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Abstract: Semantic segmentation for accurate visual perception is a critical task in computer vision.
In principle, the automatic classification of dynamic visual scenes using predefined object classes remains
unresolved. The challenging problems of learning deep convolution neural networks, specifically ResNet-
based DeepLabV3+ (the most recent version), are threefold. The problems arise due to (1) biased centric
exploitations of filter masks, (2) lower representational power of residual networks due to identity
shortcuts, and (3) a loss of spatial relationship by using per-pixel primitives. To solve these problems, we
present a proficient approach based on DeepLabV3+, along with an added evaluation metric, namely,
Unified DeepLabV3+ and S3core, respectively. The presented unified version reduced the effect of
biased exploitations via additional dilated convolution layers with customized dilation rates. We further
tackled the problem of representational power by introducing non-linear group normalization shortcuts
to solve the focused problem of semi-dark images. Meanwhile, to keep track of the spatial relationships
in terms of the global and local contexts, geometrically bunched pixel cues were used. We accumulated
all the proposed variants of DeepLabV3+ to propose Unified DeepLabV3+ for accurate visual decisions.
Finally, the proposed S3core evaluation metric was based on the weighted combination of three different
accuracy measures, i.e., the pixel accuracy, IoU (intersection over union), and Mean BFScore, as robust
identification criteria. Extensive experimental analysis performed over a CamVid dataset confirmed
the applicability of the proposed solution for autonomous vehicles and robotics for outdoor settings.
The experimental analysis showed that the proposed Unified DeepLabV3+ outperformed DeepLabV3+
by a margin of 3% in terms of the class-wise pixel accuracy, along with a higher S3core, depicting the
effectiveness of the proposed approach.

Keywords: semantic segmentation; super-pixels; atrous convolutions; high-resolution images;
urban environments

1. Introduction

The scene comprehension of urban environments is the most crucial component of the
autonomous vehicle industry. Since the comprehension and understanding of visual envi-
ronments include dynamic visual environments, the deployment of scene comprehension
demands the optimal discovery of all the objects present in the incoming visual scene, even if
the incoming image is captured in low-light conditions. The rapid advancements in the do-
main of the deep learning (DL) paradigm illustrate promising solutions that focus on different
problem domains. The methods proposed in the DL paradigm present satisfactory perfor-
mance for the classification, detection, and segmentation of normal (bright) images. However,
these methods display performance degradation when it comes to semi-dark imagery [1,2].
Furthermore, for visual image comprehension in an urban setting, the automated solution
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will face diversity in terms of lightning conditions. For scene comprehension in autonomous
vehicles, a widely used alternative is semantic segmentation. Semantic segmentation results
in a pixel-wise understanding of a visual image. Each pixel of an image receives an object
label, which then helps to create an object mask that presents the global context of the image,
and hence, the autonomous application (vehicle or robot) can make an informed decision.
Recent research showed that DL-based semantic segmentations can be successfully employed
for remote sensing imagery, including radar images [3] and high-resolution (HR) images from
indoor, outdoor, agriculture, and industrial settings [4-6]. By leveraging the advancements of
deep neural networks (DNNs) in the DL paradigm, more focused solutions can be proposed to
deal with the diversity (including semi-dark imagery) involved in visual scene understanding.
For the sematic segmentation of semi-dark imagery, dark pixel values pose great challenges
to DNNSs for the classification of HR images. Traditional fully convolution neural networks
identify the object class to a certain extent but cannot handle variable image sizes and suffer
from the retainment of the spatial component of a classified pixel [7]. To deal with these
problems, a different architectural mechanism was presented, namely, an encoder-decoder
approach [8]. This approach tackles problems associated with earlier CNNs that use an
encoder, which encapsulates the image information by extracting image features. This feature
extraction is accomplished by using any pretrained network. The encoder is then followed by
a decoder, which projects the discriminative features (with a low resolution) coming from the
encoder over a high-resolution pixel mask [9]. Over time, a lot of different variations of the
encoder—decoder architecture were presented [10-12]. Encoder—decoders were widely used
for automated scene comprehension. Specifically, the DeepLab family has evolved rapidly
and has made innovative achievements [10,13,14]. However, even with the recent develop-
ments of DeepLab, the optimal semantic segmentation of semi-dark images remains an open
area of research. The functionality of the state-of-the-art semantic segmentation modules
is constrained by several factors. First, restricted multiscale feature extraction is witnessed
due to the usage of biased centric exploitations of the receptive field. The receptive field is
the portion of the image that is under consideration by the DCNN for the feature extraction.
Centric exploitation results in a greater weightage being assigned to the center pixels and less
weightage assigned to the corner pixels for the calculation of output features. This implies
that the multiscale information residing in the corners of the receptive field is likely to be
skipped by the network. Furthermore, the pretrained network used for an encoder, such as
ResNet [12], results in reduced representational power and suffers from network training
problems. These problems are attributed to the presence of identity shortcuts in the DCNN
and the occurrence of an internal covariate shift during the training phase [15]. Finally, the loss
of spatial relationships is also observed as the pixels are classified at the pixel level by using
per-pixel primitives, due to which the relationship between the global and local context of the
image is lost. Hence, all these problems contribute to inaccurate semantic segmentation of
semi-dark imagery. In summary, the existing DL pool of knowledge is limited in the following
aspects regarding the semantic segmentation of semi-dark imagery in outdoor settings:

e  The loss of spatial relationships by using per-pixel primitives, resulting in poorly
detected object classes over boundary pixels.

e  The limited representational power due to the use of identity shortcuts and the occur-
rence of an internal covariant shift during the training of DNNS.

e  The constrained multiscale feature extraction caused by biased centric exploitations.

Although the encoder-decoder architectures have brought promising progress, the
existing state-of-the-art methods fail to produce exact pixel-wise classification in semi-dark
image scenarios. All the above-mentioned problems contribute to an inherent loss of
information. On the other hand, the increasing demand for optimal automated solutions
points to the critical need for generalized solutions in terms of lightning conditions (dark,
semi-dark, and bright). To overcome the effect of all the stated problems regarding semi-
dark images, we proposed a combined approach using ML-based bunched pixel primitives
with enhanced DeepLabV3+ for semantic segmentation. Alongside this, we also proposed
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an accurate representative measure for accuracy computation. Overall, the presented
research produced the following contributions:

1. Proposal of a novel version of DeepLabV 3+ for semi-dark imagery—Unified DeepLabV3+

An enhanced version of DeepLabV3+ that provides a unified solution for handling
the challenges associated with the comprehension of semi-dark imagery is presented.

Geometrical pixel abstraction as the input: To keep the spatial relationship intact, the im-
age is first passed through a machine learning (ML)-based preprocessor to highlight the
local pixel structure based on the color and proximity. This generates a high level of pixel
abstraction to retain the local spatial information, which in turn helps to map the local
context (local pixel structure) to the global context of the image to correctly identify the
object class in the final semantic segmentation map.

Encoder enhancement: To increase the representational power of the base DeepLab
version, the ResNet encoder was updated. The enhancement was focused on boosting
the network’s feature extraction by replacing identity shortcuts with non-linear (ReLU)
shortcuts. Moreover, to deal with the network training problem, grouped normalization
layers are followed by non-linear shortcuts. The usage of group normalization provides
better generalization, solving the problem of the internal covariate shift that occurs during
the network-training phase.

Decoder enhancement: To induce neutrality for all the pixels of the receptive field, dilated
convolution layers are usually stacked, which reduces the effect of centric exploitations.
Dilated convolutions are also termed atrous spatial pyramid pooling in DeepLabV3+.
Following the same idea of pyramid pooling by means of hole (zero) insertion in the
convolution filter, we present customized dilation rates (which decide the rate/number of
zeros) for semi-dark images. The customized dilation rates are carefully chosen based on the
rationale of extracting as much information as possible for optimal semantic segmentation
in terms of the resulting class-wise accuracy.

2. Proposal of a novel evaluation metric—S3core

The existing evaluation metric relating to the accurate identification of network se-
mantic segmentation does not provide a detailed understanding of the presented visual
scene. The state-of-the-art evaluation metric presents incomplete representation since it
produces inaccurate pixel class prediction. Thus, we present a balanced evaluation metric
that can be used as a representative metric for semantic segmentation, providing a robust
evaluation for all scenarios.

The following sections of this article are organized as follows: Section 2 introduces the
feature-encoder-based methods, the increased resolution of the feature-encoder-based meth-
ods closely related to the presented work, and these methods’ relevance to the applicability
for semi-dark imagery. Then, we comprehensively describe our proposed encoder—-decoder
architecture in Section 3. In Section 4, we present the experimental setup, evaluation met-
rics, and the discussion of the creation of robust evaluation criteria. Same section presents
the results of extensive experimental analysis and comparison with other state-of-the-art
methods. Section 5 discusses the major findings and pertinence of the presented research
for real-world applications. Finally, Section 6 concludes the research and points out the
future directions.

2. Related Work

Semantic segmentation is also known as a dense prediction. Semantic segmenta-
tion is considered a dense prediction because all the pixels of the image obtain a certain
level that creates a resultant pixel mask that highlights the precise object boundaries.
The difference between semantic segmentation and instance segmentation is the addition of
object semantics in terms of object labels (car, tree, bus, etc.) and object instance semantics in
terms of the occurrence of a certain object (carl, car2, ... ,busl, bus2, ..., etc.) [8]. Figure 1
shows an image and its subsequent semantic segmentation.
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Figure 1. Semantic Segmentation Demonstration (a) Actual Image (b) Semantic Segmentation
Ground-truth.

Figure 1 shows that the prediction labels are inferred for each pixel, hence this makes
it a dense prediction. For semantic segmentation, different methods are available in the DL
domain. We focused on two classes of feature encoders, both of which show outstanding
progress with comprehensive results and ease of applicability, as well as increasing the
resolution of feature-encoder-based methods.

2.1. Feature-Encoder-Based Methods

The widely used DL networks that implement feature-encoder-based architectures are
VGG [9] and ResNet [12]. The base mechanism employs stacked convolution layers, ReLU,
and pooling layers to extract features from the image. The currently used networks take
inspiration from these base state-of-the-art encoder networks for presenting their variants by
performing transfer learning or training their networks with additional architectural changes.

VGG contributes to a network architecture by incrementing the convolutional layers,
which increases the depth of a network. VGG can take only fixed-sized images due to the
presence of fully connected layers. Moreover, it uses the subtraction of RGB values and
suffers from centric exploitations. Since all the pixel values in semi-dark scenarios reach
maximum values, the mean calculation ends up with a loss of information by providing
the same numeric value for the local pixels. Furthermore, the implemented design rules
preserve complexity per layer [16]. In turn, all these constraints result in the poor localiza-
tion of objects in terms of misclassified boundary pixels. ResNet contributes in terms of
depth and identity connections from initial network layers to the later layer to reduce the
spatial localization problem of the object. However, the invariance of the spatial transfor-
mation still leads to a loss of fine details of the visual scene. ResNet presents some other
challenges, including limited representational power due to the usage of identity shortcuts
and the occurrence of an internal covariant shift [15,17]. These challenges further increase
the possibility of lower network performance for the focused image problem. Moreover,
neither mentioned network was tested for semi-dark images exclusively, implying worse
semantic segmentation results for such visual scenarios.

2.2. Increased Resolution of Feature-Encoder-Based Methods

To deal with the problems of feature encoder methods, increased resolution of feature-
encoder-based methods has been proposed in the literature. The enhancement is suggested
to enhance the spatial resolution by incorporating different ML and DL concepts.

First, enhancement is used as a step to deal with the problem associated with the field of
view (FoV) to obtain high-resolution maps. To increase the FoV and to deal with the problem
of centric exploitations, ‘Atrous convolutions” are used. An atrous convolution involves the
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addition of holes/zeros in the convolution filter. Since there are holes in the filter, the focus is
diverted from the center pixels to there being equal weightage for all the pixels. The key is to
stack atrous convolution layers and not to increase the network’s memory strain. This concept
is widely used in the DeepLab network family (further critically analyzed in Section 2.3),
where the DeepLab networks use the concept of an encoder-decoder architecture. The encoder
takes the input image, generates a high-dimensional feature vector, and aggregates them at
multiple levels. The decoder network generates a semantic segmentation mask by upsampling
the feature vector generated by the encoder. For the encoder, the DeepLab networks have used
different existing networks, including VGG and ResNet. The best performance was obtained
with a ResNet-based encoder, followed by a decoder that incorporated atrous convolutions
for upsampling [10,13,14]. This resulted in feature maps at higher sampling rates. Another
enhancement is the so-called ‘Spatial pyramid Pooling’, where the idea is to pool the network
together with atrous convolutions of different rates, such as 6, 12, and 18, since the rate
controls the number of holes and the filter rates are chosen in the pattern of a pyramid to
extract as much information as possible. However, the DeepLab family also fails to deal
with low-contrast or semi-dark images. Finally, the last enhancement is achieved by using
ML concepts or graphical probabilistic methods. A lot of methods were presented using
super-pixel creation methods [18] for preprocessing or conditional random fields (CRFs)
for post-processing [10,18-20]. The CRFs are used in a fully connected manner, which again
imposes architectural constraints that require using same-sized images. However, they provide
better object boundary localization with an additional network overhead. Furthermore, the
super-pixel methods are used to pool the boundary information as an extra feature for the
network, which increases the network overhead.

Table 1 presents a critical analysis of the closely related research that further supports
the rationale and need for a generalized semantic segmentation solution for all scenarios
(including semi-dark images).

Table 1. Comparative Analysis of Semi-dark Image-Centric Semantic Segmentation.

Deep Learning

Original

Testing Semi-Dark

Architecture Architecture Benchmark Image Handling Observations
ILSVRC-2012 Poor localization due to the final DCNN layer [10]
VGG [9] AlexNet [21] Pascal VOC [22] X Does not use any unsupervised pre-training
MS Coco [23] scheme to aid performance [21]
ILSVRC-2012 Invariance to spatial transformations results in the
ResNet [12] VGG ] Pascal VOC [22] x loss of fine details [10]
MS Coco [23] Limited representational power due to the usage of
identity shortcuts [15,17]
Pascal VOC [22] Fails to extract fine-grained details in semi-dark
DeepLab [10] VGG [9] Cityscapes [24] X scenarios [10]
Fails to capture pixel information and results in
Cam Vid Dataset [25] coarse segmentation results.
SegNet [11] VGG [9] Sun RGB-D [26] v Peak performance is achieved in the presence of
handcrafted features [27]
Better accuracy than the previous version but still
Pascal VOC [22] cannot handle semi-dark images
DeepLabV2 [10] VGG ] MS Coco [23] X No preprocessing module is used for
Cityscapes [24] highlighting boundaries
Several different rates need to be further
DeepLabV3 [13] DeepLabV2 [10] Pascal VOC [22] X investigated, as the system still fails to handle

Cityscapes [24]

complex images
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Table 1. Cont.
Deep Learning Original Testing Semi-Dark .
Architecture Architecture Benchmark Image Handling Observations
. Attains better accuracy than the previous version;
) DeepLabV3 [13], Pascal VOC [22] however, it still fails to work for darker regions,
DeepLabV3+ [14] Rle:)sNet [12] Cityscapes [24] X complex images (congested with small objects of
different scales), and the rear views of objects [14]
. Trained and tested to generate a person’s body
ts, and fails t ti ios of difficult
Attention Model [6] Super-pixel creation Pascal VOC [22] X Eil;nsasr;,os:; ?6]0 Sepmentin seenarios of AR
(SLIC) DeepLab [10] MS Coco [23] . Uses a preprocessing module for
highlighting boundaries
. Uses CRFs as post-processing to aid the
c Super-Pixel and Cityscapes [24] % gerformance accuracy [18] N e th .
RF-Based FCN [18] . resents promising research results that can be
extended to semi-dark images
. Super-pixel creation SIFT Flow dataset [29] ; ;
Super-Pixel-Based > . Focuses on the extraction of small details
II){ierarchical (treec/ clu;t{el;mg) Barcelosrl:a c}at:zljset [30] X . Pools the network with super-pixel
onviNe anfor: b d. inf ti
Network [25] (2-layer MLP) CRF background [31] oundaty miormation
Semi-Supervised . Incorporates super-pixel information to provide
Convolution Neural DeepLab-CRF [10] Pi/slcsa(l:VOCz[%Z 2] X better results
Network [32] oco [23] . No mention of performance for semi-dark images
. Fast RCNN for object detection
Higher-Order CRF . Parallel implementation of an object-detection
& in DNN FCN VGG [9] Pascal VOC [22] X CNN with CRF and a graph-based method for
super-pixel extraction can increase the complexity
. . Trained and tested in controlled road environments
Super-Pixel-Based . . No mention of semi-dark images
DCNN fo? Road VGG [9], ResNet [12] Cityscapes [24] X . Uses both ResNet and VGG, which increases the
Segmentation [33] memory consumption
Sug er-Pix elHa nd Simple fully convolution Pascal VOC [22] v ® Super-pixels are pooled in the
Lea;a::riltl]gaCI}\/IN neural network Sun RGB-D [26] network as extra information
. Pro: spatio-temporal data-driven pooling can
. receive multiple images and their correspondence
Spatio-Temporal CNN as input
P ?ata]—jl)&l\\]fﬁ]np 4] (No specifics written) Sun RGB-D [26] v . Uses prior super-pixels .
ooling . Unknown network base raises questions about the
generic applicability
Super-Pixel- and LFW-PL dataset [36], ) .
%RF_B a SEGNET-VGG16 [11], HELEN dataset [37] % ¢ Complex architecture with
DCNNaF%eS] DeepLabV2-ResNet [10] (facial images) different base components

Pascal VOC [22]

X—Absence of Semi-dark image handling, v/'— Presence of Semi-dark image Handling.

The critical analysis presented in Table 1 indicates the need for DL mechanisms that
hold for semi-dark images as well. The existing mechanisms solely focus on the design of
deeper structures, which further increase the processing load, along with other complexities.
Some of the solutions point to the usage of pre- and post-processing modules to sharpen the
boundary pixels only, which is only one aspect of handling semi-dark images. Finally, only
a few studies mentioned the occurrence of semi-dark images in the training and testing
protocols. Thus, those methods cannot be generalized without further extended studies.
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2.3. Critical Analysis of DeepLab Versions

DeepLab semantic segmentation networks are state-of-the-art models proposed by the
Google research group. This model follows the increased-resolution feature-encoding-methods
flow. The dense predictions are accomplished using atrous convolutions for the upsampling.

1. DeepLabV1l

Chen et al. [10] proposed a semantic segmentation network using VGG-16 as the
backbone network, and on top of the VGG feature map, probabilistic graphical methods,
particularly conditional random fields (CRFs), are used. However, the network performance
is not high enough since some failure modes were reported regarding dynamic light
conditions and occlusions. Another study claimed that the proposed methods failed to
integrate the features of CNN with CRF, limiting its overall functionality, though they could
be efficiently integrated using architectural schemes presented in [19].

2. DeepLabV2

DeepLab network V2 incorporates spatial pyramid pooling into the previous architec-
ture for better semantic segmentation accuracy. This version also replaces VGG-16 with
ResNet [12] to tackle features with reduced spatial resolution caused by upsampling and
downsampling; meanwhile, the atrous algorithm was used so that the DCNN works in
the fully convolutional mode. The atrous algorithm upsamples the filters in subsequent
convolutional layers, which results in feature maps at higher sampling rates by means of
the insertion of holes between non-zero taps. The proposed version of the model still fails
to capture the details of the object boundaries if they are sensitive to some of the results.
DeepLabV2 uses atrous convolution in a post hoc manner; however, it is believed that
integrating atrous convolution into the encoder would also affect the overall training by re-
ducing the computational overhead. Moreover, the serial application of atrous convolution,
as in [38], is expected to fetch accurate object semantic classes.

3. DeepLabV3

This version continues to use atrous convolution to provide a better receptive field.
The enhancement is in terms of cascading the extra layers to include the global context
by pooling the image-level features. The proposed network still fails to generate optimal
results; as such, one aspect of necessary further investigation is performance analysis over
different dilation rates. The study reported some of the misclassified results of the network
where sofa/chair, dining table/chair, and the rear view of the objects were incorrectly
classified in dynamic lighting conditions [13].

4.  DeepLabV3+

The latest version of DeepLab ensures the fetching of rich contextual features, along with
sharp object boundaries [14]. The network architecture still utilizes the concepts of encoder—
decoder methods. The enhancement is in terms of bilinear upsampling of the encoder output,
which is from DeepLabV3 in this case. The upsampling is performed using an upsampling
factor value of 4 and then concatenating it with the low-level image features from the network
base. The network performs better than the earlier versions; however, it still fails for some
complex scenarios (congested with small objects of different scales), the rear views of objects,
and for dynamic lighting conditions [14]. Moreover, the interpolation method can be further
changed to bicubic interpolation to fetch most of the visual image information.

2.4. Conclusive Deductions

Indeed, every new version of DCNN has brought about better results in terms of
accuracy. However, the enhancements focus on bringing deeper structures, which is
acceptable if the results hold for all scenarios. However, many of the surveyed studies
explicitly declared semi-dark images as a failure mode for these works. The improvements
were made using unsupervised methods; however, the internal network problems still
exist, such as slow training, covariate shifts, and the biased exploitation of the receptive
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field. These issues can be tackled by using appropriate atrous convolution and using
appropriate normalization techniques within the DCNN as a part of a focused solution
for semi-dark images. Inspired by the DeepLab architecture’s base rationale of controlling
and neutralizing the exploitation throughout the image pixels (receptive field) by using
atrous convolutions, Unified DeepLab was formulated. We proposed to extend this concept
by presenting customized atrous rates, along with appropriate normalization techniques
and non-linear connections to alleviate the effect of a covariate shift. Moreover, it is also
recommended to use preprocessing for the creation of super-pixels so that local and global
contexts are correlated to create the final segmentation mask.

2.5. Preliminary Hypothesis Validation

Based on the literary analysis, it was seen that most of the existing semantic segmenta-
tion solutions reported semi-dark images as the operational failure mode. Moreover, the
conclusion of an extensive literature review resulted in hypothesis formulation based on
our understanding of the problem at hand. It was hypothesized that lower image visibility
increases the possibility of inaccurate semantic segmentation. To confirm this hypothesis,
we trained the existing DeepLabV3+ version with the same data that was used for the
benchmarking of the proposed solution and undertook related detailed qualitative analysis
using DeepLabV3+ implementation in MATLAB. The results for semi-dark images were
recorded using the addition and subtraction of offset values. These offset values served the
purpose of providing image content visibility by increasing or decreasing the brightness.
The examined images were processed to increase or decrease the brightness and then used
for network training and testing, where all brightness value networks were independently
trained and tested. The final performance results in terms of accuracy were then compiled
and presented as graphical visualization. The final analysis results are shown in Figure 2.

Hypothesis Validation Image Content Visibilty

=3
=3

o
=]

\I
\
|

f

Semantic Segmentation Accuracy
- ow s ow
(=3 [=} [=] (=} (=3

=

Offset-30 Offset-25 Offset 20 Offset-10 Semidark Offset10 Offset20 Offset25 Offset30
Image

Luminance

=@==0016E5_06750 ==@==0001TP_007200 0001TP_007230 ==@=0001TP_006930 ==8==0001TP_006990 0001TP_007470

Figure 2. Hypothesis Validation.

Figure 2 shows that all the images with decreased brightness resulted in poor seman-
tic segmentation results using DeepLabV3+. Up to an approximately 50-60% semantic
segmentation accuracy was achieved for an offset value of minus 30 (Offset-30). However,
the accuracy trend increased for all images with increased brightness. For an offset value
of plus 30, the accuracy reached up to 80% for test case 6 (image: 001TP_007470), whose
accuracy with a minus 30 offset was 60%.

Since the performance was substantially affected by the visibility of the image content,
we further proposed a full-fledged framework to check the visibility of image content and
then accordingly process the presented image for semantic segmentation. The framework
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was composed of three different layers, one of which identified the visibility of the image by
using the RPLC (relative perceived luminance classification) algorithm [1], and the images
were accordingly selected and propagated ahead for further processing. If RPLC classified
any image as a semi-dark image, then it was passed to the proposed Unified DeepLab;
otherwise, it was passed to the existing workflow based on DeepLabV3+.

3. Materials and Methods
3.1. Overview of Proposed Architecture

As stated in Section 2.3, the existing DCNNSs used for the semantic segmentation provides
constrained functionality for handling semi-dark images. These functionality limitations are
attributed to several problems in the existing workflows. First, centric exploitations of the
receptive field cause not all pixels of the image to contribute equally to the final calculated
segmentation map. Second, the residual connections, particularly identity connections, result
in an internal covariate shift, which results in a loss of representational power. Third, neigh-
boring pixels have a higher probability of having the same class label due to holding closely
related information. However, the classes of the pixels are still calculated independently
based on per-pixel primitives. Finally, the backbone network can also increase or decrease the
performance in terms of accurate segmentations and increased or decreased network loads.
These problems in turn generate poor semantically segmented masks for semi-dark images.
To solve these issues, the proposed framework consists of four components: a customized
pyramid module for semi-dark images to reduce the effect of centric exploitations. The cus-
tomized atrous convolution layers are selected in the form of a pyramid structure to extract as
much information as possible without increasing the network’s processing load. Non-linear
shortcuts are used for the encoder since the backbone network ResNet uses identity shortcuts,
resulting in limited representational power. The identity shortcuts are replaced by non-linear
ReLU connections and group normalization is used to reduce the effect of internal covariate
shifts while training the network. A MobileNet encoder is used as a lightweight model to
provide concise depth-wise separable convolutions. Local context segmentation is used to
keep track of the local and global context of the image pixels by grouping neighborhood pixels
based on certain criteria. Figure 3 illustrates the organization and flow of each component.
In the first step, we used local context segmentation as a preprocessing layer for creating
super-pixels, where the super-pixeled image used for the experiments was processed using
5000 super-pixels. In the second step, the locally grouped pixels were passed to the proposed
parallel DCNN for semantic segmentation. Finally, statistical calculations were performed
over the resultant map to create a high-definition accurate semantic segmentation map based
on the parallel processing.

Rationale for Proposing an Ensemble Approach

The existing semantic segmentation solutions provide constrained functionality due
to several intrinsic problems of convolutional neural networks. Therefore, in this research
and based on the literary analysis, we first identified the problems that hinder the fetching
of the optimal semantic class of an image pixel. Based on the identified problems, this
research proposed an ensemble-based approach as a unified solution to tackle all the
identified problems. Although the ensemble approach is believed to produce complexity,
the proposed solution produces better semantic segmentation results for semi-dark images
by keeping a good balance between complexity and accuracy. The introduction of non-
linear shortcuts in the ResNet encoder was chosen to decrease the effect of a covariate shift
arising during the training phase. Second, the MobileNet encoder was chosen to fetch
smaller details of the visual scene due to the presence of greater network layers, which led
to the attainment of richer image information. Finally, a customized decoder was proposed
for the creation of image understanding at multiple spatial levels (lower to higher) by using
customized atrous rates specifically for semi-dark images.

We further introduce the details of each component of the proposed framework in the
following subsections.
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Figure 3. Proposed Parallel DCNN for Semi-dark Images.

3.2. Encoder Enhancement—Non-Linear Shortcuts

In encoder-decoder architectures, encoders play a crucial role in extracting the features
from a visual image. One of the encoders that is widely used in the DeepLab architectures
is ResNet. ResNet is known for its identity shortcuts in DCCNs. These shortcuts basically
pool the information from the initial layers for the later layers to retain better spatial
information of the extracted features. However, problems related to representational power
persist. To solve this problem, non-linear shortcuts were proposed [15], along with a group
normalization layer [17] after the non-linear ReLU connections. Figure 4 shows the existing
ResNet connections, along with the updated ResNet layering arch, where the encoder was
named RGSNet (ReLU-Group Norm ResNet).

To improve the performance, identity shortcuts were proposed for the DCCNs.
Although the identity shortcuts improve the gradient stability, thus resulting in improved
performance, the representational power is reduced due to the occurrence of covariate shifts
during the network training. Due to this phenomenon, the network learns less during train-
ing. To find out the balance between representational power and gradient stability, along
with the residual shortcuts, nonlinear group normalization shortcuts were introduced. The
group normalization is better for non-linear shortcuts, as it does not require normalization
along the batch direction. Thus, it gives an advantage for lightweight memory demands
as opposed to batch normalization [39]. Following the architectural updates proposed
in [15], a non-linear ReL U activation function plus group normalization is employed for the
ResNet-based encoder, ultimately producing RGSNet. RGSNet normalizes the contribution
of extra gradient stability in the presence of non-linear connections by using group normal-
ization while involving minimal reengineering effort. The hyperparameter G (number of
groups) was set to 16 in our experiments, as in [17]. This connection can be mathematically
presented as

yr = h(x;) + F(x;, W) and x; 4 1 = f(y;) 1

Here, in Equation (1), F represents the residual block and W) represents the learnable
weights. x; and x; , 1 represent the inputs to layers / and I + 1, respectively, while & and f
represent the identity mapping function of each layer, respectively. This follows the direct
path of information propagation throughout the network.
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Figure 4. (a) ResNet with Identity shortcuts. (b) RGSNet (ReLU-Group Norm ResNet) with
non-linear connections.

3.3. MobileNetV2 Encoder

As the goal was to extract optimal information from the visual scene with high accuracy
while keeping the mathematical operations as low as possible, this same concept was used
for the implementation of the residual networks, such as ResNet. However, there exists
another architecture that is based on the integration of inverted residual connections and
ensures a lightweight nature for limited-memory applications. The problem with residual
networks is that they work using the wide — narrow — wide approach, focusing the
number of channels. These channels are compressed using a 1 x 1 convolution, followed
by a 3 x 3 convolution with fewer parameters, and followed by a 1 x 1 convolution to
again increase the number of channels. In contrast, MobileNet (specifically version 2)
works using a narrow — wide — narrow approach to limit the number of parameters
involved. MobileNetV2 accomplishes this task by widening the network using 1 x 1 a
convolution and afterward uses a 3 x 3 depth-wise convolution to reduce the number of
parameters involved. This entire scenario ensures accurate information extraction from
semi-dark images, as the other components of the parallel DCNN are built using less deep
network bases (ResNet18-depth18, no of parameters = 11.7 million). We used MobileNetV2
as the DeepLab encoder due to its lightweight nature with deeper and richer feature
extraction; it also provides features to deal with linear bottlenecks (using ReLU6 rather
than Simple ReLU) and inverted residual connections with a smaller number of parameters
to be handled with only one additional hyperparameter ¢, which is the expansion rate
of the channels and is set to a value of 6 (by default). For the semi-dark images, as the
objective was to retrieve as much information as possible, this can be achieved with deeper
networks. However, if we increase the number of layers in the network (such as by using
ResNet), it increases the overhead, providing overall slow training and testing. For this
reason, to benefit from the deep network and lightweight feature of MobileNet, it was
employed to increase the detailed information of the visual scene. Eventually, it was found
that incorporating MobileNetV2 with a depth of 53 (no. of parameters = 3.5 million) did not
increase the memory footprint by much compared to the deeper networks, e.g., ResNet-50
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with a depth of 50 (no. of parameters = 25.6 million) and ResNet-101 with a depth of 101
(no. of parameters = 44.6 million).

3.4. Decoder Enhancement—Customized Pyramid Module

The DeepLab network architecture family uses spatial pyramid pooling over the
receptive field to mitigate the effect of centric exploitations. The existing pyramid pooling
layers are created by inserting holes into the kernel to widen the receptive field; this
phenomenon is called atrous convolutions [14]. The idea is to apply the atrous convolutions
in parallel with different dilation rates, which controls the size of the filter. For the simple
convolutions, a 3-by-3 convolution filter has nine parameters and a resultant receptive
field of 3 by 3. However, when using dilated convolutions with a 3-by-3 convolution
filter and a dilation rate of 2, the resultant receptive field turns out to be of shape 5 by
5, thus we obtain a larger perspective for the feature being calculated. By choosing the
correct dilation rate and pooling a couple of atrous convolution layers, the effect of centric
exploitations is mitigated. Finally, each feature map obtained from the atrous convolution
is concatenated and propagated ahead in the network for the pixel classification. Figure 5
illustrates the customized decoder module for semi-dark images to optimally manipulate
the pixel information.
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Figure 5. Customized Decoder Module for Semi-dark Images.

Using the concept of atrous convolution, the updated kernel after the insertion of holes
can be calculated using
k=k+ (k—1)(d—-1) )

Equation (2) represents the calculation of the resultant filter /receptive field. k is the
resultant filter, k is the actual filter size, and d is the dilation rate [40]. For the proposed
decoder module, we used rate values of 3, 8, 13, 18, and 23 with receptive fields (updated
kernels) of 7, 17, 27, 37, and 47, respectively. However, the recent DeepLab architecture
uses dilation rates of 6, 12, and 18 with receptive fields (updated kernels) of 13, 25, and
37, respectively. These values are acquired by setting the existing filter size k equal to 3.
From these numbers, it can be expected that the DeepLab loses pixel information due to the
smaller receptive field, which was further demonstrated in the results given in Section 4.
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3.5. Statistical Class-Wise Fusion
The statistical fusion performed on the network’s output is employed in such a way

that it retains the final optimal class-wise segmentation map. For any DCNN, the objective
function is given as Equation (3).

J(8) = log P(yx;8) = Y o, 10g P(ym|x;6) 3)

where 6 is the parameter vector for DCNN. The pixel label distributions are calculated
using Equation (4).
P(ym|x;0) o exp(fu(ym|x;9)) )

where (fi (ym|x; 0)) represents the output of the DCNN at pixel m. Given this information,
our statistical module follows the steps mentioned in Algorithm 1 for the proposed parallel
DCNN for semi-dark images.

Algorithm 1: Proposed Parallel DCNN for Semi-Dark Images

Input: Initial DCNN parameters 6 V RGSNet-DeepLab (Net1), MobNet-DeepLab (Net2), Custom-DeepLab (Net3),
customization parameters b; (including expansion rate, dilation rate, and group normalization number), segmented image
I; with M pixels, pixel label set to y (1 — 1, no of classes).
Parallel DCNN Processing Steps:
1: For each image pixel m, all three DCNN variants perform f, (I) = f;(I|x;60) + b, giveny; =1 —n.
2: Every pixel (m — M, where M is the no. of image pixels) of image I receives a semantic label y; from Net1, Net2,
and Net3.
Statistical Class-wise Fusion Step:
3: Class-wise mapping is achieved using

fun[,m:m”x(fml (l>/fm2 (l>/ fmS (l>)
where f,1(1) is a class-wise label generated from Netl, f,»(1) is a class-wise label generated from Net2, and f,3(!) is a
class-wise label generated from Net3.
Output: Semantic segmentation pixel mask representing n object classes.

In particular, the final semantic segmentation masks resulting from each proposed
network component are further analyzed to capture the optimal class-wise object prediction
performance. The parallel DCNN component values are identified using the following
algorithm (Algorithm 2).

Algorithm 2: Parallel DCNN Class-Wise Fusion

Provided class-wise results of RGSNet (1 (1)), CustomDecoder-DeepLabV3+ (f2(1)), and
MobileNet-DeepLabV3+ (fiu3(1))
Compare (fu1 (1)), (fm2(1)), and (fus (1))
For each object class
If (fml(l)) > (fmZ(l)) && (fml (l)) > (fm3(l))
Store fy (1) in stack
Else If (fu2 (1)) > (fon (1)) && (fn2(1)) > (fus (1))
Store f2(1) in stack
Else If (fus (1)) > (fu1 (1)) && (fu (1)) > (fu2 (1))
Store f3(1) in stack
Create a final semantic segmentation vector by fetching the stack values

S0 XA 2

=4

The final semantic segmentation map is the result of statistical class-wise fusion based
on the maximum achieved value of the network performance.

The proposed system receives the preprocessed image in the form of locally grouped
pixels via local context segmentation to keep track of the local pixel information in the form
of super-pixels. All the DCNN hyperparameters were set to the default values, except the
group normalization parameter and the filter dilation rates. The values of these parameters
are the expansion rate t = 6, number of groups G = 16, and the dilation rates = 3, 8, 13, 18,
and 23. Parallel DCNN processing steps are performed for the identification of each pixel
label. After all the pixels obtain their class label, the results are fused to find the maximum
of each class’s accuracy. Finally, the maximum of each class is fetched to generate the final
semantic segmentation mask representing the optimal class labels for each pixel of the
semi-dark image.
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4. Experiments

In this section, we present the details of the dataset, implementation, evaluation
criteria, and finally, the experimental analysis results.

4.1. Dataset and Evaluation Metrics

For the training and testing of the proposed Unified DeepLab version, we used the
CamVid dataset [25,41]. This database was considered due to its complex nature, as it
provides images of road settings where the dynamic lightning conditions are an intrinsic
property. The dataset originally had 32 classes; however, for simplicity, we merged the
class labels and undertook our analysis based on 11 classes (namely, sky, building, pole,
road, pavement, tree, sign symbol, fence, car, pedestrian, and bicyclist). The merging
was performed solely for the purpose of inducing simplicity in the overall experiments.
However, the merging was performed based on the condition that none of the categories
were incorrectly merged. The actual categories, along with the final merged categories, are
shown in Table 2.

Table 2. Actual CamVid Classes vs. Merged Classes.

S# Merged Class Actual CamVid Dataset Class
1 Sky Sky

Bridge
Building
2 Building Wall
Tunnel
Archway

Column_Pole
TrafficCone

Road
4 Road LaneMkgsDriv
LaneMkgsNonDriv

Sidewalk
5 Pavement ParkingBlock
RoadShoulder

3 Pole

Tree

6 Tree VegetationMisc

SignSymbol
7 Sign Symbol Misc_Text
TrafficLight

8 Fence Fence

Car

SUVPickupTruck
9 Car Truck_Bus

Train

OtherMoving

Pedestrian

Child
CartLuggagePram
Animal

10 Pedestrian

Bicyclist

1 Bicyclist MotorcycleScooter

The classes/categories were merged based on visual relevance and similarity of
the base classes, such as the bicyclist merged category being based on the bicyclist and
motorcycle/scooter classes since both are two-wheeled objects. Therefore, to reduce the
network training burden, similar categories were merged.

The dataset consisted of high-quality and high-resolution images of ego-motive scenes.
The captured images were of resolution 960 x 720. Given that the emphasis of the presented
research was the optimal semantic segmentation of semi-dark images, we used the concept
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of related perceived luminance classification presented in [1] to identify only the problem
domain images. The resultant dataset contained 549 images. The filtered images were
randomly divided into training, testing, and validation sets with proportions of 60:20:20,
i.e., 329,110, and 110 images for training, testing, and validation, respectively. The random
selection of images was achieved so that none of the images was selected twice by using
MATLAB’s ‘randperm’ method. Moreover, the images were selected by ensuring that the
new random values were greater than 3, meaning that even if the random number turned
out to be close to the previous number, it was rejected. The rejection of a random number
was done to make sure none of the sequenced images were selected. The reason for not
selecting the immediate sequenced image was to ensure that no similar image with a minor
change was selected, as the data was coming from an image sequence generated from
consecutive video frames. Moreover, if the same images were selected, then the network
might not produce the desired result and end up with an overfitted model. However, as
seen in Figure 7 for all the proposed parallel networks, the training (blue line) and the
validation curves (black lines) were close to each other, implying that the network was
not overfitted. Figure 1 shows a sample raw image, along with the ground truth mask
and the respective class labels. Some of the sample images, particularly locally grouped
super-pixeled images, along with the ground truth labels, are presented in Table 3.

Table 3. Super-pixeled Images and ground truth masks in the CamVid Dataset.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

\ i I o i) o E—~ vull

720x960x3 uint 72059603 uints 720x960x3 uint8 720x960x3 uint8 720x960x3 uint

W J
o y
a1

720x960 categorical 720x960 categorical 720x960 categorical 720x960 categorical 720x960 categorical

Ground truth

4.1.1. Proposal of Novel Evaluation Criteria

For the evaluation and benchmarking of the proposed solution, we report the overall
accuracy (OA), intersection over union (IoU), and MeannBFScore.

TP + TN
OA*TP+FP+TN+FN ®)
Area of Overlap
ToU = Area of Union ©)
Mean BFScore — Area of Overlap @

Total number of Pixels

In Equation (5), TP, FP, TN, and FN represent ‘“True Positive’, ‘False Positive’, “True
Negative’, and ‘False Negative’, respectively. These criteria do not suit the scenarios where
there is a class imbalance since they produce unreliable results. Equations (6) and (7) are
better representatives of the semantic segmentation problem. In Equation (6), the ‘area of
overlap” shows the overlap between the predicted segmentation and the ground truth, and
the “area of union’ shows the union of the prediction and the ground truth. The values
range from 0-100 (no overlap to perfectly overlapped prediction). In Equation (7), the ‘area
of overlap’ is the same as in Equation (6), whereas the ‘total number of pixels’ represents
the number of pixels present in the image.

Significance of Proposed Evaluation Criteria

The existing semantic segmentation evaluation criteria have both strengths and limita-
tions. Many studies are presented in the literature regarding reasoning and applicability
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in all scenarios. The semantic segmentation score for problem-centric semantic class pre-
diction was employed due to the questionable performance of a single evaluation metric,
i.e.,, OA [42,43]. The unreliability of results is attributed to imbalanced datasets. However,
a literature analysis showed that OA can be used in accordance with the other metrics in
scenarios where the class imbalance is mitigated. To the best of our knowledge, there has
not been any evaluation metric that takes into account the information of three widely
used evaluation criteria to ensure the optimal retrieval of a pixel class. Thus, we present
a new metric of evaluation for semantic segmentation, i.e., S3core. This novel metric is a
weighted combination of the OA, IoU, and Mean BFScore. Since it is a combination of three
evaluation criteria, we named it ‘S cube core’ and it can be calculated using Equation (8).

S3core = Wy x OA + W, x ToU + W5 x Mean BFScore (8)

where Wy, W,, and W3 are the weights associated with the metrics. For the weight analysis,
we initially hypothesized randomly dividing the weights between the three evaluation
criteria but this did not help much. However, then we expanded our experimental analysis
by incrementing the weight of only one of the metrics and equally dividing the remaining
weight among the other metrics. The experimental analysis of S3core is presented in
Section 4.4, along with the recommended weights.

Experimental Protocol for Weight Identification of S3core

The existing segmentation analysis was solely based on one of the above-mentioned
evaluation criteria in Section 4.1.1. However, considering the need for accurate semantic
class identification, generalized metric evaluation criteria were required. The overall
accuracy (OA) metric failed to provide an accurate representation of the image pixel
semantics in the presence of class imbalance. However, for the situations where the class
imbalance is mitigated properly, it was found to be a useful analysis criterion. Meanwhile,
the IoU and Mean BFScore remained better representations in terms of low false positives
and false negatives. Considering these aspects, a novel semantic segmentation evaluation
criterion, namely, S3core, is presented. S3core takes into account all three of these existing
evaluation criteria and generates a generalized weighted score. The obtained score value is
applicable to all applications, where even small details of the visual scene are crucial for
the final decision. The value of S3core is calculated using Equation (8).

For the weight optimization and analysis, different manipulation strategies were used
for weight identification. A total of one thousand random weight numbers were analyzed
for each of the selected strategies. The weights were selected in such a way that the sum of
the weight values was always one for all the strategies. First, the strategy calculated the
weights using incremental values of weights for the MeanBfScore and dividing the weights
equally between the OA and IoU. The second and third strategies calculated the weights
using incremental values of the IoU and OA, respectively, and assigned equal weights to
the other two criteria in each case. The fourth strategy calculated randomized weights. The
algorithms that were used for the identification of weights are presented in Algorithms 3-5.
Another weight identification method employed was based on randomization. Here, again,
the condition that the sum of the weights, i.e., “‘W’, should not exceed 1 was imposed and
1000 different random numbers were checked for the final optimized weight proposal. The
weights in this strategy were identified using steps 4, 5, and 6 stated in Algorithm 6. For
the random value generation, the Mersenne Twister algorithm (MT19937) [44] was used,
which generates values greater than 0 and less than 1. Again, for each iteration, S3 core
values were computed.

Algorithm 3 presents the flow of the experiment for weight identification after ini-
tializing the variables. ‘W, which is the weight for the IoU, was set to 0.001 and was
incrementally changed up until reaching a value of 1; in this way, the final set of iterations
produced 1000 different weight values. Based on the value of ‘Wj}, the weights ‘W] and
‘W), were identified for each iteration using steps 4 and 5. For each iteration, the weight
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sum ‘W’ was also checked such that the sum of all weights was always one. Moreover,
for each of these weight values, the semantic segmentation performance metric (obtained
using the DCNNs) was checked to calculate the final S3core value using Equation (8). The
final semantic segmentation scores are presented in Table 9. A similar weight identification
strategy was used for the incremental MeanBfScore and OA; for detailed steps, refer to
Algorithms 4 and 5.

Algorithm 3: Incremental IoU

Initialize weights W; (weight for OA), W, (weight for IoU), W3 (weight for MeanBFScore),
and Overall_Weight W
Set W, = 0.001
Repeat until W2 ==1
Set W1= (1 - W2)/2
Set W3: Wl

W+ = 0.001

W =W; +W,+W;
IfTW>1

Break

Ju

Algorithm 4: Incremental MeanBFScore

1 Initialize weights W; (weight for OA), W, (weight for IoU), W3 (weight for MeanBFScore),
and Overall_Weight W

2:  Set W3 =0.001

3: Repeat until W3 ==1

4: Sethz(l—W3)/2

5. SetW, =W;

6: W3+ = 0.001

7 W =W; + Wy + W3

8 IfW>1

9 Break

Algorithm 5: Incremental OA

Initialize weights Wy (weight for OA), W, (weight for IoU), W3 (weight for MeanBFScore),
and Overall_Weight W

2:  Set Wp =0.001

3: Repeat until W1 ==1
4 SetWp = (1—Wjp)/2
5: Set W3 = W,
6.

7

8

9

1:

Wi+ = 0.001

W=W;+W,+W;
IfW>1

Break

Another weight identification that was employed was based on randomization. Here,
again, the condition that the sum of the weights, i.e., ‘W’, should not exceed 1 was imposed
and 1000 different random numbers were checked for the final optimized weight proposal.
The weights in this strategy were identified using steps 4, 5, and 6 stated in Algorithm 6.
For the random value generation, the Mersenne Twister algorithm (MT19937) [44] was
used, which generates values greater than 0 and less than 1. Again, for each iteration, S3core
values were computed.

The final proposed weights for S3core were based on the analysis of four thousand
different weight values. The final optimal weights were found via the incremental IoU
weighting strategy, where the numerical analysis is presented in Table 9.
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Algorithm 6: Randomized Weights

Initialize weights Wy (weight for OA), W, (weight for IoU), W3 (weight for MeanBFScore),

L Overall_Weight W and counter C
2: SetC=1

3:  Repeat until C <= 1000

4 Set Wi = 0.3%Rand()

5: Set W, = 0.3 + 0.3xRand()

6: SetWz=1— (W, + W;3)

7: C+=1

8: W=W; +W,+W;

9 IfW>1

10:  Break

4.2. Implementation Details
4.2.1. Experimental Setup

To conduct the experiments, we used a machine with the following specifications:
Intel® Core™ i7-10750 H CPU @2.60 GHz with 16.0 GB RAM on a 64-bit operating sys-
tem powered using NVIDIA GeForce GTX. The code was written in MATLAB version
R2021a, specifically using the Deep Network Designer toolbox for network design and
conceptualization. To train the system, the parameter values were set as shown in Table 4.

Table 4. Network Training Parameters.

Gradient

Parameter Solver In.mal Validation Maximum Mml.-Batch L2. . Threshold Vah(.ia’tlon Shuffle
Learning Rate Frequency Epochs Size Regularization Method Patience
Sgdm

(Stochastic E 5
Value Gradient 0.01 50 25 8 0.0001 L2 Norm 5 very
. epoch

Descent with

Momentum)

4.2.2. Handling Class Imbalance

Before training the network, we first checked the dataset statistics to identify whether
any class imbalance existed. Since class imbalance can be detrimental to the training process
due to unbiased behavior toward the dominant classes, it is imperative to identify and
mitigate the effect of class imbalance. To determine the class imbalance, we counted the
pixels by class labels. For this purpose, we used the countEachLabel method, which takes
in a datastore (images) and returns pixel labels and a count for the input datastore; the
result was named * frequency’, which is basically the average of the pixel counts. The pixel
label visualization is shown in Figure 6, and it was seen that sky, building, road, and tree
were the dominant classes, whereas pole, pavement, sign symbol, fence, car, pedestrian,
and bicyclist had smaller numbers of class labels.

To balance the class labels, we used a weighting strategy. The weighting strategy was
accomplished by identifying the median of the frequencies presented in Figure 4. The class
weights were calculated using Equation (9).

Class weight = median(frequencyy)./ frequency,, n =1,2, ... , n )

Here, n represents the number of classes and the class weight was identified using
element-wise division, through which we obtained weights for each class. The final weights
are given in Table 5.
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Figure 6. Class Distribution in the CamVid Dataset (Semi-dark Images).

Table 5. Class Weights for Handling Biased Network Training.

Class Weight Value
Sky 0.2933
Building 0.1674
Pole 4.2693
Road 0.1480
Pavement 0.5942
Tree 0.3766
Sign Symbol 4.0753
Fence 1.5294
Car 1.0000
Pedestrian 5.6283
Bicyclist 4.2795

Finally, the balanced class labels in terms of the weighting strategy were used for the
network training.

4.2.3. Training the Proposed Model Components

In this section, we report the training and validation performances that were obtained
after setting the training parameters to the values specified in Table 2. For the bench-
marking of the proposed Unified DeepLab, we trained ResNet-DeepLab, where different
components of Unified DeepLab were trained separately and the accuracy and loss curves
of each of the components are presented in Figure 7.

Figure 7a—c shows that the base ResNet-DeepLabV3+ reached the maximum validation
accuracy after 16 epochs and completed 650 iterations. Similar results were observed with
RGSNET-DeepLab and Customized Decoder-DeepLab provided that both the networks
had extra layers and customization operators at the backend. Here, we could conclude that
the memory footprint was not increased by enhancing the network architecture. Meanwhile,
the peak performance (validation accuracy) in the training cycle of MobileNet-DeepLab
was achieved after 21 epochs in 850 iterations, which was acceptable, as MobileNet is three
times deeper than ResNet-18 (refer to Section 3.3 for details). Integrating these distinct
network components, we further elaborate on the results of the proposed Unified DeepLab
in upcoming sections.
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Figure 7. DCNN Accuracy and Loss Graphs. (a) ResNet-DeepLabV3+, (b) RGSNet-DeepLabV3+, (c)
Customized Decoder-DeepLabV3+, (d) MobileNet-DeepLabV3+.
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Ablation Study

In this section, we report the individual component performance based on the class-
wise OA, IoU, and Mean BFScore for the dataset images. The results presented in Table 5 are
for the entire dataset used for the analysis. The RGSNet-based encoder successfully fetched
the small details of the visual scene, as it achieved the maximum performances for the
classes pedestrian, sign symbol, and pavement. MobileNet-ResNet achieved the maximum
accuracies for only two classes, namely, sky and pole, which can be further optimized in
later research. The Customized Decoder DeepLab variant produced the best performance
by achieving the maximum accuracies for six classes, namely, building, road, tree, fence,
car, and bicyclist. The promising performance of this customized decoded variant was
attributed to the better extraction and generalized manipulation of receptive field pixels.
Ultimately, all these DCNN network components created an optimal “Unified” semantic
segmentation solution for semi-dark images by correctly handling different aspects of the
DCNN mechanics.

In Table 6, bold numeric values show the best class-wise performer for each network
component. Moreover, the novel metric values were seen to boost the performance up to a
margin of 10% compared with the singular metric Mean BFScore (such as the classes fence
and car). Finally, the overall average for each network component was also seen to increase
by using the proposed criteria. The ablation study showed that the best performer was the
Customized Decoder DeepLab version due to its relevance with the correctly chosen rate
values, which effectively increased the FOV for the feature extraction.

Table 6. Class-wise Accuracy Analysis.

Network Metrics Class Building Pole Road Pavement Tree Sign Symbol Fence Car Pedestrian Bicyclist Average
OA 0.9408 0.7491 0.5761  0.9241 0.9028 0.8509 0.8152 0.7119 0.8612 0.8506 0.8001 0.8166
TIoU 0.9046 0.7223 0.1657 0.9161 0.6983 0.7502 0.2220 0.5180 0.7009 0.2914 0.5184 0.5825
RGSNet-
DeepLab g/{:?cr:)re 0.8723 0.5457 0.4613 0.7616 0.6879 0.6343 0.3308 0.4337  0.6020 0.4452 0.4675 0.5675
S3core 0.9066 0.6475 0.5183  0.8429 0.7952 0.7426 0.5726 0.57278 0.7316 0.6475 0.6336 0.6919
OA 0.9640 0.7621 0.6752  0.9516 0.8901 0.8523 0.7258 0.7337 0.8819 0.7703 0.7852 0.8175
ToU 0.9128 0.7343 0.1605 0.9378 0.7405 0.7474 0.3064 0.5638 0.7315 0.3551 0.5997 0.6173
MobileNet-
DeepLab lg/{:%ir;re 0.9015 0.5374 0.4609  0.8305 0.7510 0.6375 0.4291 0.5046  0.6489 0.5114 0.5943 0.6188
S3core 0.9327 0.6498 0.5676  0.8911 0.8205 0.7449 0.5772 0.6191 0.7653 0.6405 0.6896 0.7180
OA 0.9498 0.8438 0.6427  0.9519 0.8695 0.8899 0.6828 0.7604 0.8942 0.7739 0.8127 0.8247
Customized 10U 09124 08047 02115 09383 07484  0.7760 0.3663 0.6091 07558 04198 05922  0.6486
Decoder Mean 0.8913 4 0.5579 0.7706 0.4914 4 06007 1
Deeplab  BFScore . 0.6405 0. 0.8295 ) 0.6858 . 05272 0.683 . 0.6179  0.6633
S’core 0.9205 0.7422 0.5999  0.8907 0.8199 0.7878 0.5868 0.6437 0.7887 0.6870 0.7151 0.7438

To validate the results visually, Figure 8 shows the image areas where the base ResNet-
DeepLab misclassified the image pixels, whereas other variants perform better in terms of
visual results.
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Figure 8. Visual Analysis of a Tested Image. (a) ResNet-DeepLabV3+, (b) RGSNet-DeepLab,
(c) MobileNet-DeepLab, (d) Customized Decoder-DeepLab.

The image portions highlighted with pink boxes over the tested image show that
ResNet-DeepLabV3+ misclassified road (class) pixels as pavement, whereas our proposed
variants classified the pixels accurately in the corresponding regions. Table 7 shows some
more visual results of semantic segmentation over the tested images.
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Table 7. Visual Semantic Segmentation Results.

Test Case

Network

ResNet-DeepLabV3+

Customized

RGSNet-DeepLab Decoder-DeepLab

MobileNet-DeepLab

4.3. Comparison with the State-of-the-Art Method

We conducted a comparative analysis of the CamVid dataset on the base ResNet-
DeepLabV3+ against the proposed DCNN, i.e., Unified DeepLab. Table 8 shows that
Unified DeepLab performed better than ResNet-DeepLabV3+ in terms of greater class-wise
accuracy for up to seven classes out of the eleven predefined classes. Even for a sleek object,
such as a bicyclist, a greater MeanBfScore was achieved with a margin of 4%. Overall, in all
the other classes, the proposed network exceeded the existing network’s performance with
a margin of 3%. Finally, the averaged class-wise values showed that the proposed network
performed better than the existing network with margins of 3% for the overall accuracy
(OA), approximately 1% for the IoU, and 2% for the Mean BFScore.

Table 8. Class-wise Comparative Analysis with the State-of-the-Art DCNN.

Cl J . . .
Network Metrics ass Sky Building Pole Road Pavement Tree Sign Symbol Fence Car Pedestrian Bicyclist Average
OA 0.9486 0.8418 0.6557  0.9536 0.8779 0.8533 0.6782 0.7724 0.8812 0.8064 0.8261 0.8268
TIoU 0.9100 0.7976 0.1938  0.9406 0.7536 0.7625 0.399 0.5736  0.7402 0.3970 0.5937 0.6420
ResNet-
DeepLabV3+ g;esirz)re 0.8942 0.6253 0.5299  0.8348 0.7779 0.6674 0.5191 0.4978  0.6567 0.5621 0.5778 0.6494
S3core 0.9214 0.7336 0.5923  0.8942 0.8278 0.7603 0.5984 0.6350 0.7689 0.6839 0.7018 0.7380
OA 0.9640 0.8438 0.6752  0.9519 0.9028 0.8899 0.8152 0.7604  0.8942 0.8506 0.8127 0.8510
ToU 0.9128 0.8047 0.2115  0.9383 0.7484 0.7760 0.3663 0.6091 0.7558 0.4198 0.5997 0.6493
Unified M
DeepLab BFeSacr;re 0.9015 0.6405 0.5579  0.8305 0.7706 0.6858 0.4914 0.5272  0.6834 0.6007 0.6179 0.6643
S3core 0.9327 0.7422 0.6161 0.8912 0.8366 0.7878 0.6530 0.6437 0.7887 0.7253 0.7151 0.7575

Table 8 also shows the analysis results of the existing evaluation metrics versus the

proposed criteria. Again, a similar performance boost was witnessed for the state-of-the-art
semantic segmentation solution and the proposed Unified DeepLab.

4.4. Semantic Segmentation Analysis Based on S3core

The segmentation analysis was solely based on each of the above-mentioned evalu-
ation criteria. However, considering the need for accurate semantic class identification,
generalized metric evaluation criteria are required. The overall accuracy (OA) metric fails
to accurately represent the image pixel semantics in the presence of class imbalance, though
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for the situations where the class imbalance is mitigated properly, it can be a useful analysis
criterion. However, the IoU and Mean BFScore remain the better representations in terms
of low false positives and false negatives. Considering these aspects, we present a novel
semantic segmentation evaluation criterion, namely, S®core. S3core takes into account all
three of these existing evaluation criteria and generates a generalized weighted score. The
obtained score value is applicable to all situations where even small details of the visual
scene are crucial for the final decision. The value of S3core is calculated using Equation (8).
For the weight optimization and analysis, we conducted experiments using different manip-
ulation strategies for weight identification. A total of one thousand weight numbers were
analyzed for each selected strategy. The weights were selected in such a way that the sum
of the weight values was always one for each strategy. The first strategy calculated weights
using incremental values of weights for MeanBfScore and divided the remaining weight
equally between the OA and IoU. The second and third strategies calculated weights using
incremental values of the IoU and OA, respectively, and assigned equal weights for the
other two criteria in each case. The fourth strategy calculated randomized weights. The
final weight analysis is presented in Table 9.

Table 9. Comparative Analysis with S3core (different weighting schemes).

Network

S®core Weighting Scheme

Min S°core (with Weights)

Max S3core (with Weights)

ResNet-DeepLabV3+
Unified DeepLab
ResNet-DeepLabV3+
Unified DeepLab
ResNet-DeepLabV3+

Unified DeepLab

ResNet-DeepLabV3+

Unified DeepLab

Incremental MeanBFScore
Incremental MeanBFScore
Incremental IoU
Incremental IoU
Incremental OA

Incremental OA

Randomized

64

Wi=0W,=0Ws=1

66

Wi=0W,=0Ws=1

64

Wi=0,W,=1W;=0

64

Wi=0W,=1 W;=0

64.02

W = 0.0010, W, = 0.4995, W; = 0.4995

Wi =0.0010, W, = 0.4995, W3 = 0.4995
64.00
Wi =0.00008, W, = 0.48808, W3 =

72.99

Wi =0.4995, W, = 0.4995, W3 = 0.001
74.49

Wi =0.4995, W, = 0.4995, W5 = 0.001
72.99

W1 =0.4995, W, = 0.001, W3 = 0.4995
75.48

W1 =0.4995, W, = 0.001, W3 = 0.4995
82

Wi=1,W,=0W3=0

85

Wi=1W, =0 W;=0
69.38

Wi =0.29931, W, = 0.51779, W3 = 0.18290

0.51184
64.97 71.02
Randomized (%9:2%00863' Wz = 0.59849, W5 = W, = 0.2093822, W, = 0.33354, W; = 0.36708

From Table 9, it can be seen that the existing accuracies could be integrated and the
accuracy margins can likely be boosted by up to 10% if the correct weighting scheme is
employed. The maximum S®core value was attained for the incremental weighting OA scheme,
i.e., 85% for Unified DeepLab and 82% for ResNet-DeepLabV3+. However, based on the
literary survey conducted, we recommend the usage of an incremental IoU weighting scheme
as the IoU is a better representative of the semantic segmentation pixel-wise classification,
but it still incorporates the information of the OA. Hence, we propose an incremental IoU
weighting scheme, which led to boosted margins of up to 10% with the weight values
W1 =0.4995, W, = 0.001, and W3 = 0.4995 for the OA, IoU, and MeanBFscore, respectively.

5. Discussion

In this paper, we present a unified approach to solving different problematic aspects
of DCNN fundamentals. Since semantic segmentation applications are not confined to
only the autonomous vehicle industry, our proposed solution holds for all the related
applications. The comprehensive analysis was based on high-resolution images of dynamic
visual scenes that incorporated different complexities (including different-sized objects
and relatively low-luminance images). Incorporating all these complexities, the proposed
DCNN still managed to produce a high performance margin. The optimal performance
requisition pointed to the applicability of this solution to other problem domain areas, as
well where image complexities are supposed to be an intrinsic feature.



Sensors 2022, 22,5312

26 of 28

Novelty and Contributions

In our considered opinion, the novelty and contribution of this research are of moderate
nature, as highlighted below.

1.  Novel ensemble model approach

The focused solution base incorporated different network architectural changes that
were otherwise used for intelligent visual decisions (simple object detection) but not specif-
ically semantic segmentation problems. The proposed ensemble was based on a modified
model that was backed by some existing architectures. To the best of our knowledge, this
model does not exist in the current literature. Moreover, the proposed solution is expected
to benefit from various automated domain applications that require optimal information
extraction for all scenarios (irrespective of object scale, color, and luminance scenarios).

2. Novel semantic segmentation evaluation criterion

A semantic segmentation criterion was proposed as a representative criterion for
all the scenarios where data imbalance strategies are employed. Moreover, the higher
values of S3core implied a good ranking of semantic segmentation performance against
the ground truth labels and perceptual analysis. This perceptual analysis can be further
comprehensively investigated by a subjective user study. The criterion is generic in nature
and can be used by other researchers in the domain in either its current form or as a basis
to create an appropriate extension to suit the needs of semantic segmentation applications.

6. Conclusions

We provided a unified approach based on statistical class-wise fusion, bringing to-
gether different problem solutions to facilitate optimal pixel class identification in semi-dark
images. We improved the existing solution with minimal DCNN architectural changes.
The four key changes made involved the usage of the following:

(1) Preprocessed super-pixeled images, which are locally grouped pixel images that keep
track of the local contexts of images;

(2) Non-linear shortcuts followed by group normalization layers in a residual network
encoder (ResNet-18) to increase the feature representational power and normalization
to ensure improved training accuracy;

(3) A MobileNet-based encoder to increase the depth of the network for fetching fine-
grained details using a deeper but less complex network that involves 8.2 million
fewer parameters compared with the base ResNet-18 encoder;

(4) A customized pyramid decoder (customized dilated convolution layers) to provide
focused control of the receptive field and mitigate the effect of centric exploitations in
semi-dark images.

All these changes in an encoder—decoder-based DCNN provided a unified perspective
that allowed for a generalized proposed solution, i.e., Unified DeepLab. The proposed
Unified DeepLab was evaluated on the CamVid dataset and was benchmarked against
the most recent and effective state-of-the-art counterpart, namely, DeepLabV3+. Our
experimental analysis showed that the proposed DCNN outperformed DeepLabV3+ by
a margin of 3% for the overall accuracy and 2% for the Mean BFScore. Finally, we also
presented a novel evaluation criterion for a semantic segmentation score called ‘S3core” that
was based on the weighted combination of the overall accuracy, IoU, and Mean BFScore,
which further boosted the class-wise pixel performance by 10%.
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