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Abstract: Fixed-lag smoothing has been used across different disciplines for offline analysis in
many applications. With rising computational power and parallel processing architectures, fixed-lag
smoothers are increasingly integrated into online processing system with small delays. This delay
is directly related to the lag-length used in system design, which needs to be chosen appropriately.
In this work, an adaptive approach is devised to choose an appropriate lag-length that provides
a good trade-off between accuracy and computational requirements. The analysis shown in this
paper for the error dynamics of the fixed-lag smoother over the lags helps in understanding its
saturation over increasing lags. In order to provide the empirical results, simulations are carried out
over a second-order Newtonian system, single-axis attitude estimation, Van der Pol’s oscillator, and
three-axis attitude estimation. The simulation results demonstrate the performance achieved with an
adaptive-lag smoother as compared to a fixed-lag smoother with very high lag-length.

Keywords: adaptive smoother; fixed-lag smoother; Kalman filter; attitude estimation

1. Introduction

State estimation approaches for obtaining estimates from their noisy measurements
have been an active research area for decades in applications ranging across control, guid-
ance and communication. Kalman filters have been very popularly used for estimating
the state of the multi-dimensional process with an underlying assumption of Gaussian
noise. Several filtering approaches have been discussed in the literature towards estimating
the true state of a system that is non-linear and added with non-Gaussian distribution of
noise as well [1–3]. Along with this, some of the research articles have aimed at improved
estimation with uncertain system models and noise interference, such as interactive multi-
model methods [4] and smooth variable structure filter [5]. However, the ability of these
filters cannot substitute for applications that require post-processing of past information to
improve accuracy and can only be done by smoothers. Smoothing approaches have been
formulated as a specific solution to the Gaussian process and can be divided into essentially
three types: fixed-point, fixed-interval or fixed-lag smoothing [6]. Of these three smoothers,
fixed-lag smoothing is often preferred over the other two because it can process the incom-
ing data in an online fashion [7]. Fixed-lag smoothing leads to improved accuracy at the
cost of a fixed delay between measurements associated with a signal and its estimate [8].
Although early realizations of fixed-lag smoothers were unstable, this issue was later re-
solved by designing them as a finite-dimensional linear system [9]. Kim proposed finite
memory-based fixed-lag smoothers that use only the most recent finite measurements in
the window, which is less complex than the traditional fixed-lag smoother [10]. Chen et al.
proposed a smooth variable structure smoother that is based on a smooth variable structure
filter and aims at overcoming the uncertainties in the system model [11]. Recently, Alenlov
and Olsson proposed a design framework by which the particle filter’s lineage degeneracy
problem can be solved using a fixed-lag smoother [12]. In a particle filter-based smoother,
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if the lag-length is small, the forgetting tendency of the model does not kick in, whereas
if the lag-length is large, the estimate will lead to high variance. However, they cannot
be translated for the case of a simple Kalman filter-based fixed-lag smoother as the one
proposed here.

Fixed-lag smoothers have been used for identifying time-varying process models
based on input–output observations [13], vehicle side slip angle estimation [14], gravity
anomaly estimation [15,16] and pre-processing of geophysical data [17]. The fixed lag
smoothers marginalize the old data in the localization pipeline for fusing information from
different sensors such as inertial sensors, visual camera [18], ultra-wide band location
systems [19], indoor localization using multiple sensors [20], visible light positioning using
a photodiode and camera [21] and target tracking in a wireless network environment [22].
The fixed-lag smoothers have also been applied in the case of out of sequence measure-
ments to improve tracking accuracy of incoming targets and increasing the probability of
engaging targets [23]. Fixed-lag smoothing has also been popular in the field of tracking a
maneuvering target with different motion models such as constant velocity and constant
acceleration, and accordingly devise different lag-lengths based on their complexity [24].
Duong et al. applied the smoothing operation for reducing the error built up during the
integration of GNSS and camera for motion estimation [25]. The regression problem can
also be reformulated as a state estimation problem and solved using smoothers for a specific
family of covariance function wherein the computational complexity grows only by O(n)
[26,27].

Although several research works have been carried in the area of fixed-lag smoothers,
as per the authors’ knowledge, none of them are aimed at finding a suitable lag-length for
a given system model. It is hypothesized here to determine a suitable lag-length, beyond
which a marginal improvement occurs in the estimation accuracy and is therefore not
worth the computational complexity involved in going beyond this specific lag-length.
To the best of our knowledge, we provide the first mechanism of adaptively selecting
a lag-length for Kalman filter-based smoothers that varies with the system model and
noise parameter. It is a simple, yet powerful, fixed-lag smoother modification that helps in
achieving confidence in the estimated output. Similar to the filters, smoothers also have
initial errors and stochastic errors. Once the transient errors are handled with the initial few
lags, only errors due to the noise term remain, resulting in persistent errors. The dynamics
of the fixed-lag smoother error is therefore analyzed here to provide a foundation for
selecting an appropriate lag value. The task of determining suitable lag-length after which
there is only a minimal change in the trace of error covariance is the main novelty of this
work. With the help of Monte-Carlo simulation on different system models, the estimation
accuracy achieved for a smoother with adaptive lag length is found to work similar to
that of smoothers with very high lag length. The remainder of this paper is organized as
follows. In Section 2, the fixed-lag smoother equations are defined. Section 3 presents the
convergence analysis of several examples, as well as the selection of an appropriate lag
value. Finally, Section 5 concludes the paper.

2. Fixed-Lag Smoother and Its Dynamic Error

Consider a linear discrete time system given by the following equations:

xk = Fk−1xk−1 + wk (1a)

zk = Hkxk + vk (1b)

Here, xk is the system state at the kth time instant, Fk and Hk are the state transition
matrix and measurement output matrix, respectively, zk is the measurement at the kth
time instant, and wk and vk are the process and measurement noise terms, respectively,
which are assumed to be zero-mean Gaussian white-noise uncorrelated processes. Here,
Qk = E(wkwT

k ) is the process noise covariance matrix and Rk = E(vkvT
k ) is the measure-

ment noise covariance matrix.
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The fixed-lag smoother is an optimal smoother that estimates the system state at
the (k − N)th time instant given measurements until time k, and a fixed lag of N. It is
therefore desired to obtain the state estimate denoted by x̂k−N,k at each time instant, given
the measurements, i.e., z1, z2, . . . , zk. This is represented mathematically as x̂k−N,k =
E(xk−N |z1, z2, . . . , zk). The augmented state vector at the kth time instant with a window
size N includes N-lagged states represented as: Xk = [xT

k , xT
k,1, . . . , xT

k,N+1]
T . Here, xk,m is

defined as the state xk−m propagated with the identity transition matrix to time k. With this
definition, the augmented system Xk+1 = [xT

k+1,0, xT
k+1,1, . . . , xT

k+1,N+1]
T is defined as

Xk+1 =


Fk 0 · · · 0
I 0 · · · 0
...

...
...

...
0 · · · I 0


︸ ︷︷ ︸

φk

Xk +


I
0
...
0

wk (2a)

zk =
[
Hk 0 · · · 0

]︸ ︷︷ ︸
Hk

Xk + vk (2b)

The state transition matrix and the sensitivity matrix for the augmented system are
represented by Φk, andHk, respectively. These individual states in Xk are defined through
Xk = [xT

k,0, xT
k,1, . . . , xT

k,N−1]
T such that the second subscript represents the lag-length.

The Kalman filter estimate for the system is given as

X̂k+1 = ΦkX̂k + Lk(zk −HkX̂k) (3)

Here, X̂k+1 = [x̂T
k+1, x̂T

k,k, . . . , x̂T
k−N,k]

T and X̂k = [x̂T
k , x̂T

k−1,k−1, . . . , x̂T
k−N−1,k−1]

T are
the system states at the k + 1th and kth time instants, respectively. The individual elements
of the augmented system state can therefore be represented in a filtering framework for the
jth lag as

x̂k−j,k = x̂k−j−1,k−1 + Lk,j+1(zk − Hk x̂k) (4)

The matrix Lk in Equation (3) is the smoother gain matrix with each of its components,
i.e., Lk,j, corresponding to the gain matrix of the individual system states of X̂k defined as

Lk =


Lk,0
Lk,1

...
Lk,N+1

 =


FkP0,0

k HT
k

P0,0
k HT

k
...

P0,N
k HT

k

(HkP0,0
k HT

k + Rk)
−1. (5)

Here, Rk = E(vkvT
k ) is the measurement noise covariance matrix. It is seen that the

estimate of xk+1,N+1 is equal to the estimate of xk−N given the measurement up to time k.
The term Pk is the smoother error-covariance matrix which is represented by

Pk =

 P0,0
k · · · P0,N+1

k
T

...
. . .

...
P0,N+1

k · · · PN+1,N+1
k

 (6)

with each of its elements computed as

Pi,j
k = E[(xk−i − x̂k−i,k−1)(xk−j − x̂k−j,k−1)

T ] (7)



Sensors 2022, 22, 5310 4 of 15

The error-covariance matrix propagation equation for the augmented system can be
written as [28]

Pk+1 = ΦkPk(Φk −HT
k LT

k ) + Qk (8)

Substituting the Kalman gain parameters, the diagonal and off-diagonal elements of
Pk+1 for i = 1, 2, . . . , N + 1 are given by

Pi,i
k+1 = Pi−1,i−1

k − P0,i−1
k HT

k LT
k,iF

T
k (9a)

P0,i
k+1 = P0,i−1

k (Fk − Lk,0Hk)
T (9b)

Equations (2a)–(9b) describe the fixed-lag smoother for a given system, which provides
the estimate x̂k,N , i.e., the estimate of xk−N given measurements until the kth time instant.
For more details on the derivation of the fixed-lag smoother, one can refer to [28].

3. Adaptive Lag Selection Mechanism

In Ref. [7], it is stated that a lag-length should be chosen such that it achieves more
than 95% performance improvement possible with smoothing. In [29], a theoretical proof is
presented for the convergence of a linear Kalman filter in which the filter error dynamics
have a fundamental role. The a posteriori error for a Kalman filter is defined as

x̃k , xk − x̂k = xk − [Fk−1x̂k−1 + Kk(zk − HkFk−1x̂k−1)] (10)

where Kk is the Kalman gain matrix. Equation (10) can be rearranged as

x̃k = (I − Kk Hk)(xk − Fk−1x̂k−1)− Kkvk (11)

The dynamic error of the Kalman filter is shown to remain bounded if the initial estimation
error, as well as the error due to noise terms, are small [30]. The error for the estimated
state at the Nth lag can be represented as

x̃k−N,k , xk−N − x̂k−N,k (12)

Substituting Equation (4) in Equation (12), the error can be rewritten as

x̃k−N,k = xk−N − [x̂k−N−1,k−1 + Lk,N+1(zk − Hk x̂k)] (13)

This is one of the possible representations of the smoother error dynamics. On rear-
ranging, this does not yield a form similar to Equation (11), and hence the dynamics of the
smoother error over increasing lags are analyzed using the trace of error-covariance of the
smoother directly. Simulations carried out over different problems indicate that during
the initial few lags, the smoother attempts to capture information from previous lagged
estimates, and once this estimate converges, higher-lag estimates are not very helpful. It
is therefore proposed here to adapt the lag-length of the system on the basis of the trace
of error-covariance.

The lag-length of fixed-lag smoothers is generally chosen based on available sys-
tem hardware resources, but not much has been studied towards detection of a reliable
lag-length. It is well-known that the trace of the error-covariance matrix is an important
parameter to determine a scalar measure of the estimation accuracy. It is also used to indi-
cate the performance of a fixed-lag smoother with a direct relation between the increasing
lag and the decreasing trace of the error-covariance matrix. In [7], it is mentioned that a
lag-length need not be chosen that achieves more than 95% performance improvement
possible with smoothing. It is also suggested to have a lag-length that is 2 to 3 times the time
constant of a filter. However, determining the time constant of a dynamic and real-time
system is not always plausible. In this work, it is therefore proposed to use the trace of
the fixed-lag smoother error-covariance matrix, tr(Pj,k), to select an adaptive lag-length
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value in a heuristic manner. Here, Pj,k = Pj,j
k is the error-covariance of the jth lag at the kth

time instant.
The adaptive lag selection approach aims at finding the lag-length at which the tr(Pj,k)

value saturates and has insignificant changes after a specific lag-length. In order to arrive
at a suitable lag-length, the error-covariance (Pj,k) value at each lag-point is monitored for
saturation. The mechanism to detect saturation at any time instant k is defined as

| tr(Pj,k)− tr(Pj+α,k)| ≤ p tr(Pj,k) (14)

Here, Pj,k is a performance index of smoother with j lags at the kth time instant, α
a user defined lag constant, and p is a scalar parameter that defines the level at which
the algorithm should trigger saturation, indicating the percent change occurring with
increasing lag. This equation indicates a logical True when Pj,k saturates and there is not
a p % change from the jth to (j + α)th lag. The value of p needs to be chosen empirically,
as per the variation in Pj,k for the specific problem at hand, and largely depends on the noise
parameters. For the simulations carried out in this paper, values of α = 10 and p = 0.005
are selected. The saturation of the error-covariance over lags is monitored only once in a
while and repeated after a few instants for dynamic systems. The adaptive lag-length value,
denoted AL, determined through this process remains fixed for a system with constant
process and measurement noise covariance values, and can be used to determine a suitable
lag value as described in Algorithm 1.

Algorithm 1: Adaptive lag selection mechanism.
Input: Error-covariance matrix, Pj,k, saturation parameter, p, constant, α
Output: Adaptive lag, AL
while j < max lags do

if |Pj,k − Pj+α,k| ≤ p. |Pj,k| then
Store AL = jth lag-length;

else
break;

end
end

4. Simulation Results

The proposed adaptive lag smoother (ALS) scheme of arriving at a suitable lag-
length automatically is applied to the problem of: (a) a second-order Newtonian System,
(b) single-axis attitude estimation, (c), Van der Pol’s oscillator, and (d) three-axis attitude
estimation.

4.1. Second-Order Newtonian System

A simple second-order Newtonian system is represented as

xk+1 =

[
1 ∆t
0 1

]
xk +

[
∆t2

2
∆t

]
(uk + wk) (15a)

yk =
[
1 0

]
xk + vk (15b)

where ∆t is the sampling interval. The system states x(1), position, and x(2), velocity, are
commanded by an external acceleration input uk with an acceleration noise wk, which is a
zero-mean Gaussian white-noise process with standard deviation σw. The process-noise,
wk, is defined as wk = [∆t2

2 ∆t]T ũk.

wk =

[
δt2

2
δt

]
ũk (16)
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The process-noise covariance, Qk, is given by

Qk =

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]
σ2

w (17)

The fixed-lag smoother is applied on this system with ∆t = 0.1, σw = 2, measurement
noise variance of 4, initial state vector x1 = [0 0]T and initial error-covariance of I2×2.
A total lag-length of N = 200 is used to compare the ALS to the fixed-lag smoother with
lag = 200. The simulation values are adapted from the fixed-lag smoothing problem
described in the example 9.1 from [28].

The trace of the error-covariance matrix, tr(P) for the fixed-lag-smoother at k = 300, is
plotted in Figure 1a. It can be seen that the trace of error covariance decreases exponentially for
the initial few lags, after which it remains nearly constant. The tr(P) is a performance indicator
for the smoother that helps in understanding that the lag-length beyond a specific point will not
lead to any significant improvement in the estimation accuracy. In order to arrive at this specific
lag point, a saturation detection mechanism as described in Equation (14) is used.
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Figure 1. (a) Saturation of the error-covariance over increasing lag at k = 300, (b) Varying adaptive
lag-length over time.
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During the initial lags, the AL value varies and then saturates to a value that remains
nearly constant, as seen in Figure 1b. Figure 1b plots AL for the case of process noise equal
to 2 and measurement noise equal to 4 at different time instants. The performance indicator
of the ALS is quantitatively measured by taking the ratio of tr(P) with the highest lag in the
simulation, N, to that of the tr(P) with the adaptive length parameter, AL, represented as

% improvement =
tr(PN,k)

tr(PAL,k)
(18)

The performance level achieved through the ALS as compared to a smoother with
lag-length equal to 200 for different combinations of acceleration and measurement noise is
tabulated in Table 1. The percent improvement metric is the mean of the percent improve-
ment computed at all time instants for a smoother with AL as compared to a smoother
with 200 lags. In order to verify the efficacy of the ALS approach, the sum of absolute error
between the truth and adaptive lag smoother estimate is compared with the error between
the truth and highest lag smoother estimate obtained in the simulation. The error value
averaged over the total time is plotted for different instants using a 100 Monte-Carlo run
simulation, with results shown in Figure 2. The average absolute error between the highest
lag smoother and ALS is nearly the same at different instances, and is a strong indicator of
the performance achieved through an ALS as compared to a very high lag smoother.

Table 1. Performance comparison of ALS with different noise levels for position estimation system.

Acc. Noise Meas. Noise % Improvement AL

2 4 90.32 67

10 4 99.06 34

2 10 92.03 99

10 10 99.37 50

0 20 40 60 80 100

Instances

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

A
v
e
ra

g
e
 E

rr
o
r

Lag = 200

Adaptive Lag

Figure 2. Error comparison between highest lag smoother and adaptive lag smoother.

4.2. Single-Axis Attitude Estimation

The single-axis attitude estimation problem involves using attitude angle measure-
ments and gyro rate information, which is simulated to test the validity of the ALS approach.
The attitude angle and gyro observations are corrupted with noise and error sources that
are compensated using a Kalman filtering approach. The attitude rate, θ̇, is related to the
gyro measurement, ω̃, by

θ̇ = ω̃− b− ηv (19)
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where b is the random drift rate and ηv is a zero-mean Gaussian white-noise process
with spectral density given by σ2

v . The random drift rate is modeled as ḃ = ηu; where
ηu is a zero-mean Gaussian white-noise process with spectral density σ2

u . Synthetic mea-
surements are created by using a constant angle rate of 0.0011 rad/sec and a sampling
interval of 1 s. The noise parameters used in the simulation are σn = 30 × 10−5 rad,
σu =

√
10× 10−7 rad/s3/2, σv =

√
10 × 10−4 rad/s1/2, and the initial error-covariance

matrix is set to P0 = diag(
[
1× 10−4 1× 10−12]). The simulation set-up is adapted from

example 3.3 of [6].
Figure 3a plots the variation for the trace of the error-covariance, tr(P), with increasing

lags at the k = 300 time instant. The tr(P) parameter saturates after a few lags, thereby indi-
cating that very high lags are not required, and only adds to the computational complexity.
Figure 3b plots the value of AL obtained through the adaptive lag selection approach. It is
interesting to note here that the ALS settles down with a lag value and remains the same
for rest of the simulation period. The performance level achieved for a fixed-lag smoother
with lag equal to 200 is compared to that of the ALS by taking the ratio of the tr(P) at
specific lag levels for a particular time instant, k = 300, and is depicted in Table 2. These
simulations indicate that it is worthwhile to stop the smoother at a specific lag point rather
than extending it to large lag-lengths and increasing the computational complexity.
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Figure 3. (a) Saturation of the error-covariance over increasing lag at k = 300, (b) varying adaptive
lag-length over time for single-axis attitude estimation.
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Table 2. Performance comparison of ALS for single-axis attitude estimation with different noise levels.

σn (rad) σu (rad/s3/2) σv (rad/s1/2) % Improvement AL

3× 10−5
√

10× 10−8
√

10× 10−5 99.87 3

3× 10−5
√

10× 10−9
√

10× 10−6 99.39 25

30× 10−5
√

10× 10−8
√

10× 10−5 99.51 25

30× 10−5
√

10× 10−7
√

10× 10−4 99.91 3

4.3. Van der Pol Oscillator

Van der Pol’s oscillator equation is a nonlinear differential equation proposed by Van
der Pol while experimenting with the oscillations in a vacuum tube. This problem has
special characteristics of an oscillating error-covariance over time, unlike other problems
that have a monotonically decreasing error-covariance. A generic representation of this
nonlinear equation is given as

mẍ + 2c(x2 − 1)ẋ + kx = 0 (20)

where m is the mass, c is the damping parameter and k is the spring parameter. Converting
this to a state-space formulation with x = [x ẋ]T gives

ẋ1 = x2 (21a)

ẋ2 = −2(c/m)(x1
2 − 1)x2 − (k/m)x1 (21b)

The linearized model matrix, F and G are given by

F =

[
0 1

−4(c/m)x̂1 x̂2 − (k/m) −2(c/m)(x̂2
1 − 1)

]
, G =

[
0
1

]
(22)

The measurement output is position only, so H = [1 0]. Parameters m = c = k = 1
are assumed here with an initial condition of x0 = [1, 0]T . A sampling interval of 0.01 s
and measurement noise standard deviation of 0.01 are used, The synthetic states are
generated for 30 s. The model parameters for the extended Kalman filter are assumed to be
m = 1, c = 1.5, and k = 1.2, introducing an error in the system model, which is overcome
by tuning the process-noise covariance matrix. This process-noise covariance matrix is set
to be Q = diag([0 0.2]), and the initial error-covariance is set to P0 = 100I2×2.

A plot of the varying trace of the error-covariance value over increasing lags at
k = 300 is shown in Figure 4a. The trace of error-covariance value saturates after a few
lags and remains constant thereafter, indicating no major change once a specific lag has
reached. However, the AL value keeps changing with time in a cyclic fashion and does
not remain constant unlike other cases. This is due to the time-varying error-covariance
of the nonlinear Van der Pol system over time, and is most likely due to the observability
of the associated nonlinear nature of this problem. Table 3 compares the performance of
the ALS approach with that of the highest lag smoother N = 200 for different combination
of process and measurement noise. In this case, the AL value keeps varying between
minimum and maximum lag-lengths, and it is recommended here to choose the maximum
lag-length for the complete duration for better performance.
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Figure 4. Adaptive lag smoother analysis for Van der Pol Oscillator. (a) Varying trace of the error-
covariance with increasing lag at k = 300. (b) Varying adaptive lag-length over time.

Table 3. Performance comparison of ALS for Van der Pol simulation.

Proc. Noise Meas. Noise % Improvement AL

0.2 0.01 99.52 [15–24]

0.05 0.01 99.41 [20–34]

0.2 0.05 98.33 [29–35]

0.05 0.05 98.78 [38–53]

The experimentation carried out here proves the efficacy of ALS as compared to very
high lag-length fixed lag smoothers.

4.4. Three-Axis Attitude Estimation

The ALS approach is now tested on the three-axis attitude estimation problem. This
problem is nonlinear in nature, which provides a realistic example. The attitude matrix,
A, maps from the reference frame to the vehicle body frame according to Ar, where r is a
component vector given with respect to the reference frame. The attitude is subsequently
parameterized by the quaternion q. The quaternion is a four-dimensional vector defined as
q = [$T q4]

T , defined as

q ≡
[

$
q4

]
(23)

with $ ≡ [q1 q2 q3]
T = e sin(ϑ/2) and q4 = cos(ϑ/2),

$ ≡ [q1 q2 q3]
T = e sin(ϑ/2) (24a)

q4 = cos(ϑ/2) (24b)

where e is the unit Euler axis and ϑ is the rotation angle [31]. A quaternion parameterizing
an attitude satisfies a single constraint given by ‖q‖ = 1. In terms of the quaternion, its
associated attitude matrix is given by

A(q) =
(

q2
4 − ||$||2

)
I3×3 + 2$ $T − 2q4[$×] (25)

where I3×3 is a 3× 3 identity matrix. The matrix [$×] is the standard cross-product matrix
with

[$×] ≡

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (26)
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With the attitude parameterized by the quaternion q, the physical model is then the
quaternion kinematics, given by

q̇ =
1
2

Ξ(q)ω =
1
2

Ω(ω)q (27)

where ω is the angular rate vector and

Ξ(q) ≡
[

q4 I3×3 + [$×]
−$T

]
(28a)

Ω(ω) ≡
[
−[ω×] ω

−ωT 0

]
(28b)

Ξ(q) ≡
[

q4 I3×3 + [$×]
−$T

]
(29)

Attitude estimation typically consists of combining the physical model with sensor
measurements in order to calculate an attitude trajectory that is, in some sense, stochastically
optimal. In addition to attitude sensing hardware, a three-axis gyro is employed to obtain
angular rate information. The gyro output ω̃ is governed by

ω̃ = ω + b + ηv (30a)

ḃ = ηu (30b)

where the vector b is the gyro drift, and the vectors ηv and ηu are assumed to be zero-
mean, Gaussian white-noise processes with spectral densities given by σ2

v I3×3 and σ2
u I3×3,

respectively. The covariance of w ≡ [ηT
v ηT

u ]
T

w ≡
[

ηv
ηu

]
(31)

is given by
E{w(t)wT(τ)} = Q(t)δ(t− τ), (32)

where the spectral density Q(t) is then given by

Q(t) =
[

σ2
v I3×3 03×3
03×3 σ2

u I3×3

]
(33)

where 03×3 denotes a 3× 3 matrix of zeros. The three-axial attitude estimation problem is
based on using the quaternion kinematics model, which is represented as:

q̇ =
1
2

Ω(ω)q (34)

A multiplicative quaternion approach is used to preform the quaternion linearization.
The error-quaternion, denoted by δq = [δρT δq4], is obtain using δq = q ⊗ q̂, where
q̂ is the estimated quaternion, and ⊗ denotes quaternion multiplication. Considering
the multiplication quaternion correction, the linearized form of the derivative of error-
quaternion is given by

δρ̇ = −[ω̂×]δρ +
1
2

∆ω (35a)

δ̇q4 = 0 (35b)

Here, δρ̇ and δq̇4 are the derivative of the vector and scalar component of the quater-
nion, respectively. Since the derivative of the scalar error-portion is zero, then only the
vector needs to be considered to develop the EKF, which leads to the multiplicative EKF
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(MEKF) [32,33]. Substituting ∆ω = ω − ω̂ = −(∆b + ηv), where ∆b = b − b̂, into
Equation (35a) yields a simplified form of linear equations that can be used in EKF:

δα̇ = −[ω̂×]δα− (∆b + ηv) (36)

where δα = 2δρ is the vector of the first-order roll, pitch and yaw angle errors. This is
equivalent to the EKF error model ∆ẋk = Fk∆xk + wk where ∆xk = [δαk ∆bk]

T and

Qk =


(

σ2
v ∆t + 1

3 σ2
u∆t3

)
I3×3 −

(
1
2 σ2

u∆t2
)

I3×3

−
(

1
2 σ2

u∆t2
)

I3×3
(
σ2

u∆t
)

I3×3

 (37)

Measurements are assumed to be the quaternion with noise. More details of the MEKF
can be found in [34].

In order to generate the true attitude, an object is considered to be rotating about
its y-axis, and the attitude angles are corrupted by the measurement noise, each with a
variance of σ2

n = 8.7266× 10−7 rad2. The noise parameters used for the gyro measurements
are σu =

√
10× 10−10 rad/s3/2 and σv =

√
10× 10−7 rad/s1/2. The initial covariance for

the attitude error is set to Pa
0 = 0.12 I3×3 deg2 = 3.0462× 10−6 I3×3 rad2, and the initial

covariance for the drift is set to Pb
0 = 0.22 I3×3 (deg/h)2 = 9.4018× 10−13 I3×3 (rad/h)2.

These values are taken from example 7.1 in [6]. The output of the adaptive lag smoother is
compared with that of the output of the smoother with the highest lag considered in this
simulation, which is 100. As seen in Table 4, the output of the adaptive lag smoother is very
similar to that of the highest lag smoother, and achieves a performance greater than 99% in
most of the cases. The smoother saturates at a specific lag-length, after which not much
change occurs in the error-covariance. A plot of varying adaptive lag-length, AL, over time
is shown in Figure 5b. The adaptive lag-length varies during the initial time instant, after
which it is generally found to settle down to a specific lag-length.
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Figure 5. Parameter saturation and varying adaptive lag-length. (a) Saturation of parameter value
over increasing lag at k = 300. (b) Varying adaptive lag-length over time.

Table 4. Performance comparison of ALS with different noise levels for three-axis attitude estimation
system.

σn (rad) σu (rad/s3/2) σv (rad/s1/2) % Improvement AL

8.73× 10−7
√

10× 10−10
√

10× 10−7 99.33 6

8.73× 10−7
√

10× 10−9
√

10× 10−6 99.12 7

8.73× 10−6
√

10× 10−10
√

10× 10−7 99.33 25

8.73× 10−6
√

10× 10−9
√

10× 10−6 99.12 7
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It is also important here to mention that a plot of Ecov over the lag is essential to judge
the lag-length and tune the value of p accordingly. This p parameter is an indicator of
percent change that has occurred in the parameter as the lag progresses further. It has also
been found that there are cases when the error-covariance changes very gradually with
increasing lag-length. Therefore, a priori simulations are required for adapting the p value
accordingly. The simulation shown here shows the efficacy of the ALS as compared to the
fixed-lag smoothers with large lags.

5. Conclusions

In this work, an adaptive lag smoother approach is proposed that aims at achieving ac-
curacy similar to that of the highest lag smoother with the rationale of small yet appropriate
selection of lag-length. It is hypothesized here that once the suitable lag-length is obtained,
any further increase of smoothing lag will not lead to any significant improvement in
estimator accuracy. The adaptive lag smoother scheme has been tested on position estima-
tion, Van der Pol’s oscillator, and the attitude estimation problem in detail. A convincing
performance is achieved with this adaptive scheme, thereby providing a viable solution for
determining the appropriate lag-length in practice. The approach also gives a very power-
ful tool to help design fixed-lag smoothers in which the system model can vary over time.
The adaptive lag-length can be determined by running a separate subroutine and provides
the maximum number of lags required to achieve convincing performance characteristics.
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Nomenclature
xk System state at kth time instant
Fk State transition matrix at kth time instant
zk Measurement at kth time instant
Hk Measurement output matrix at kth time instant
wk Process noise at kth time instant
vk Measurement noise at kth time instant
Lk Smoother gain matrix at kth time instant
Pk Error covariance matrix for smoother at kth
Qk Process noise covariance matrix at kth time instant
Rk Measurement noise covariance matrix at kth time instant
Kk Kalman gain matrix at kth time instant
Pj

k Error covariance of jth lag at tth time instant
AL Adaptive lag
q Attitude parameterized by quaternion

ω̃ Gyroscope measurement corrupted by bias, b and noise
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