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Abstract: Low-strain tests are widely utilized as a nondestructive approach to assess the integrity
of newly piled foundations. So far, the examination of existing pile foundations is becoming an
indispensable protocol for pile recycling or post-disaster safety assessment. However, the present
low-strain test is not capable of testing existing pile foundations. In this paper, the torsional low-strain
test (TLST) is proposed to overcome this drawback. Both the upward and downward waves are
considered in the TLST wave propagation model established in this paper so that a firm theoretical
basis is grounded for the test signal interpretations. A concise semi-analytical solution is derived and
its rationality is verified by comparisons with the existing solutions for newly piled foundations and
the finite element results. The main conclusions of this study can be drawn as follows: (1). by placing
the sensors where the incident wave is applied, the number of reflected signals can be minimized; (2).
the defects can be more evidently identified if the incident wave/sensors are input/installed close to
the superstructure/pile head.

Keywords: nondestructive test; existing pile integrity; low-strain test; wave propagation

1. Introduction

Among many structure health monitoring approaches (static load test [1], image-
based displacement measurement [2], low-strain test [3], and high-strain test [4]), the
low-strain test is so far the most intuitive and economical way to assess the integrity of
deep foundations, especially pile foundations [5–8]. This is because the test signal of the
low-strain test is easily identifiable and it involves no disposable equipment or gauges.
The traditional low-strain test utilizes longitudinal harmonic excitation as the incident
wave so that an exposed cross-section of the foundation is needed to conduct the test [9,10].
Hence, the low-strain test is commonly used as the integrity inspection for newly piled
foundations instead of existing ones. However, after decades of vigorous developments in
infrastructure construction, the testing demands in major global construction markets have
shifted from the newly piled foundations to the existing ones [11–14]. As a result, upgrading
the low-strain test to satisfy the testing of existing foundations is especially urgent.

The fundamental theory of the low-strain test for pile foundations originates from
the longitudinal vibration theory of the pile [15,16]. The combination of one-dimensional
rod theory and the subgrade reaction model forms the mathematical prototype of the
low-strain test [17–19]. High-frequency interferences often occur during the tests of large
diameter piles, which are not revealed by the one-dimensional rod theory. The high-
frequency interference can be addressed by simulating the soil and pile as three-dimensional
continuum media [20,21]. However, due to the massive computation involved in rigorous
3D continuum models, digital signal filters (e.g., Savitzky–Golay) are preferred by engineers.
Compared to the longitudinal vibration of piles, torsional vibrations receive less attention
because they are not that common in nature. For most studies, torsional vibrations of piles
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are only regarded as additional problems caused by eccentric loadings [22]. However, since
torsional vibration is less common in nature than longitudinal or horizontal vibration, it
is an ideal subject for studying pile testing, as its strain wave signal may not be easily
jammed or suppressed by other environmental loads. Moreover, because the velocity
of the torsional wave is much smaller than that of the longitudinal wave, the torsional
low-strain test has a smaller detection blind zone than the traditional low-strain test [23,24].
The torsional vibration theory is initially established on a similar basis to the longitudinal
one: by simplifying the soil medium to infinitely thin layers, the rigorous 3D continuum
theory for soil medium can be reduced to the plane strain model, based on which the
straightforward closed-form solutions can be derived [25–29]. As the torsional vibration
of pile foundations gained interest in the most recent decade, the finite element method
(FEM) [30–32], finite integration technique [33], and boundary element method [34,35]
all considerably fulfilled the knowledge of wave propagation across the soil-pile system
during vibration.

In the literature mentioned above, the torsional incident wave is input at the pile
head, under which circumstance there will only be an upward wave or a downward wave
inside the intact pile body at the same time and neither will exist simultaneously [36–38].
However, when conducting the test for existing high-pile foundations, the incident wave
can only be input at the shaft of the pile, because the pile head is fixed into the super-
structure firmly. As a result, the upward and downward waves propagate inside the pile
body simultaneously, dramatically increasing the complexity of strain wave signals. To
account for this phenomenon, a rigorous torsional wave propagation model, taking both
the upward and downward waves into account, is established in this paper to guide the
signal interpretations of the TLST for existing high-pile foundations. Based on the proposed
model, the optimal excitation and signal receiving layouts in the TLST for existing high-pile
foundations are revealed.

2. Mathematical Model and Assumptions

The layout of the TLST for the existing high-pile foundation is depicted in Figure 1.
Due to the head of the existing pile being firmly fixed in the superstructure, the torsional
incident wave can only be input at the extending pile shaft so that both the upward and
downward strain waves are generated. The pile is modeled as a one-dimensional rod in the
proposed mathematical model and the surrounding soil is modeled as a three-dimensional
viscoelastic medium. The interactions between the pile and the superstructure are simpli-
fied to springs and dashpots. Further, the fictitious soil-pile model [28] is introduced herein
to authentically simulate the wave reflection at the interface of the pile bottom and the pile
end soil. Other general assumptions adopted are listed as follows:

1. Throughout the TLSTs, the soil-pile system only undergoes small strain deformations
so that the surrounding soil and the pile shaft are assumed to remain in perfect contact.

2. The incident wave utilized as the input of TLSTs in this paper is a half-sine har-
monic impulse.

3. There are no normal and shear stresses at the ground surface and the amplitude of
the strain wave diminishes to zero in radial infinity in the soil.

4. The displacement and forces at the interfaces of the fictitious soil pile and the real pile
are continuous. By increasing the length and modulus of the fictitious soil pile, the
foundation can shaft from the end-bearing piles to the floating piles.

5. The velocity response at the pile shaft is acquired to simulate the test results collected
from the velocity or acceleration sensors installed at the pile shaft.
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Figure 1. Schematics of torsional low-strain test for existing high-pile foundations. 
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Figure 1. Schematics of torsional low-strain test for existing high-pile foundations.

3. Governing Equations and Boundary Conditions
3.1. Governing Equations

Based on the continuum theories, the equilibrium equations for the soil medium in a
cylindrical coordinate system can be written as(

Gs
j + ηs

j
∂

∂t

)
∇2us

j (z, r, t) = ρs
j

∂2us
j (z, r, t)

∂t2 (1)

where Gs
j , ηs

j , us
j , and ρs

j denote the shear modulus, material damping, circumferential

displacement, and density of the jth (vertically labeled) soil layer, respectively. ∇2 =
∂2

∂r2 +
∂

r∂r +
∂2

∂z2 − 1
r2 is the Laplacian written in the cylindrical coordinates.

The three-dimensional rod theory can better reveal the wave propagation during the
TLSITs. However, its adoption would significantly increase the mathematical complexity
of the problem, resulting in terrible computational efficiency. Further, it was reported by
Zhang et al. [24] that the wave signal captured at the pile edge is limitedly influenced by
the three-dimensional effect during the TLSITs. Hence, the pile is modeled through the
one-dimensional rod theory in pursuit of a more efficient closed-form solution. Commonly,
the high-pile foundation can be divided into two parts: one embedded in the soil, the other
one extending out of the soil. For the part that is embedded in the soil, the equilibrium
equation can be written as

(
Gp

j Ip
j + η

p
j Ip

j
∂

∂t

)∂2 ϕ
p
j (z, t)

∂z2 − 2πr2
1 f s

j (z, t) = ρ
p
j Ip

j

∂2 ϕ
p
j (z, t)

∂t2 (2)

For the part extending out of the soil, the equilibrium equation can be written as(
Gp

m Ip
m + η

p
m Ip

m
∂

∂t

)
∂2 ϕ

p
m(z, t)
∂z2 = ρ

p
m Ip

m
∂2 ϕ

p
m(z, t)
∂t2 (3)

where Gp
j , η

p
j , Ip

j , ϕ
p
j , ρ

p
j , f s

j , and r1 are the shear modulus, material damping, polar moment
of inertia, twist angle, density, pile-side resistance, and the radius of the jth pile segment.
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3.2. Boundary and Initial Conditions

The displacement and stress in the soil medium diminish at the radial infinite so that
the following boundary conditions can be acquired:

us
j (z, r, t)

∣∣∣
r→∞

= 0 (4)

τs
j (z, r, t)

∣∣∣
r→∞

= 0 (5)

The interactions between the soil layers are simulated by a distributed Kelvin–Voigt
model, whose formulas can be presented as[(

Gs
j + ηs

j
∂

∂t

)∂us
j (z, r, t)

∂z
−
(

k j + cj
∂

∂t

)
us

j (z, r, t)

]∣∣∣∣∣
z=hj

= 0 (6)

[(
Gs

j + ηs
j

∂

∂t

)∂us
j (z, r, t)

∂z
+

(
k j−1 + cj−1

∂

∂t

)
us

j (z, r, t)

]∣∣∣∣∣
z=hj−1

= 0 (7)

The transient impulse is subjected to the side of the extending part. Considering that
the stress distribution inside the pile shaft is continuous, these boundary conditions can be
written as[(

Gp
m Ip

m + η
p
m Ip

m
∂

∂t

)
∂ϕ

p
m(z, t)
∂z

]∣∣∣∣∣
z=hm

+ T(t) =

[(
Gp

m+1 Ip
m+1 + η

p
m+1 Ip

m+1
∂

∂t

)
∂ϕ

p
m(z, t)
∂z

]∣∣∣∣∣
z=hm

(8)

ϕ
p
j

∣∣∣
z=hj

= ϕ
p
j+1

∣∣∣
z=hj

(9)

τ
p
j

∣∣∣
z=hj

= τ
p
j+1

∣∣∣
z=hj

(10)

The pile end soil-pile end interaction is modeled by the fictitious soil pile. At the end
of the fictitious soil pile, the displacement is supposed to be zero.

ϕ
fp
1 (z, t)

∣∣∣
z=L

= 0 (11)

The interaction between the pile and the upper structure is simplified to elastic springs
and dashpots:[(

Gp
m+1 Ip

m+1 + η
p
m+1 Ip

m+1
∂

∂t

)
∂ϕ

p
m(z, t)
∂z

+

(
kT + cT

∂

∂t

)
ϕ

p
m(z, t)

]∣∣∣∣∣
z=0

= 0 (12)

where kT and cT denote the elastic and damping coefficients of the springs and dashpots,
respectively.

When conducting the low-strain integrity test, both the soil and pile only go through
tiny deformations, under which circumstance the motions of the soil and pile can be
regarded as simultaneous.

ϕ
p
j (z, t)

∣∣∣
r=r1
· r1 = us

j (z, r, t)
∣∣∣
r=r1

(13)

At the initial moment, the system has no velocity nor acceleration, and the transient
pile-side impulse is the only reason for the system vibration.

us
j (z, r, t)

∣∣∣
t=0

= 0 (14)
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∂us
j (z, r, t)

∂t

∣∣∣∣∣
t=0

= 0 (15)

ϕ
p
j (z, t)

∣∣∣
t=0

= 0 (16)

∂ϕ
p
j (z, t)

∂t

∣∣∣∣∣
t=0

= 0 (17)

4. Solution of Dynamic Equilibrium Equations
4.1. Solution of the Governing Equation in the Surrounding Soil

By performing Laplace Transform on both sides of Equation (1) and conducting the
variable separation method, Equation (1) can degenerate to the following two differen-
tial equations:

r2Rs
j
′′ (r, s) + rRs

j
′(r, s)−

[
κ2

j r2 + 1
]

Rs
j (r, s) = 0 (18)

Zs
j
′′ (z, s) + β2

j Zs
j (z, s)= 0 (19)

where κ2
j =

ρs
j s2

Gs
j +ηs

j s + β2
j . Therefore, the general solution of Equation (1) can be acquired

through the combination of general solutions of Equations (18) and (19) as

Us
j (z, r, s) =

[
EjK1

(
κjr
)
+ FjI1

(
κjr
)]
·
[

Mj sin(β jz) + Nj cos(β jz)
]

(20)

where Us
j is the Laplace Transform of us

j , while Ej, Fj, Mj and Nj are all undetermined
coefficients. Meanwhile, I1(·) and K1(·) are modified Bessel Function of order one of the
first and second kind, respectively.

Submitting Equation (20) into Equations (4) and (5), one obtains

Us
j (z, r, s) =

[
Mj sin(β jz) + Nj cos(β jz)

]
·K1

(
κjr
)

(21)

Further considering the interaction between soil layers, as listed in Equations (6) and (7),
the following transcendental equations can be established:

Gs∗
j β2

j

[
tan(β jhj)− tan(β jhj−1)

]
+ Gs∗∗

j β j

[
tan(β jhj) tan(β jhj−1) + 1

]
+
[
tan(β jhj−1) + tan(β jhj)

]
= 0 (22)

where Gs∗
j =

(
Gs

j +ηs
j s
)2

(kj+cjs)(kj−1+cj−1s)
and Gs∗∗

j =

(
Gs

j +ηs
j s
)
(kj+cjs+kj−1+cj−1s)

(kj+cjs)(kj−1+cj−1s)
. With the introduc-

tion of local coordinates [0, lj], the transcendental equation can be simplified to

tan(β jlj)−

(
Gs

j + ηs
j s
)(

k j + cjs + k j−1 + cj−1s
)

β j(
Gs

j + ηs
j s
)2

β2
j −

(
k j + cjs

)(
k j−1 + cj−1s

) = 0 (23)

Through numerical iterations, the above transcendental equations can be solved
with a series of numerical answers, which can be denoted as β j1, β j2, β j3, . . . ,β jn. Then,
Equation (21) can be written as

Us
j (z, r, s) =

∞

∑
n=1

Ajn sin(β jnz + ϕjn) ·K1

(
κjnr

)
(24)
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where Ajn =
√

M2
jn + N2

jn, ϕjn = arctan
(

Njn
Mjn

)
,

Ms
jn

Ns
jn

=
(kj+cjs)(

Gs
j +ηs

j s
)

β jn

. The resistance force of

soil acting on the pile side can be expressed as

f s
j =

(
Gs

j + ηs
j s
) ∞

∑
n=1

Ajnκjn sin(β jnz + ϕjn)K2

(
κjnr1

)
(25)

4.2. Solution of the Governing Equation of the Pile

Similarly, by performing Laplace Transform on both sides of Equations (2) and (3),
one obtains

(
Gp

j Ip
j + η

p
j Ip

j s
)∂2φ

p
j (z, s)

∂z2 − 2πr2
1 f s

j (z, t) = ρ
p
j Ip

j s2φ
p
j (z, s) (26)

(
Gp

m Ip
m + η

p
m Ip

ms
)∂2φ

p
m(z, s)
∂z2 = ρ

p
m Ip

ms2φ
p
m(z, s) (27)

where φ
p
j is the Laplace Transform of ϕ

p
j with respect to t. It can be found that

Equations (26) and (27) are non-homogeneous and homogeneous functions, respectively.
The general solution of the corresponding homogeneous function of Equation (26) can be
given as

φ
p
j (z, s) = Cp

j sin(λjz) + Dp
j cos(λjz) (28)

where λj =

√
−

ρ
p
j s2

Gp
j +η

p
j s

. The specific solution of Equation (26) is found as

∞

∑
n=1

Ajnκjnks
jn sin(β jnz + ϕjn) ·K2

(
κjnr1

)
(29)

where ks
jn = −

2πr2
1

(
Gs

j +ηs
j s
)

(
Gp

j Ip
j +η

p
j Ip

j s
)

β2
jn+ρ

p
j Ip

j s2
. The general solutions for the buried and extending

pile segments can then be written as
Embedded pile segments:

φ
p
j (z, s) = Cp

j sin(λjz) + Dp
j cos(λjz)

+
∞
∑

n=1
Ajnκjnks

jn sin(β jnz + ϕjn) ·K2

(
κjnr1

) (30)

Extending pile segments:

φ
p
m(z, s) = Cp

m sin(λmz) + Dp
m cos(λmz) (31)

Based on the small strain assumption, the displacements at the soil-pile interface for
embedded pile segments are continuous. Next, Equation (30) is substituted into (13), herein
introducing the orthogonality of the following equations:

∫ lj

0
sin(β jnz + ϕjn) sin(βinz + ϕin)dz =

 0, j 6= i
lj
2 −

sin(2β jn lj+2ϕjn)−sin(2ϕjn)

4β jn
, j = i

(32)

With the utilization of Equation (32), one obtains

Ajnκjn = Cp
j δjn1 + Dp

j δjn2 (33)
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In addition, the undetermined coefficients Cp
j and Dp

j , and other parameters, can be
derived from the following relations:

δjn1 =
r1κjnχjn1

χjn3

[
K1

(
κjnr

)
− ks

jnr1K2

(
κjnr1

)] (34)

δjn2 =
r1κjnχji2

χjn3

[
K1

(
κjnr

)
− ks

jnr1K2

(
κjnr1

)] (35)

χjn1 =
1
2
·

 sin(λjlj − β jnlj − ϕjn) + sin(ϕjn)

(λj − β jn)
−

sin(λjlj + β jnlj + ϕjn)− sin(ϕjn)(
λj + β jn

)
 (36)

χji2 =
1
2
·

cos(λjlj − β jnlj − ϕjn)− cos(ϕjn)

(λj − β jn)
−

cos(λjlj + β jnlj + ϕjn)− cos(ϕjn)(
λj + β jn

)
 (37)

χjn3 =
lj

2
−

sin(2β jnlj+2ϕjn)− sin(2ϕjn)

4β jn
(38)

After the above derivation, the general solution for the embedded pile segments can
then be given in a homogeneous equation form.

φ
p
j (z, s) = Cp

j

[
sin(λjz) +

∞
∑

n=1
ks

jnδjn1 sin(β jnz + ϕjn) ·K2

(
κjnr1

)]
+Dp

j

[
cos(λjz) +

∞
∑

n=1
ks

jnδjn2 sin(β jnz + ϕjn) ·K2

(
κjnr1

)] (39)

To acquire the undetermined coefficients (Cp
j and Dp

j ), the continuous deformation bound-
ary conditions at pile segment interfaces are utilized. Substituting Equations (30) and (31) into
Equations (9) and (10), the iteration relations between different embedded pile segments can be
obtained as [

Cp
j+1

Dp
j+1

]
=

[
ψj+1,1(lj+1) ψj+1,2(lj+1)
ψj+1,3(lj+1) ψj+1,4(lj+1)

]−1

×
[

ψj1(0) ψj2(0)
ψj3(0) ψj4(0)

][Cp
j

Dp
j

]
(40)

ψj1(z) = sin(λjz) +
∞

∑
n=1

δjn1ζ1
jn(z) (41)

ψj2(z) = cos(λjz) +
∞

∑
n=1

δjn2ζ1
jn(z) (42)

ψj3(z) = Gp∗
j

[
λj cos(λjz) +

∞

∑
n=1

δjn1ζ2
jn(z)

]
(43)

ψj4(z) = Gp∗
j

[
−λj sin(λjz) +

∞

∑
n=1

δjn2ζ2
jn(z)

]
(44)

ζ1
jn(z) = ks

jn sin(β jnz + ϕjn) ·K2

(
κjnr1

)
(45)

ζ2
jn(z) = ks

jnβ jn cos(β jnz + ϕjn) ·K2

(
κjnr1

)
(46)

Gp∗
j = Gp

j Ip
j + η

p
j Ip

j s (47)

Similarly, the coefficient transform relations between the embedded and the extending
pile segments can be expressed as
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[
Cp

m
Dp

m

]
=

[
sin(λmlm) cos(λmlm)

Gp∗
m λm cos(λmlm) −Gp∗

m λm sin(λmlm)

]−1

×
[

ψm−1,1(0) ψm−1,2(0)
ψm−1,3(0) ψm−1,4(0)

][
Cp

m−1
Dp

m−1

]
(48)

The continuous stress conditions at the location of the pile side impulse can be
written as[

Cp
m+1

Dp
m+1

]
=

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1

×
[

0 1
Gp∗

m λm 0

][
Cp

m
Dp

m

]
+

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1[
0

T(ω)

] (49)

where T(ω) = T
π2−T2ω2 (1 + e−iωT) represents the half-sine harmonic impulse acted on the

pile shaft in the frequency domain. Combing the boundary conditions at the pile top and
end, one obtains

Cp
1

Dp
1
= −

ψ1,2(lj)

ψ1,1(lj)
(50)

Cp
m+1

Dp
m+1

= − kT + cTs
Gp∗

m+1λm+1
(51)

The deformation and stress at the interfaces of different pile segments are continuous
so that [

Cp
m+1

Dp
m+1

]
=

[
χ1 χ2
χ3 χ4

][
Cp

1
Dp

1

]
+

[
µ1
µ2

]
(52)

where the matrices
[

χ1 χ2
χ3 χ4

]
and

[
µ1
µ2

]
can be derived from

[
χ1 χ2
χ3 χ4

]
=

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1

×
[

0 1
Gp∗

m λm 0

][
sin(λmlm) cos(λmlm)

Gp∗
m λm cos(λmlm) −Gp∗

m λm sin(λmlm)

]−1

×
[

ψm−1,1(0) ψm−1,2(0)
ψm−1,3(0) ψm−1,4(0)

]
. . . . . .

[
ψ3,1(lj+1) ψ3,2(lj+1)
ψ3,3(lj+1) ψ3,4(lj+1)

]−1

×
[

ψ2,1(0) ψ2,2(0)
ψ2,3(0) ψ2,4(0)

][
ψ2,1(lj+1) ψ2,2(lj+1)
ψ2,3(lj+1) ψ2,4(lj+1)

]−1

×
[

ψ1,1(0) ψ1,2(0)
ψ1,3(0) ψ1,4(0)

]
(53)

[
µ1
µ2

]
=

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1[
0

T(ω)

]
(54)

Equation (52) can be further simplified to

Cp
m+1 = χ1Cp

1 + χ2Dp
1 + µ1 (55)

Dp
m+1 = χ3Cp

1 + χ4Dp
1 + µ2 (56)

in which,

Cp
1 =

Gp∗
m+1λm+1µ1 + (kT + cTs)µ2[

Gp∗
m+1λm+1χ2 + (kT + cTs)χ4

]ψ1,1(lj)

ψ1,2(lj)
−
[

Gp∗
m+1λm+1χ1 + (kT + cTs)χ3

] (57)

Dp
1 =

Gp∗
m+1λm+1µ1 + (kT + cTs)µ2[

Gp∗
m+1λm+1χ1 + (kT + cTs)χ3

]ψ1,2(lj)

ψ1,1(lj)
−
[

Gp∗
m+1λm+1χ2 + (kT + cTs)χ4

] (58)
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Cp
m+1 =

[
χ2 − χ1

ψ1,2(lj)

ψ1,1(lj)

]
Dp

1 + µ1 (59)

Dp
m+1 =

[
χ4 − χ3

ψ1,2(lj)

ψ1,1(lj)

]
Dp

1 + µ2 (60)

Then, the undetermined coefficients of the near-ground pile segment can be acquired
through the inverse transfer function as

[
Cp

m
Dp

m

]
=

[
0 1

Gp∗
m λm 0

]−1[ sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]
×
[

Cp
m+1

Dp
m+1

]
−
[

0 1
Gp∗

m λm 0

]−1[ 0
T(ω)

] (61)

The twist angle and velocity response of the near-ground pile segment can be ob-
tained as

φ
p
m(z, s) = Cp

m sin(λmz) + Dp
m cos(λmz) (62)

Vp
m(z, t) =

1
2π

∫ +∞

−∞
φ

p
m(z, s) · s · eiωtdω (63)

5. Model Verification

To verify the correctness of the proposed model, the results calculated from the present
solution are compared with those derived from the TLST theory aimed at the newly piled
foundation and those computed from the finite element method (FEM). The soil-pile
parameters utilized in this section are presented in Tables 1 and 2.

Table 1. Soil parameters utilized for model verification and parametric studies.

Density Young’s Modulus Poisson’s Ratio Shear Modulus

1800 kg/m3 12 MPa 0.3 4.6 MPa

Table 2. Default pile parameters utilized for model verification and parametric studies.

Density Young’s
Modulus

Poisson’s
Ratio

Shear
Modulus Length Radius

2500 kg/m3 24 GPa 0.2 10 GPa 10 m 0.5 m

5.1. Comparisons with the TLIST Signals of Newly Piled Foundations

As mentioned, the classic TLST theory is established for newly piled foundations.
Consequently, it is only capable of simulating the specific testing case in which the incident
wave is input at the pile head. Unlike the newly piled foundations, the selections of incident
wave input and signal receiving locations can be diverse for the testing of existing high-pile
foundations. he and hr are defined as the distances from the incident wave input location
and the signal receiving location to the pile head. By adopting the soil and pile parameters
in Tables 1 and 2, the present solution is compared with the classic TLST theory established
in Ref. [28]. The length of the fictitious soil pile is set as zero to simulate an end-bearing
condition. As shown in Figure 2, the reflection of the upward wave at the pile head would
result in an inverse wave signal after the incident wave. Further, as the incident wave is
input more away from the pile head, the time intervals between the incident wave and
the reflection of the upward wave would increase. Once the incident wave is input close
enough to the pile head, the incident wave and the reflection of the upward wave will
combine into one signal. It is also noticed that the reflection at the pile end in the newly
piled foundation signal would always match the second reflection of the downward wave
in the existing foundation signal, as long as the sensors are installed in the same place as
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the input of the incident wave. This is because the distance traveled by the strain wave at
this time is exactly equal to twice the length of the pile, as the reflection at the pile end in
the newly piled foundation signal does.
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5.2. Comparisons with the FEM Results

To verify the accuracy of the proposed solution in simulating the simultaneously prop-
agating upward and downward strain waves, the results calculated from the present model
are compared with those computed from FEM. The finite element model is established and
solved using Abaqus Explicit solver and C3D8R is utilized as the elements for both the soil
and pile, the mesh of which is depicted in Figure 3.
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As shown in Figure 4, the results derived from the present solution show good
agreement with those calculated from the FEM, especially for the occurrence time of each
reflection. However, there can be seen some deviations in the amplitudes of the reflected
signal, mainly because of more significant strain wave energy dissipation in the 3D FEM
model than in the present solution. In addition, by inputting the incident wave as close
to the pile head as possible, the incident wave and the reflection of the upward wave at
the pile head are more likely to be identified as one signal so that the difficulties of signal
interpretation can be considerably reduced.



Sensors 2022, 22, 5330 11 of 15Sensors 2022, 22, x FOR PEER REVIEW 12 of 16 
 

 

  
Figure 4. Comparisons of velocity response between present solution and FEM results: (a) e 1mh =
; (b) e 2mh = . 

6. Parametric Studies 
6.1. Layouts of the Input and Signal Receiving Locations 

Based on the above analysis, a preliminary conclusion is drawn: by inputting the in-
cident wave as close to the pile head as possible, the difficulty in signal identification and 
interpretation can be reduced. This section investigates the influence of the layouts at the 
input and signal receiving locations on the velocity response, aiming to find the optimal 
layouts for the TLSTs. In order to simulate the test for floating piles, the length of the 
fictitious soil pile is set as 5 m. 

As shown in Figure 5, once the sensors are placed where the incident wave is applied, 
the number of the reflected signals is minimized, making the signal spectrum clearer. In 
addition, the time intervals between the incident wave and the reflection of the upward 
wave collected by the sensors installed above the input position of the incident wave 
would not vary with the changes in the input position. In contrast, the time intervals col-
lected by the sensors installed below the input position would increase when the input 
position moves away from the pile head. For cases where inputting the incident wave 
close to the pile head is difficult, installing the sensors close to the pile head can be an 
alternative. However, the optimal layouts of the TLST are inputting the incident wave 
close to the pile head and installing the sensors close to the pile head as well. 

 

0.000 0.003 0.006 0.009 0.012
-1.0

-0.5

0.0

0.5

1.0

a

First pile end reflected signal:

First pile head reflected signal:

Second pile end reflected signal:

Second pile head reflected signal:

he=1m

t/s

N
or

m
al

iz
ed

 V
el

oc
ity

 R
es

po
ns

e

 FEM results, hr=1m
 Present solution, hr=1m
 FEM results, hr=2m
 Present solution, hr=2m

0.000 0.003 0.006 0.009 0.012
-1.0

-0.5

0.0

0.5

1.0
First pile end reflected signal:

First pile head reflected signal:

Second pile end reflected signal:

Second pile head reflected signal:

b

he=2m

t/s

N
or

m
al

iz
ed

 V
el

oc
ity

 R
es

po
ns

e

 FEM results, hr=2m
 Present solution, hr=2m
 FEM results, hr=3m
 Present solution, hr=3m
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6. Parametric Studies
6.1. Layouts of the Input and Signal Receiving Locations

Based on the above analysis, a preliminary conclusion is drawn: by inputting the
incident wave as close to the pile head as possible, the difficulty in signal identification
and interpretation can be reduced. This section investigates the influence of the layouts
at the input and signal receiving locations on the velocity response, aiming to find the
optimal layouts for the TLSTs. In order to simulate the test for floating piles, the length of
the fictitious soil pile is set as 5 m.

As shown in Figure 5, once the sensors are placed where the incident wave is applied,
the number of the reflected signals is minimized, making the signal spectrum clearer. In
addition, the time intervals between the incident wave and the reflection of the upward
wave collected by the sensors installed above the input position of the incident wave would
not vary with the changes in the input position. In contrast, the time intervals collected
by the sensors installed below the input position would increase when the input position
moves away from the pile head. For cases where inputting the incident wave close to
the pile head is difficult, installing the sensors close to the pile head can be an alternative.
However, the optimal layouts of the TLST are inputting the incident wave close to the pile
head and installing the sensors close to the pile head as well.
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6.2. Identification of Defects from the TLST Spectrums

Defect identification is one of the major tasks for the integrity examination of the
existing pile foundations. Further, the neckings and concrete segregations are the two most
commonly found defects in practice. This section investigates the identification ability of
these two defects utilizing the TLSTs.

The results shown in Figures 6 and 7 again justified the rationality of the optimal
layouts of the TLSTs proposed in the above paragraphs. As shown in Figures 6a and 7a,
both the necking and concrete segregation defects can be clearly identified, as long as the
incident wave is input close to the pile head and the sensors are installed close to the pile
head as well. However, once the incident wave is input far from the pile head, identifying
the reflected signals at the defect turns out to be extremely difficult because the reflected
signals can no longer be identified as one signal but as several separate signals reflecting all
the time, making the signal spectrum a mess. In addition, the concrete segregation defects
would alter the pile body’s wave velocity so that each reflected signal’s occurrence time
would vary, while the reflected signals caused by necking defects would not.
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Figure 6. Identification of necking defects through TLSIT: (a) he = 0.5 m; (b) he = 2.0 m.
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Figure 7. Identification of concrete segregation through TLSIT: (a) he = 0.5 m; (b) he = 2.0 m.

7. Conclusions

This paper establishes a rigorous mathematical model to simulate the strain wave
propagation during the torsional low-strain test (TLST) for existing high-pile foundations.
In the proposed model, the simultaneous propagation of the upward and downward strain
waves inside the pile body is considered. The parametric analysis reveals the optimal
layouts of the TLSTs for the existing high-pile foundation. The main conclusions can be
drawn as follows:

1. By placing the sensors where the incident wave is applied, the number of reflected
signals can be minimized to acquire a more precise signal spectrum.

2. The optimal layouts of the TLST are inputting the incident wave close to the pile head
and installing the sensors close to the pile head as well. By doing this, the defects can
be more easily identified from the signal spectrum.

3. The existence of concrete segregation defects would influence the occurrence time of
each reflected signal, while the necking defects would not. Hence, this is a helpful tip
for distinguishing the concrete segregation defects (decrease in strength of pile body
material) from the necking defects.
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