic related to the adoption of IoT technology and its applications?
Q2: Does the paper use adoption theories?
Q3: Does the paper have theoretical framework and constructs?
Q4: Does the paper explicitly present the research methodology?
Q5: Is the procedure for collecting the research data clearly outlined in the paper?

A QA score is used to evaluate the study’s overall quality as shown in Table 1. The
study’s overall quality is ranked on one of three quality levels: “high”, “medium”, and
“poor” [38]. Research that entirely fulfills a quality requirement is given a score of 1 based on
the resultant load score at the start of the investigation. Second, a score of 0.5 is provided to
a candidate that just partly meets the requirements for consideration. After that, each item
that obtains a score of 0 is awarded a score of 0 since it does not fulfill a quality standard, as
defined by the five criteria for evaluation. With regard to the criteria, the greatest possible
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loaded score for each research is 5, and the lowest possible loaded score is 0 for each study.
(see Table 1). This article summarizes the findings of the QA process that was used on the
22 selected studies. The results show that 18 studies (82%) were classified as “high-quality”,
whereas 4 (18%) were classified as “medium-quality”. There were no studies classified
as “low-quality”. As a consequence of this decision, no more research was omitted from
the total. As a consequence, this SLR is mostly made up of 22 original papers that were
carefully chosen.

Table 1. Quality assessment scores for included review papers.

PID Q1 Q2 Q3 Q4 Q5 Scores

P1 1 1 1 0.5 1 4.5

P2 1 1 1 1 1 5

P3 1 1 1 1 1 5

P4 1 1 1 1 1 5

P5 1 1 1 1 1 5

p6 1 1 1 1 1 4

P7 1 1 0 0.5 1 3.5

P8 1 1 1 1 1 5

P9 1 1 1 1 1 5

P10 1 0 0 0 0 1

P11 1 1 1 1 1 5

P12 1 1 1 1 1 5

P13 1 1 1 1 1 5

P14 1 1 0 1 1 4

P15 1 1 0.5 1 1 4.5

P16 1 1 0 0 0 2

P17 1 1 1 1 1 5

P18 1 1 1 1 1 5

P19 1 1 1 1 1 5

P20 1 0 0 0 0 1

P21 1 1 1 1 1 5

P22 1 1 1 1 1 5

4.5. Results

Here, the prime concern was to find out the effective factors for the adoption of IoT
in healthcare. The effective factors are those factors that affect the use of the healthcare
system and also have an impact on user satisfaction [39]. Moreover, it also has to do with
investigating the adoption of the IoT conceptual framework in healthcare, and adoption
theories that are used in the adoption of IoT in the healthcare domain. The criteria for
inclusion have been established as papers using the search keywords, which are mainly
adoption, IoT in healthcare, and adoption of IoT by nurses, physicians, and patients.

Besides the title, abstract, and keywords of the papers that have been found, a list
of notable articles has been made based on certain criteria. On the other hand, studies
that focus on technical concerns and security challenges were left out of the analysis. The
abstracts and titles of some of the studies were reviewed separately, to see if they met the
criteria for being included. The procedure for search and selection of research material is
illustrated in Figure 2.
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Figure 2. Research Process.

4.5.1. Data Extraction and Organization

Based on the initial author’s name and year of publication, as well as the kind of
participants, the study design, and the geographical location of the research, if there is a
theoretical framework, data were retrieved.

Table 2 shows the results of the quality evaluation for each of the selected studies and
the elements extracted from each study. The authors extracted the data and double-checked
it before publishing it. During the search approach, we reviewed all of the titles and
abstracts of the selected papers. After that, we each looked at the full text of the articles
that had been pre-selected and agreed on which one to choose. In addition, we did data
extraction independently using a verified data extraction grid that was built based on the
study criteria that we used. This generic data extraction grid has been designed and tested
to categorize published publications according to existing theoretical frameworks, adoption
theories, constructs, study locations, and design approaches. The data extraction grid in
the Microsoft Excel program was filled in manually.

4.5.2. Included Studies

In the beginning, this research search strategy provided a total of 17,597 papers
from databases such as PubMed, Wiley, Google Scholar, SCOPUS, Emerald, and Science
Direct. The remaining 5327 papers were further screened after eliminating 1227 papers in
the detection phase (unrelated to healthcare, technical papers, security issues, literature
reviews, and duplicate studies). A total of 75 studies were considered worthy, but due
to not meeting the inclusion criteria, 53 studies were excluded. Eventually, based on the
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research goals, inclusion and exclusion requirements, 22 studies were included in this study
and the full text of all the included studies has been retrieved.

Table 2. Elements of the data extraction form with descriptions.

Data Extraction Description

Study ID A unique identifier

Study Title Title of each identified during the search.

Author(s) Author name.

Year Year of publication.

Type of Participants The type of user the paper conduct them.

Research Design Identification of the research methodology.

Studies Place Country/region where the research was undertaken.

Theoretical Frameworks Theory/model used by the selected papers.

Adoption’s Theory Type of theory adoption used in the studies.

Constructs The constructs/factors used in the frameworks.

Data collection strategy Approach used to collect the data.

Sample Research participants.

Type analysis and software Software and type of analysis in the papers to obtain
the result.

Degree of article A number indicating how much this study met the criteria for
research quality.

5. Characteristics of Included Studies

In this review, we started conducting a search among publications between 2015 and
2021. However, we observed that in 2015 there were no publications related to our scope
of study in all databases that we used. Figure 3 illustrates the studies’ type. Few studies
did not use theoretical frameworks. Figure 4 illustrates the number of articles growing
exponentially from 2016 to 2021 [20,40]. In general, there are several theories, models, and
frameworks that have been developed to explain user adoption of new technologies. The
models introduce factors that can affect user acceptance such as the technology acceptance
model (TAM), theory of planned behaviour (TPB), diffusion of innovation theory (DIT),
theory of reasoned action (TRA), unified theory of acceptance and use of technology
(UTAUT), unified theory of acceptance and use of technology2 ( UTAUT2), and Seddel
model [41] (see Table 3).

Indeed, some of the selected studies for this SLR used other theories besides adoption
theories to understand the effective factors in the adoption of IoT in healthcare, such as
theories related to security and healthcare. For instance, cybernetic control theory (CCT),
which is based on the idea of obtaining timely feedback, breaking down the deviations from
the expectations, and taking important choices to address the deviations [42]. The theory
of protection motivation (PMT) is concerned with the cognitive processes that mediate
changes in attitudes and behaviors in healthcare [10]. Finally, the health belief model
(HBM) is used “to describe and foresee health behaviors, to know the relationship of health
behaviors, and utilize health services and practices systematically” [43].
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Figure 3. Studies Type Included in Review.

Figure 4. Number of Articles Published by Year.

Table 3. The theories and their constructs that were used in each study.

Study Adoption’s Theory Constructs

[44]

(TRA)
(TPB)
(TAM)

Adoption intention
Perceived behavioral control

Perceived usefulness
Perceived ease of use

Subjective norm

[40] (UTAUT)

Performance Expectancy
Effort expectancy

Social InfluencePerceived
RiskFacilitating

ConditionsFinancial Cost
Behavioral Intention



Sensors 2022, 22, 5377 10 of 28

Table 3. Cont.

Study Adoption’s Theory Constructs

[45] (UTAUT )
(UTAUT2)

Performance Expectancy
Effort expectancy
Social Influence

Facilitating Conditions
Prereceived creditability

[46] (UTAUT)

Performance Expectancy
Effort Expectancy
Social Influence
Perceived Risk

Facilitating Conditions
Perceived trust

Behavioral Intention
Age, gender, experience

[47] (BRT)

Ubiquitous Reflective
Reasons for Convenience Reflective

Ubiquitous Reflective
Relative advantage reflective

Compatibility Reflective
Reasons against Usage barrier reflective

Risk barrier reflective
Traditional barrier

Reflective Attitude reflective
Adoption intention reflective
Value of openness to change

[10]
(TAM)
(IDT)
(PMT)

Perceived Advantage
Technological Innovativeness

Compatibility Trialability
Image

Perceived Vulnerability
Perceived Severity

Perceived Privacy Risk
Cost

Perceived Ease of Use
Attitude

[48]
(DOI)
(TAM)

Perceived usefulness
Usefulness

Necessariness Improvement
Perceived usefulness

[49] (UTAUT)

Performance Expectancy
Effort expectation
Behavior intention
Behavioral to use

[14] (DOI )

Perceived usefulness
Perceived easy to use

Computer self-efficiency
Personal innovativeness

Computer anxiety
Services quality

information quality

[50] (FAHP)
Economic Prosperity

Environmental Protection
Quality of Life

[51]

(TAM)
(TPB)
(TRA)

(UTAUT 2)

Trust organization
Trust Provider trust treatment

Trust technology

[52]

(TAM)
(TPB)
(TRA)

(SE Theory)

Interpersonal influence, self-efficacy
Attitude toward a wearable device

Health interest, Perceived value trustworthiness
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Table 3. Cont.

Study Adoption’s Theory Constracts

[53] (IDT)
(TAM)

Perceived ease of use
Behavioral intention cost

Trialability compatibility attitude
Privacy, Image
self-efficiency

Perceived usefulness

[54] (UTAUT) Not Mentioned

[42] (CCT)

Information Pervasiveness
Care Process Improvement

M-IoT Adoption Care
Service Efficiency

[55]
(TAM )

(UTAUT ) Performance expectancy

[43] (HBM)
(UTAUT)

Effort Expectancy
Social Influence will

Facilitating condition
Performance expectancy

Perceived severity
Use behavior Trust

Doctor’s patient relation

[56] (TAM)

Security
Privacy, Trust in IoT

Risk perception Familiarity
Attitude

[57] (TAM)

Behavioral Intention to Use
Perceived Usefulness
Perceived Ease of Use

Attitude
Perceived Connectedness

Perceived Cost Privacy
Concerns Perceived Convenience

[58] Not Mentioned

Critical data management
Unreliable results accuracy, security

Unreliable results accuracy
Unaffordable technology for low-income groups

lack of clear regulations.
Critical data management
Lack of clear regulations.

[59] Saddon Model

Personal innovativeness
E_loyalty

Usefulness
Personal innovativeness

[60]
(TAM)
(HBM)

Perceived usefulness
Consumer innovativeness

Health information accuracy
Reference group influence

Health beliefs
Privacy Protection

As Figure 5 depicts, the majority of studies used the TAM, UTAUT, and its updated
296 version UTATUT2 adoption theories [55]. However, TPB, TRA, DOI, BR theories [44],
the IDT theory, HBM theory, Seddon model, CCT theory, IDM theory, PMI theory are used
in fewer articles [42,44]. The studies about IoT adoption in healthcare were conducted in
various countries including France, Spain, Germany, Sweden, Turkey, Hong Kong, and
Israel. Developed and developing countries, such as India, Pakistan, Malaysia, Saudi
Arabia, Iraq, Oman, and the Kingdom of Saudi Arabia from Asia and Latin America also
recorded a large body of research in IoT adoption [43,53,57].
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Figure 5. Adoption theories used in publication.

The majority of studies used quantitative research design (17.77%) [43,46]. One study
employed a qualitative design through the use of focus groups (1.4%) [55], and repre-
sentations of data collection methods. A mixed-method design was used in one study
(1.4%) [46,54]. The rest of the studies did not mention the design methods they used [50].
The types of IoT applications studied were the following: a wearable device [55,61], general
IoT devices (without specific any type) (9 papers), monitoring devices (2 papers) [52,58],
rehabilitation device (1 paper), telehealth and behavior modification (1 paper) [42], smart
city, and smart home (1 paper). Clinicians, nurses, medical workers, pharmacists, and
other healthcare practitioners were involved in the included research (such as nutri-
tionists, social workers, occupational therapists, and care services). Some other stud-
ies (4 papers) exclusively involved physicians [43,45,50,52]. The rest of the publications
focused on patient (4 papers) [40,51,57,58], and end-users of IoT device in healthcare
(9 papers) [40,52] (see Table 4).
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Table 4. Data extraction form.

SID Study Year Type of Participants Research Design Studies Place Theoretical
Frameworks Data Collection Sample Analysis and Software

S1 [44] 2017 Respondents in India Not Mentioned India Yes Survey 314 Partial Least Square SEM

S2 [40] 2020 Users of IoT-based
healthcare devices Quantitative Method France Yes Survey 268 PLS-SEM

S3 [45] 2020 Younger physicians Quantitative Method Srilankan Yes Survey 375 SPSS

S4 [46] 2021 Patients Quantitative Method France Yes Online Survey 267 Partial Least Approach—Structural
Equation Modeling

S5 [47] 2018 Older adults Quantitative Method Indian Yes Survey 815 PLS-SEM

S6 [10] 2018 End user IoT Product Quantitative Method Not Mentioned Yes Online Survey 426 SEM-PLS, and
XLSTAT-PLSPM

S7 [48] 2020 The public user Qualitative Method Malaysia No Survey Not Mentioned Not Mentioned

S8 [49] 2020 Clinicians Qualitative Method Pakistan Yes Questionnaire Over 479 PLS SEM

S9 [14] 2020 Professionals or service
administrators in healthcare Mix Method Saudi Arabia Yes Semi-Structured Interviews

and Survey Data Not Mentioned NVIVO Software

S10 [50] 2018 applications Not Mentioned Not Mentioned Yes Not Mentioned Not Mentioned Fuzzy Logic

S11 [51] 2020 Patients Quantitative Method Not Mentioned Yes Questionnaire 117 PLS SEM

S12 [52] 2020 Device users Quantitative Method Germany and
Sweden Yes Questionnaire 97 PLS SEM

S13 [53] 2020 Doctors Quantitative Method Iraq Yes Online Survey 250 SPSS

S14 [54] 2016 Physicians Mixed-Methods Israel No Questionnaire, Personal, and
semi- Structured Interviews. 176 Microsoft Excel, and SPSS

S15 [42] 2019 Cardiologist Diabetologist
Nutritionist Quantitative Method Not Mentioned Yes Online Survey 221 SEM

S16 [55] 2016 User wearable Focus Group Not Mentioned No Not Mentioned Not Mentioned Not Mentioned

S17 [43] 2017 Medical Doctors, Nursing
Staff, and Patients Quantitative Method Pakistan Yes Survey 100 SPSS23

S18 [56] 2019 Users Quantitative Method Omani Yes Questionnaires 387 SPSS 25 and AMOS 25 statistics

S19 [57] 2019 Patient Quantitative Method Kingdom of Saudi
Arabia Yes Survey 407 SEM

S20 [58] 2018 Patient Quantitative Method Latin-America, No Not Mentioned Not Mentioned Not Mentioned

S21 [59] 2018
Medical staff Care Services,

Medical specialties, Covered
Medical Facilities

Quantitative Method Spain Yes Questionnaire 256 SPSS MEDIATE

S22 [60] 2019 Customers of Wearable
Technology Quantitative Method Hong Kong Yes Online Survey 171 SmartPLS v3.28



Sensors 2022, 22, 5377 14 of 28

5.1. Overview of IoT Adoption Factors

In the results, 90 elements were identified as barriers or facilitators for IoT technology
adoption and were classified in the different categories of factors from the extraction
grid. As Figure 6 shows, these elements were classified as facilitators for IoT adoption in
healthcare and barriers.

Indeed, a total of 61 elements (67%) are concerned with the category factors related to
the IoT adoption in healthcare characteristics, in which 41 elements of them were identified
as barriers and 20 elements as facilitators. The most repeated adoption factor was perceived
usefulness [40,48,53]. Perceived usefulness is defined as an individual’s perception that the
utilization of IoT device will improve their performance of daily activities [53]. Perceived
ease of use was another frequently mentioned factor [10]. Perceived ease of use is defined
as an individual’s perception that the utilization of IoT devices will be effortless [10,59].

Figure 6. Factors Characteristics.

As a result, it was critical for professionals to perceive the usefulness and ease of use
of technology in their workplace; otherwise, there would be less incentive to use them.
Other factors related to IoT in healthcare characteristics are cost issues, privacy, security
concerns, and healthcare issues. The cost issues, privacy, security concerns, and healthcare
were seen as barriers to the adoption of IoT in healthcare. Indeed, specialists were worried
about the safety and confidentiality of the data contained in, and transmitted by, these
technologies, as well as the possibility of device theft. Additionally, the cost of the IoT
technology and its applications were perceived as barriers to IoT adoption in healthcare,
and healthcare issues. The specialists are worried about the health risk if the technology
is used in their health activities. Other factors identified in this category were individual
factors, technology factors, security factors, health factors, and environmental factors.

5.2. Individual Factors

Individual factors in IoT adoption represented 16 elements (26%) among the total
extracted elements. As shown in Figure 7 the most common factor identified was social
influence factor, which is repeated six times [40,43,45,49,60]. Generally, professionals
thought that IoT technology adoption is affected by social impact and conviction to receive
support to use IoT technology in their activities, and it is used as facilitators more often
than as barriers [40,45,49].

The next factor for individual adoption is attitude. It was mentioned five times [10,44,53,56,57].
Personal inattentiveness was mentioned four times as a facilitator [10,14,59,60], and self-
efficacy, age, gender, and experience were mentioned three times each. The aforementioned
factors are mentioned as facilitators more than as barriers [14,45,52]. Professionals believed
that IoT adoption in healthcare could improve these factors. Finally, the next sets of factors
are adoption intention, compatibility, and image. They were mentioned two times [10,52].
They were seen as barriers more than as facilitators. Furthermore, anxiety, interpersonal
influence, value of openness to change, user satisfaction, e-loyalty, and perceived content-
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edness were mentioned only one time. They were perceived as barriers [59]. Professionals
believed that IoT adoption in healthcare could slow down due to these barriers.

Figure 7. Individual Factors.

5.3. Technology Factors

IoT adoption technology factors represented 19 elements (31%) of the extracted ele-
ments. As shown in Figure 8 the most common factor identified was perceived usefulness
factor, which was repeated six times [14,46,48,53,59,60]. As mentioned before, it was re-
garded as a facilitator. The professionals believed that the perceived usefulness factor
in IoT adoption in healthcare is an essential factor as it improves their working condi-
tions. The next factor related to IoT adoption in healthcare is perceived ease of use. It was
repeated five times as a facilitator. The specialist is looking for technology that is easy
to use during their duties. Thus, it is believed to be an important factor [14,48,53,57,59].
Performance expectancy factor is repeated four times [43,45,46,48], and effort expectation
factor is repeated three times [14,43,46]. Both factors appeared as facilitators. Effort expecta-
tions are streamlined with the consensus based on the belief of the professionals that the use
of IoT technology would be without effort. Performance expectancy is based on the belief
that the use of the IoT technology would improve their performance [46], and from the
professionals’ perspective, these factors are considered as strong motivation to adopt IoT
technology in their work. Additionally, trialability, and reasons for convenience reflective
factors were repeated two times, [10,47]. Moreover, information quality, perceived advan-
tage, technological innovativeness, perceived creditability, compatibility reflective, relative
advantage reflec- tive, ubiquitous reflective, unreliable results accuracy, information perva-
siveness, features deemed most useful, utilitarian hedonic benefits sought, features deemed
most useful, and critical data management factors were repeated one time [10,47,55], and
they mention it as barriers.
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Figure 8. Technology Factors.

5.4. Security Factors

The main factors related to security for IoT adoption represented seven elements
(11%) of the extracted elements. Perceived privacy risk, as shown in Figure 9 is the
most common factor identified in the selected papers. It was repeated seven times, fol-
lowed by trust which was repeated six times. In each instance, they were considered as
facilitators [43,46,47,53,56,57,60]. Furthermore, perceived vulnerability, trust organization,
trust provider, trust treatment, and trust technology are considered as barriers. They were
repeated once each [51]. Indeed, the professionals believed that the security issue is a
critical issue, especially in the case of using IoT technology in healthcare. This is because
healthcare information needs a high level of privacy, and other professionals believe they
could be threatened, misused or misinterpreted while using IoT technology.

Figure 9. Security Factors.
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5.5. Health Factors

Health-related factors are essential to these studies. As shown in Figure 10, the most
common factors identified in this category respectively are perceived severity and perceived
health risk, where their repetition is two times [43,60]. Perceived severity “is explained
as the degree of harm from unhealthy behavior” [43]. Furthermore, perceived health
risk is defined as the degree to which the professional believes that using IoT will bring
health problems [62]. This is followed by health interests, necessaries, health information
accuracy, health beliefs, care process improvement, and care service efficiency, respectively;
these appeared once each [52,55]. In this category, the studies consider these factors to be
important, as they attempt to understand the adoption of IoT in health conditions. The
professionals believed that using IoT technology in their duties could cause health problems
related to the patient during the care process.

Figure 10. Health Factors.

5.6. Environment Factors

The last category encompasses external factors that exist inside the organizational
environment and accounts for 7 elements (11%) of the extracted elements. Financial cost
factor, as shown in Figure 11, is the most common factor, repeated four times [10,46,53,57].
The next facilitating conditions factor was repeated three times [43,45,46]. Other factors
such as environmental protection, quality of life, traditional barrier reflectivity, lack of
clear regulations, and technical infrastructure were spread equally at once each [47,50].
All environment factors are considered as barriers. The professionals believe that these
environmental factors, especially both the cost factor and the facilitating conditions factor,
affect the adoption of this technology. The higher the cost, the more the negative impact
increased, particularly in long-term costs of the technology. The costs of the system and
applications were mentioned in the studies. Moreover, if facilitating conditions are not
applied to this development, the more negative impacts will be present in its adoption.
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Figure 11. Environment Factors.

6. IoT for Testing and Tracing

COVID-19 testing and tracing enabled by the IoT can cut down the spread of the
disease, which is very important in the fight against it. People are now more likely to use
IoT to test and trace things, which is accelerating IoT adoption [63–65]. Thus, Figure 12
shows a test and trace system. Such advanced test and trace systems are composed
primarily of two layers: data acquisition and data integration.

Figure 12. An Architecture of a Test and Trace IoT.

Data is gathered. Mobility data comes from a variety of sources, such as an immigra-
tion database, Global System for Mobile Communications (GSM)- and Global Positioning
System (GPS)- enabled mobile phones, and Quick Response (QR) codes that can be tracked.
This helps Taiwan keep track of both foreign and domestic travelers. Moreover, smart city
resources are used, such as CCTV cameras to keep an eye on things [66]. Additionally,
credit card transactions are monitored and recorded in order to discover consumers and
forecast their behavior [67]. Individuals’ hospitalizations are also logged and monitored to
assist in locating missing persons [68].

A large number of countries and regions, including the United Kingdom, South Korea,
Germany, Spain, Vietnam, and Taiwan, have adopted digital test-and-trace efforts [65,69].
While some of these attempts were unsuccessful in tracking the spread of COVID-19,
nations that heavily used technology in their solutions did far better in their battle against
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this pandemic. Ref. [70] reported that the United Kingdom’s test and track system, which
used around 27,000 contact tracers, had been unable to reach 21% of persons who tested
positive for the week of 2–8 July 2020. Additionally, although 79% of those contacted
identified 13,807 close connections, only 71% were contacted and urged to self-isolate.

Taiwan, on the other hand, had improved protocols in place (as a result of lessons
learned from the 2003 SARS pandemic) and was able to suppress the initial COVID-19
wave. That is, as a result of swift and effective policy choices and widespread use of digital
technology [71,72]. This indicates that a sophisticated technology-based test-and-trace
system may be a viable tool for pandemic preparedness, provided all other safety measures
are followed and rigorous policy choices are enforced. Figure 12 illustrates a structure for
testing and trace system solutions.

A data integration layer combines and delivers data from disparate sources to the
proper departments [73]. For example, the Centers for Disease Control and Prevention
(CDCP) has access to the Immigration and National Health Insurance (NHI) databases [71].
Local governments are given access to location data. For example, surveillance data
from a smart city setup is shared with police officers in order for them to take appropriate
action [71]. Data extracted from various sources, such as public transportation and shopping
malls, are also shared with the general public to assist them in making informed decisions
about their daily routines [74].

7. Wearable Devices

While wearables such as smart watches, smart bands, and finger rings have long
been available, the spread of COVID-19 has led to an upsurge in their appeal. When it
comes to fighting COVID-19 and other future pandemics, wearable technology has a lot
of promise [63,75,76]. Wearable technologies may also be used to broadcast health infor-
mation [77]. Monitoring and connection tracing capabilities enforce social separation [78],
provide tracking and contact tracing capabilities [79], enforce social separation [80], and
provide mental healthcare [81] by continuously measuring an individual’s cognition and
mood, allowing individualized therapy interventions [82].

As a consequence of these and other comparable uses, wearable devices are becoming
more popular. Smart wearables, according to Papa et al. (2020) [82], have the potential to
transform healthcare. By 2024, the wearable industry is expected to reach USD 64 billion,
according to Global Data [83,84]. A short discussion of recent successes in the battle against
COVID-19 will follow.

A COVID-19 identification method has been created by WHOOP Inc. utilizing their
WHOOP strap to assess respiratory rate using Resting Heart Rate (RHR). Using a mobile
application, WHOOP strap data is sent to the WHOOP system [85]. Their technique
detected 20% of COVID-19 positive people two days before the beginning of symptoms and
80% of COVID-19 positive persons by the third day of symptoms. Philips has also created
temporary patches for the identification of COVID-19 patients in their early stages [86] and
disposable biosensors for the early identification of deterioration in COVID-19 patients [87].
It measures and sends a number of indicators of deterioration, including respiratory rate,
heartbeat, activity level, body position, and ambulation, among other things, to the doctor.

Artificial Intelligence (AI) can be used to accurately differentiate one disease from
another [88,89]. Recently, AI was used by researchers from the Institute of Technology
and Harvard University to determine whether COVID-19 subjects could be accurately
differentiated from only a forced-cough cell phone recording [86]. Their findings, which
were based on cough recordings from over 5000 subjects, show their model performed
accurately. COVID-19 subjects were officially tested 97.1 percent of the time, and 100% of
them were found to be asymptomatic when they were tested. Cough recordings have been
used in the past to accurately diagnose circumstances such as pneumonia and asthma. This
shows how useful it is to put these solutions into wearable devices so that they can provide
a non-invasive, realistic solution for diagnosis of diseases, pre-screening, and outbreak
monitoring [87,90].
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A study by the Scrips Research Translations Institute is called Digital Engagement
Tracking for Early Control Treatment (DETECT). DETECT gathered data from smartwatches
and activity trackers that partners agreed to use, as well as self-reported symptoms and test
results [91]. DETECT recently reported [92] that data from wearable devices can be used
to identify COVID-19 cases with more accuracy than just symptoms alone. There have
been several other studies such as this one [63,93,94]. This has accelerated deployment to
allow interested individuals to voluntarily share their sensor and clinical data in order to
combat COVID-19.

As a result of COVID-19, it has become increasingly critical for healthcare to be
accessible, work on a low threshold, and be rapid in monitoring, testing and diagnosing [95].
Suddenly, we are faced with a brand-new set of issues. To begin, ubiquity implies that
IoT-based medical services must be freely available and accessible to a greater population.
However, the majority of people lack access to professional medical equipment, and must
use less expensive technology such as smartphones and smart- watches, which have
restricted healthcare capabilities. Second, since the threshold is low, the cost and difficulties
of adopting IoT-based medical services must be reduced. On the other hand, medical care
procedures are often complicated and expensive. Additionally, many individuals struggle
to embrace and use new technology such as IoT solutions for healthcare. Third, it is
necessary to address the energy needs and computational effectiveness of medical sensors
in order to provide continuous tracking and high-quality testing/diagnosis [95].

8. Regulations and Procedures for IoT during Pandemic

Previously, IoT adoption has been considerably lower in healthcare as a result of
regulatory laws controlling privacy, data security, and approval processes. As a result
of COVID- 19, emergency rules are being applied via established processes, and several
innovative technologies have acquired emergency approvals driving IoT adoption. For
instance, the United States Food and Drug Administration (USFDA, or FDA) has issued
an Emergency Use Authorization for the electrocardiogram (ECG) low-ejection-fraction
instrument created by Eko.

Eko is a company that makes digital health tools. They are based in the US and their
tools assist health and clinicians providers in assessing cardiac complications associated
with COVID-19 [96,97]. Eko makes it simpler for healthcare practitioners during ECG
recordings to save, analyze, and communicate patient heart and lung sounds. Eko’s
machine learning algorithms were carefully developed utilizing different real-world data
sets and are clinically proven to aid physicians in detecting early indicators of cardiac
disease. The World Health Organization (WHO) has warned people about the risk of
becoming sick in extremely crowded hospitals and emergency rooms. As a result of the
regulation, the use of telehealth and home care has increased to cut down on hospital and
clinic visits. Therefore, several countries are encouraging the use of telehealth services
and have decided to add many types of medical services to their public health programs
that can be accessed through telehealth. When people start using telehealth, they are
using more IoT applications and other technologies. This is because the technology is
becoming more common in the healthcare field. Ref. [98] shows how IoT technologies,
smart telemedicine diagnosis systems, and virtual care work together for people of different
ages and backgrounds [99,100].

9. Discussion

The whole issue of IoT technology in healthcare is gaining interest from companies
and academics, since it provides a novel method of communicating with healthcare profes-
sionals and patients alike. Furthermore, it is a promising instrument to aid the healthcare
industry [13]. The purpose of the study is to summarize the literature on factors that might
support or prevent health professionals from using IoT technology in their job. Indeed,
many nations own IoT devices and employ them in the healthcare sector. Nevertheless, this
does not guarantee that the professionals adopt and accept it completely [15,101]. There-
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fore, it becomes important to study and identify the factors that may facilitate or impede
healthcare professionals’ use of IoT technologies. The review’s primary results indicate
that a variety of effective factors influence IoT adoption at the individual, technology,
security, health, and environmental levels. The usefulness and ease of use of the technology
were identified as two of the most critical factors influencing IoT adoption in the research.
Furthermore, those two factors considered TAM theory factors. Moreover also, it is the
most frequent theory in these studies for studying healthcare professional acceptance and
adoption of IoT technology according to the literature. Moreover, most studies in this
review are based on quantitative methods. The majority of the studies were conducted
in developing countries [14,49,53]. In addition, our findings show that healthcare profes-
sionals think social influence factors in individual factors, privacy risk issues in security
factors, perceived severity and perceived health risk in health factors, and cost issues in
environment factors, could limit the adoption of the IoT technology. As mentioned, it has
been noted in the literature that IoT technology may play a role in empowering patients
and healthcare professionals [47,58]. In fact, medical experts feel that IoT technology in
healthcare supports and improves doctor-patient relationships [49,58]. Additionally, the
results show that healthcare providers agree that IoT in healthcare could improve pa-
tient care. We also assessed the results regarding prior studies conducted. We found
that all studies considered the privacy risk issue in security factors as barriers [10,47,53].
Our findings in this review shows the same result. Additionally, some studies mentioned
factors such as perceived severity and perceived health risk as having no significant effect
on the adoption of IoT in healthcare [43]. Notwithstanding, other studies mentioned them
as having an indirect effect on adoption [10]. Our analysis in this review found them to
be regarded as barriers. Moreover, some studies consider individual factors to have no
significant role in the adoption of technology [40], but the most studies are consider these
to be facilitators [40,45]. Similarly, this review found the individual factors to be facilitators.
Environmental factors in prior studies have been classified as barriers to adoption [55],
and technology factors in all studies are considered facilitators [40,43]. This relationship is
highlighted by our findings.

Finally, the results of this systematic review provide a baseline, allowing for a more
comprehensive understanding of the challenges and opportunities associated with health-
care professionals’ utilization of IoT technology.

9.1. Gaps and Implications for Future Research

The majority of the studies included in the review consists of physicians as profession-
als in healthcare. In contrast, there are no studies conducted on nurses as professionals
in healthcare even though nursing is considered as an essential segment for caring for
patients in the healthcare sector. Moreover, nurses are considered the primary key po-
tential users of IoT technology in healthcare. They play a large role in the adoption of
IoT technology. Furthermore, the present studies used quantitative methods more than
qualitative methods and mixed methods. Indeed, using different design methods provide
methodological flexibility.

9.2. Limitations

This study is not without limitations, which presents opportunities for further research.
While this study provides an extensive compilation of current research about the factors
influencing healthcare professional IoT adoption, it does have certain limitations. At the
beginning, we searched the literature using just nine bibliographic databases, and we
thoroughly evaluated the references of included studies as well. In addition, we include
the papers citing those articles in order to reveal other possibly relevant publications.
Secondly, in this study, we used a mixed-method systematic review approach to do a
thorough review. It would have been better if we had used other methods, such as meta-
narrative or realism review, to acquire a more complete picture of how IoT is used in
healthcare. People who do research in this area will find it very useful. Third, this review
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only looked at data from studies that have been published. There was no extra contact
with the authors to obtain more information or to make sure our classification was correct.
Finally, we used a basic framework of adoption factors as the conceptual framework for
categorizing elements identified as factors that affect IoT adoption in the studies included
in this review and their repetitions in published studies. Even though we believe the
framework is thorough and well-suited to introduce the adoption of IoT perceived by
medical professionals, it is based on comprehensive, theoretical, and empirical research,
but it may need further research.

However, future study may examine IoT adoption from a theoretical and empiri-
cal perspective.

9.3. Challenges of Effective IoT’s Adoption and Research Directions

COVID-19 has provided both possibilities and barriers to IoT adoption in the real world.
Macroeconomically, IoT adoption must take into consideration the enormous cultural and
economic shifts brought by COVID-19. Individual, community, and organizational behaviors
have changed dramatically since the start of the global pandemic [102]. Prior to the pandemic,
the worldwide IoT industry was developing. However, the accessibility and cost of device instal-
lation, and the security of data, have worsened. Microeconomically, IoT technology demands
more quicker and revolutionary innovation in order to secure society’s functioning, encourage
civic building, and react to any future crises. Different IoT industries are experiencing new
issues, and finding solutions that work will be crucial in speeding up IoT growth and acceptance
in these areas [103].

9.3.1. Pervasive Challenges across All Verticals (A) Financial Challenges

Numerous firms have cut or eliminated investment in a variety of new or planned
projects, including IoT projects. Another financial concern exacerbated by COVID- 19 is
the increased workers’ cost for appliance installation in environments with social interac-
tion limitations.

It is becoming more critical to design affordable, easy-to-install, and maintain IoT
sensors and devices. For instance, it is vital to build low-power gadgets in order to save
money on things such as battery replacement [104]. The Ultra Low Power SoC made by
Dialog Semiconductor is a good example. It is used in battery-powered IoT devices [63],
and has a battery life of more than a year in various IoT applications. Additionally, it
is necessary to produce inexpensive plug-and-play sensing devices [92,105,106], as well
as intelligent human-computer interaction [107], to simplify the installation and use of
IoT systems.

9.3.2. Data Protection and Privacy

During the COVID-19 pandemic, numerous countries have implemented a variety
of emergency measures, including limits on mobility, social distance standards, and less
rigorous privacy standards [108]. Following the pandemic’s conclusion, such legislation
will need to be thoroughly evaluated to guarantee that individual rights and privacy are
respected [63]. Researchers need to build strong data access regulations, security standards,
and privacy-preserving systems for tracking, monitoring, and analyzing, among other
things, to be ready for new epidemics and emergencies [109]. Indeed, individual data
pools on personal devices might be seen as a viable replacement for conventional data
centers. They do not actively collect and upload data, but rather transmit it to consumer
devices through produced data. It is possible for people to share data for data analysis and
decision-making with people they trust or with third-party apps. Personal gadgets also
need reliable encryption and network communication technologies. The system should
smoothly incorporate 5G, edge computing, and blockchain [94,110].
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9.3.3. Healthcare in COVID-19

COVID-19 is a healthcare catastrophe with obvious and immediate effects. According
to a Juniper Research report, IoT platform revenue is predicted to expand by roughly 20%
in 2020, from USD 55 billion in 2019 to USD 66 billion in 2020, and up from USD 35 billion
in 2021. It has also found that revenues generated by IoT will exceed USD 4.3 billion by
2022–2023 [111], and according to [112] the annual economic impact of IoT in 2025 would
be in the range of USD 2.7 to USD 6.2 trillion. Currently, three primary topics are driving
IoT adoption in healthcare [111]

10. Conclusions

IoT has emerged as a new paradigm for improving healthcare. The health industry
could potentially realize the advantages of IoT technologies as a result of the digital and
information revolution [113,114]. The main benefits of the IoT are providing sustainable
healthcare services, well-being, and more cost-effective treatment. The main goal of this
study was to compile available literature related to IoT adoption and application for smart
healthcare. This study examined, gathered, analyzed, and synthesized the essential data
in a systematic manner. According to the results, the most commonly employed adoption
theories for IoT adoption are TAM, TPB, TRA, and UTAUT. Furthermore, at the individual
level, the key recognized adoption elements of IoT application in healthcare are social
influence, attitude, and personal inattentiveness. Perceived usefulness, perceived ease of
use, performance expectancy, and effort expectations are the IoT adoption factors at the
technological level. Furthermore, perceived privacy risk is the most important issue at the
security level. At the health level, the primary factors are perceived severity and perceived
health risk, respectively; at the environmental level, the main factors are financial cost
and facilitating conditions. The majority of the respondents participating in the included
papers were physicians, patients, and healthcare professionals. Existing studies include
various sorts of IoT applications such as wearable devices, monitoring devices, rehabilita-
tion devices, telehealth and behavior modification, smart cities, and smart homes. In the
year 2020, the majority of research on IoT adoption was done in France and Pakistan. This
systematic review analyzes the critical characteristics that allow healthcare practitioners
to recognize the constraints and opportunities for implementing IoT applications. Finally,
we assess the anticipated impact of COVID-19 on IoT adoption in healthcare. After we
thoroughly examined many of the studies in the literature, reports from prominent consult-
ing companies, and interviews with specialists from a variety of sectors, we recognized
the potential impact of COVID-19 on IoT adoption in various sectors, including healthcare,
transportation, industrial IoT, smart homes, smart buildings, and smart cities, and how it
pushed technology adoption and innovation. In addition, we address the different efforts
that have been launched in a variety of areas in the aftermath of the epidemic. Furthermore,
we discussed numerous obstacles that must be overcome as well as critical research paths
that must be emphasized in order to expedite IoT adoption across the healthcare sector and
other industries. Based on the review results, we can conclude that the main challenges
and research directions for facilitating IoT adoption in various sectors are more related
to wearables that are low-energy or harvest energy, wearables that are research-grade,
AI algorithms for healthcare devices (for instance Artificial intelligence (AI)), and more
accessible healthcare services. Furthermore, reducing the cost of developing, installing, and
using IoT solutions and systems, as well as data security and privacy remains as concern in
healthcare and other related industries. In general, adoption of the IoT is still limited to a
few application areas. The results of this systematic study provide a common base for dis-
cussing the problems and opportunities associated with the adoption and usage of IoT by
healthcare providers. Additionally, this study evaluated the work that has been done in this
field, whether it be models and frameworks offered for enhancing or adopting IoT in health-
care, or proposed solutions to enable the realization of in real-world settings. However,
capturing the full benefits of new technology while achieving a sustainable socioecological
transition, still remains a challenge for government and the healthcare industry.
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