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Abstract: In a wireless sensor network (WSN), reducing the energy consumption of battery-powered
sensor nodes is key to extending their operating duration before battery replacement is required.
Message bundling can save on the energy consumption of sensor nodes by reducing the number
of message transmissions. However, bundling a large number of messages could increase not only
the end-to-end delays and message transmission intervals, but also the packet error rate (PER).
End-to-end delays are critical in delay-sensitive applications, such as factory monitoring and disaster
prevention. Message transmission intervals affect time synchronization accuracy when bundling
includes synchronization messages, while an increased PER results in more message retransmissions
and, thereby, consumes more energy. To address these issues, this paper proposes an optimal message
bundling scheme based on an objective function for the total energy consumption of a WSN, which
also takes into account the effects of packet retransmissions and, thereby, strikes the optimal balance
between the number of bundled messages and the number of retransmissions given a link quality. The
proposed optimal bundling is formulated as an integer nonlinear programming problem and solved
using a self-adaptive global-best harmony search (SGHS) algorithm. The experimental results, based
on the Cooja emulator of Contiki-NG, demonstrate that the proposed optimal bundling scheme saves
up to 51.8% and 8.8% of the total energy consumption with respect to the baseline of no bundling
and the state-of-the-art integer linear programming model, respectively.

Keywords: message bundling; energy efficiency; wireless sensor networks (WSNs); end-to-end delay;
time synchronization accuracy

1. Introduction

A typical wireless sensor network (WSN) consists of a head node with abundant
computing and power resources and a large number of resource-constrained, battery-
powered sensor nodes [1,2]. As the sensor nodes’ energy is strictly limited by the equipped
batteries, minimizing their energy consumption is critical to the operation of the entire
WSN; for instance, the lifetime of a WSN could be extended by up to 52% through the use
of energy-efficient transmission algorithms and protocols [3].

The number of message transmissions can be reduced by bundling several messages
together and transmitting them in a common data frame or packet [4,5]. As data transmis-
sion modules consume the most energy [6,7], message bundling is considered an efficient
technique for reducing the energy consumption of a sensor node [8,9]. However, message
bundling not only increases the end-to-end (E2E) delay, but also reduces the synchro-
nization accuracy [10–14]. Various optimal message bundling schemes that investigate
the relationship between message bundling and the E2E delay in the reduction of energy
consumption have been proposed. However, in most of the work, the message bundling is
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considered together with, or as part of, other protocols and processes, such as routing [8,9],
scheduling [15], and query processing [16]. Few of them focus on message bundling and
its effect on energy consumption, both directly and independently.

In [17], for the first time, we took into account time synchronization accuracy and E2E
delays in optimal message bundling, where the energy consumption is indirectly minimized
by maximizing the total number of bundled messages in a WSN through computationally
feasible integer linear programming (ILP). Unlike most of the existing work, in this study,
we purely focus on the optimal message bundling, independently from other protocols, such
as routing and scheduling. Though the indirect minimization of the energy consumption
dramatically simplifies the formulation of the optimal bundling, it cannot capture the
negative effect of message bundling on the energy consumption, i.e., a higher probability of
retransmissions due to the increased packet error rate (PER) [6]. In this paper, we formulate
the optimal bundling problem with a new objective function, thus directly modeling the
total energy consumption of a WSN, to address the issue of the optimal message bundling
scheme proposed in [17], which takes into account both the positive and negative effects of
message bundling on the energy consumption and, thereby, strikes the optimal balance
between the number of bundled messages and the number of retransmissions given the
link quality. We solve the resulting integer nonlinear programming (INLP) problem using
a self-adaptive global-best harmony search (SGHS) [18,19].

As for the verification of the energy efficiency of message bundling schemes, the direct
measurement of energy consumption through experiments with a real testbed would not be
feasible because hardware-based energy measurement is too difficult to implement due to
the significant number of modifications required for existing hardware [20,21] and the need
for a dedicated circuit for the measurement [22]. To make matters worse, the interconnection
with measurement devices—such as oscilloscopes and digital multimeters—would make it
challenging to guarantee that the targets are working under normal conditions. Emulation
can provide an alternative solution in this regard; unlike simulation, emulation is based
on software implementations (i.e., firmware in our case) that can run on original devices
(i.e., WSN motes) without any modification, so experimental results from emulation are
more convincing and credible than those from simulation. In addition, measuring energy
consumption is more straightforward with emulation than with actual hardware. Therefore,
in this paper, considering the diversity of WSN devices and the ease of measuring energy
consumption, we verify the energy efficiency of the proposed bundling scheme through
realistic experiments based on the Cooja emulator of Contiki-NG [23].

The major contribution of our work in this paper is two-fold: First, we propose
a new energy-efficient optimal message bundling scheme where we formulate the optimal
message bundling based on an objective function modeling the total power consumption
of the whole WSN. The proposed scheme, for the first time, enables us to directly minimize
the energy consumption under the joint constraints of synchronization accuracy and E2E
delay and to investigate the negative effects of message bundling—i.e., increased PER and
the number of retransmissions—on the energy consumption. We also apply the advanced
SGHS algorithm in order to solve the resulting INLP problem.

Second, we carry out a comparative analysis of the optimal bundling schemes, where
we compare the energy consumption of the three different schemes—i.e., the proposed
scheme, the ILP model of [17], and the baseline of no bundling—based on the Contiki-NG
and its Cooja emulator with eight different network topologies. We also calculate the power
consumption of the three schemes based on a numerical analysis for the verification of the
emulation results.

The rest of the paper is organized as follows: The objective function and constraints
of the optimal bundling problem are described in Section 2. The emulation process is
discussed in Section 3. The experimental results and related discussions are presented in
Section 4. Section 5 concludes our work in this paper.
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2. Energy-Efficient Optimal Message Bundling

In formulating the energy-efficient optimal message bundling problem, we consider
a WSN consisting of one head node and N sensor nodes. Each sensor node periodically
generates a measurement message with length LM during each measurement interval (MI).
The length Li of a packet bundling Γi messages at node i (i∈[0, 1, . . ., N−1]) is given by

Li = LH + Γi · LM, (1)

where LH is the length of a packet header and, if it exists, a packet footer.
If node i is not a leaf node and has λi descendant nodes, as shown in Figure 1,

the period for generating a packet bundling Γi messages should be Γi

1+λi MI from the
conservation of traffic flows [17]. Here, we assume that, at each non-leaf node, the messages
of incoming packets are unbundled first and bundled again with the measurement messages
generated at the node before being transmitted via outgoing packets.

Figure 1. Conservation of traffic flows at a non-leaf node.

2.1. Objective Function

Equation (1) suggests that the energy-saving in message bundling mainly comes
from the saved energy for Γi−1 headers. To quantify the energy consumption in message
bundling, we use the amount of energy required for the transmission of one information
bit based on the PER, i.e., the ratio of the number of unacknowledged packets to the total
number of transferred packets, which is defined as follows [6]:

Eb =
(LH + Γi · LM)

Γi · LM · (1− PER)
· ETX , (2)

where ETX is the energy consumption for transmitting one bit of data at a given output
power level PTX . ETX can be obtained via PTX

RTX
, where RTX , the transmission rate specified in

the IEEE 802.15.4 standard, is 250 kbps. In [6], the PER is empirically modeled as a function
of the signal-to-noise ratio (SNR), i.e.,

PER = α · eβ·SNR · Γi · LM, (3)

where α = 0.0128 and β = −0.15. From Equations (2) and (3), we obtain:

Eb =
ETX · (LH + Γi · LM)

Γi · LM · (1− 0.0128 · e−0.15SNR · Γi · LM)
. (4)

The energy consumption for transmitting a packet bundling Γi messages at node i is
given by
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Ei
TX = Li · Eb

=
ETX · (LH + Γi · LM)2

Γi · LM · (1− 0.0128 · e−0.15SNR · Γi · LM)
.

(5)

Given the bundling number Γi and the number of descendant nodes λi, the bundled
packet transmission interval at node i is given by Γi

1+λi MI, during which the amount of en-
ergy Ei

TX is consumed. Therefore, the average power consumption for packet transmission
at node i is given by

Pi
TX(Γ

i) =
Ei

TX
Γi

1+λi ·MI

=
(1 + λi) · ETX · (LH + LM · Γi)2

(Γi)2 ·MI · LM · (1− 0.0128 · e−0.15SNR · Γi · LM)
.

(6)

Note that the transmission of a bundled packet at a node causes the energy consump-
tion for the reception of the corresponding packet at its destination node(s); there could
be multiple destinations in the case of multicast and broadcast. However, the energy
consumption for receiving a packet could be different from that for transmitting the same
packet because the transceiver module in a typical WSN mote is designed with asymmetric
current consumption. Considering this difference in current consumption for transmission
and reception, we can obtain the average power consumption for packet reception at node i
under the assumption of a common supply voltage for all WSN nodes as follows:

Pi
RX = σ ∑

j∈C i

Pj
TX(Γ

j), (7)

where σ is a ratio between current consumption for reception and transmission (i.e., IRX
ITX

)
and C i is a set of indexes of node i’s child nodes. Therefore, the average power consumption
at node i is given by

Pi = Pi
TX + Pi

RX . (8)

As the average power consumption is stable and constant under periodic message
generation at all nodes, we can minimize the energy consumption by minimizing the
average power consumption. Therefore, we define the objective function of the energy-
efficient optimal bundling problem as the total power consumption of the network, i.e.,

Ptotal(Γ) =
N−1

∑
i=0

Pi, (9)

where Γ,
[
Γ0, . . ., ΓN−1]. Note that, if there are only unicast transmissions in the WSN,

Equation (9) can be simplified as follows:

Ptotal(Γ) =
N−1

∑
i=0

Pi
TX(Γ

i) + σ
N−1

∑
i=0

( ∑
j∈C i

Pj
TX(Γ

j))

= (1 + σ)
N−1

∑
i=0

Pi
TX(Γ

i).

(10)
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2.2. Bundling Constraints

Because 0 ≤ PER ≤ 1, the bundling number Γi in Equation (3) with the values of α
and β should satisfy the following condition:

0 ≤ 0.0128 · e−0.15SNR · Γi · LM ≤ 1

0 ≤ Γi ≤ e0.15SNR

0.0128 · LM
.

(11)

In practical implementations, the maximum bundling number is also limited by the
maximum payload length of the underlying protocols (e.g., 110 bytes in the IEEE 802.15.4
standard [24]). Therefore, we constrain the bundling number Γi as follows:

χmin ≤ Γi ≤ min
(

χmax,
e0.15SNR

0.0128 · LM

)
, (12)

where χmin is a user-defined minimum bundling number, which is typically 1, and χmax is
the maximum bundling number determined by the ultimate payload length LP,max and the
message length LM, i.e.,

χmax =

⌊
LP,max

LM

⌋
. (13)

2.3. Delay Constraints

While minimizing the energy consumption, we also need to meet the E2E delay and
time synchronization accuracy requirements for time-sensitive applications and the proper
operation of WSNs. In [17], the joint constraints of E2E delay and time synchronization
accuracy are formulated as follows:

Di
e2e ≤ min

(
Dmax

e2e , DSA
e2e

)
, (14)

where Di
e2e is the E2E delay of node i given by

Di
e2e =

L−1

∑
l=0

Γi

1 + λi ·MI, (15)

Dmax
e2e is a user-defined E2E delay requirement, and DSA

e2e is another E2E delay require-
ment translated from the minimum time synchronization interval SAmin through the
function τ(·), i.e.,

DSA
e2e = τ

(
SAmin

)
. (16)

For detailed discussions on the joint constraints of E2E delay and time synchronization
accuracy, readers are referred to [17].

2.4. Integer Nonlinear Programming Model

With the objective function and the constraints in Equations (10), (12) and (14), the
energy-efficient optimal bundling can be formulated as the following INLP problem:

minimize
Γ

Ptotal(Γ)

subject to

χmin ≤ Γi ≤ min
(

χmax,
e0.15SNR

0.0128 · LM

)
, ∀i ∈ [0, . . ., N−1],

Di
e2e ≤ min

(
Dmax

e2e , DSA
e2e

)
, ∀i ∈ [0, . . ., N−1].

(17)
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Note that, thanks to the objective function Ptotal(Γ) modeling the total power con-
sumption of the network, we can now directly minimize the energy consumption in the
optimal bundling formulated in Equation (17). The tradeoff of this direct minimization
of the energy consumption is that, unlike the formulation in [17], it results in the INLP
problem. The details of the approach to solving the INLP problem will be discussed in
Section 4.1.

3. Cooja-Based Emulation

The rapid development of emulation technologies with ever-increasing computing
power enables us to develop, run, test, and debug unmodified embedded software on
our PC from chips to independent systems and complex multi-node networks. Unlike
traditional network simulators, such as ns-2 [25] and OMNeT++ [26], an emulator can run
firmware developed for physical devices (e.g., WSN motes), which eliminates the need
for creating and maintaining separate simulation models, thereby resulting in credible
experimental results [27,28]. Contiki-NG [23] and TinyOS [29,30] are two popular operating
systems (OSs) for WSN and Internet of Things (IoT) devices that provide emulators for the
devices that they support.

Cooja is the emulator from Contiki-NG, the OS for next-generation IoT devices, which
can provide a development and testing environment for WSN/IoT devices with a pow-
erful graphical user interface (GUI) and network simulation capability [23]. Cooja com-
piles Contiki-NG to a native platform as a shared library and loads the library via Java
Native Interfaces (JNIs) to provide the loaded firmware with the same running environ-
ment as the actual devices (i.e., the emulation target). Experiments based on the Cooja
emulator can enable more realistic investigations of the effect of optimal bundling on
energy consumption than those based on network simulators. TinySim is an emulator
from TinyOS, another competitive OS designed explicitly for power-constrained sensor
nodes [29,30], but it is not comparable to Cooja in terms of features and functionalities,
which is why even TinyOS developers use Cooja to run and test firmware developed with
TinyOS. Table 1 provides a short comparison between Contiki-NG and TinyOS.

Table 1. Contiki-NG vs. TinyOS.

Contiki-NG TinyOS

Protocols IEEE 802.15.4, 6LoWPAN 1, RPL 2, and CoAP 3

Language Generic C Dedicated NesC and C

Compiler C compilers Dedicated compiler

Portability Easy Hard

Main target Industrial applications Teaching & research
1 IPv6 over Low-Power Wireless Personal Area Networks [31]. 2 Routing Protocol for Low-Power and Lossy
Networks [32]. 3 Constrained Application Protocol [33].

Though Contiki-NG and TinyOS provide similar functionalities and protocol support,
Contiki-NG has more active developer communities and abundant application scenarios
from which one can expect more comprehensive technical support. Therefore, for the
evaluation of the proposed optimal bundling algorithm, we chose Contiki-NG and Cooja.

One of the major strengths of Cooja is its ability to estimate the energy consumption
of WSN motes without the actual deployment of a WSN; there are two options in this
regard, i.e., Energest [21], a Contiki-NG time recorder for energy estimation providing
linear analysis mechanisms, and PowerTracker [34], a Cooja plugin for energy monitoring.
Of the two, because PowerTracker is tightly integrated into the Cooja emulator with the
full support of a GUI, the energy consumption calculation is mainly based on the output
from PowerTracker, while the data from Energest are used for cross-validation. As for the
emulation target, the Z1 [27,35] platform is used to obtain reliable results from the energy
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consumption calculation based on the up-to-date and detailed data from its datasheet.
Table 2 summarizes the software and hardware components for the experiments based on
the Cooja emulator.

Table 2. Experimental environment used with Cooja.

Component Description

Contiki-NG IoT OS
Energest Contiki-NG’s energy monitor

PowerTracker Cooja’s radio energy monitor
Zolertia Z1 platform WSN mote

Protocol Stack

Figure 2 shows the network protocol stack of the WSN motes based on NullNet, the
minimal network layer of Contiki-NG [36,37].

Figure 2. Contiki-NG network protocol stack.

We choose NullNet to minimize the effect of the complicated network layer protocols,
including routing and encryption, in investigating the impact of message bundling on the
energy consumption at sensor nodes, which ensures that most of the energy is used for
bundled message transmissions. Likewise, in this paper, we also choose the simple carrier
sense multiple access (CSMA) medium access control (MAC) protocol to isolate the effect
of message bundling in our investigation of the energy consumption.

4. Performance Evaluation

To evaluate the performance of the proposed energy-efficient optimal bundling algo-
rithm, in comparison with the baseline case without message bundling and the ILP model
of [17], we consider the eight topologies shown in Figure 3.

Figure 3. WSN topologies for performance evaluation.

We also assume the parameter values summarized in Table 3 for the WSN and optimal
bundling unless explicitly stated otherwise.
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Table 3. Default parameter values for the WSN and optimal bundling.

Parameter MI [s] LH [byte] LM [byte] Dmax
e2e [s] DSA

e2e [s] χmin χmax SNR [dB] ETX [mJ/byte]

Value 1 23 ∗ 10 † 6 6 1 11 ‡ 6 0.000032 ∗∗

∗ Based on the IEEE 802.15.4 data frame, 21-byte MAC header, and 2-byte MAC footer [38]. † Based on a six-byte
timestamp, three-byte measurement data, and one-byte node ID. ‡ Based on the maximum payload size of
127 bytes [38]. ∗∗ Based on Z1’s CC2420 power levels: 3, 7, 11, 15, 19, 23, 27, and 31. In the CC2420 datasheet, at
power level 31, the TX power PTX is 0 dBm (1 mW).

4.1. Optimal Bundling Numbers

Various evolutionary algorithms (EAs)—i.e., population-based optimization algo-
rithms inspired by biological evolution—have been widely used for research on energy
conservation in WSNs; for example, a genetic algorithm (GA) was applied to an adaptive
clustering protocol to achieve optimal performance in terms of WSN lifetime in [39], particle
swarm optimization (PSO) was used for a novel coverage control to reduce the energy
consumption of WSN motes in [40], and a social spider optimization (SSO) algorithm was
proposed for a clustering a sensor network in [41]. To solve the INLP model formulated in
Equation (17), we use SGHS, an improved version of the harmony search (HS) algorithm.
HS is a novel intelligent optimization algorithm inspired by the process of improvisation
of music performed by an orchestra and has the following advantages over the popular
GAs [42,43]:

• HS algorithms are simple, easy to implement, and based on decimal encoding,
while GAs mostly use binary encoding and, thereby, suffer from the Hamming Cliff
problem [44].

• HS algorithms make the most of both local and global information and can store
individual optimal solutions.

• It is convenient to mix HS algorithms with other optimization methods to construct
better algorithms.

HS algorithms, however, cannot achieve optimal performance consistently. Therefore,
SGHS—which is based on two other variants of HS, i.e., improved HS (IHS) and global-best HS
(GHS)—employs a new improvisation scheme and an adaptive parameter tuning method [18,19].
The parameter values of SGHS for optimal bundling are summarized in Table 4.

Table 4. Parameter settings of SGHS for optimal bundling.

Parameter Value Description

f un Ptotal Objective function

x Γ Vector of bundling numbers

A – Constraints matrix (i.e., A·x ≤ limit) according to Equation (15)

limit 6 Delay constraint (i.e., min
(

Dmax
e2e , DSA

e2e
)
)

lb, ub 1, 10 Lower/upper bounds (i.e., χmin, χmax)

NI 9000 The number of improvisations (iterations)

HMS 2000 Harmony memory size

HMCRm 0.2 Average harmony memory considering rate

PARm 0.2 Average pitch adjusting rate

BWMax 6 Bandwidth upper bound

BWMin 1 Bandwidth lower bound

Based on these parameter values, we obtain the optimal bundling numbers in Table 5
for the eight topologies shown in Figure 3.
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The results in Table 5 show that the bundling numbers from the proposed INLP
and those from [17] are different for the 1-ary tree topologies (also called parking lot
topologies [45]) of T2, T4, T6, and T8, but are identical for the other tree topologies of
T1, T3, T5, and T7. As the objective function in the INLP (i.e., Equations (6) and (10)) can
take into account both the positive and negative effects of message bundling on energy
consumption, the INLP results in a bundling of numbers that are more evenly spread than
those with the ILP as the height of the tree increases. The energy consumption with the
different bundling numbers for the 1-ary trees is analyzed in Section 4.2.

Table 5. Optimal bundling numbers.

Topology INLP (Equation (17)) ILP [17]

T1 6, 6 6, 6

T2 4, 4 6, 3

T3 6, 4, 4 6, 4, 4

T4 6, 4, 2 6, 6, 1

T5 6, 4, 4, 4 6, 4, 4, 4

T6 4, 4, 3, 2 6, 6, 3, 1

T7 5, 5, 5, 5, 5 5, 5, 5, 5, 5

T8 5, 6, 3, 3, 1 5, 6, 6, 1, 1

4.2. Energy Consumption

To investigate the effect of message bundling in a realistic environment with infor-
mation on the different operation modes of specific hardware platforms, we measured
the energy consumption of WSN nodes based on experiments on a directed graph radio
medium (DGRM) [46,47] using a Cooja emulation, where the Z1 mote [35] was selected as
a target device for all of the nodes. The current consumption at different states of the Z1
mote is summarized in Table 6.

Table 6. Current consumption at different states of the Z1 mote [35].

State Off Down Idle Radio RX Radio TX

Current <1 µA 20 µA 426 µA 18.8 mA 17.4 mA

During the emulation experiments, we did not consider other power-saving mecha-
nisms, such as sleep/wake-up scheduling [48], but used only the two active states of “Radio
RX” and “Radio TX” to focus on the effect of message bundling on energy consumption.
In this case, the energy consumption of the node can be calculated from the two different
operating modes of transmission (TX) and reception (RX) as follows:

Ei = V·ITX ·TTX + V·IRX ·TRX , (18)

where V is the common supply voltage (i.e., 3 V), and IOP and TOP (OP∈[TX, RX]) are the
current and the period of each operation mode, respectively. The total energy consumption
is given by

Etotal =
N−1

∑
i=0

(V·ITX ·TTX + V·IRX ·TRX). (19)

Based on Equation (19), Table 6, and the experimental log files from PowerTracker, we
could calculate the total energy consumption for each topology under different message
bundling schemes.

The emulation experiments ran for 1 h in emulation time with the optimal bundling
numbers from INLP and ILP summarized in Table 5, whose total energy consumption
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results for T2, T4, T6, and T8 are shown in Figure 4; the total power consumption for the
case of no message bundling is also shown as a baseline.

The emulation results confirm that, while both schemes could save a significant
amount of energy compared to the baseline, the proposed INLP outperformed the ILP
overall. Comparing the emulation results with the mathematical ones shown in Figure 5,
which are for total power consumption and based on Equation (10), we can observe that
both results show similar trends, indicating that Equation (10) models the total power
consumption well under a realistic environment.

T2 T4 T6 T8
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Figure 4. Total energy consumption based on the Cooja emulation.
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Figure 5. Total power consumption based on Equation (10).

To quantify the energy savings of a message bundling scheme with respect to the
baseline of no bundling, a performance measure ηbase was defined as follows:

ηbase ,
Etotal

base − Etotal
scheme

Etotal
base

=
Etotal

base − Etotal
scheme

Etotal
base

. (20)

To further analyze the relative energy savings of INLP in comparison to ILP, we also defined
another performance measure ηILP as follows:

ηILP ,
Etotal

ILP − Etotal
INLP

Etotal
ILP

=
Etotal

ILP − Etotal
INLP

Etotal
ILP

. (21)

Table 7 summarizes the total energy consumption saved by the proposed optimal message
bundling scheme in comparison to the baseline (no bundling) and the ILP model of [17].
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Table 7. Summary of the energy saved by the proposed optimal message bundling scheme (INLP)
with respect to the baseline (no bundling) and the ILP model [17].

Topology
w.r.t. Baseline (No Bundling) w.r.t. ILP [17]

Saved Energy [mJ] ηbase [%] Saved Energy [mJ] ηILP [%]

T2 0.9030 51.8 0.0058 0.6862

T4 2.1152 50.6 0.1976 8.7295

T6 3.9040 51.1 0.1463 3.7663

T8 6.0804 50.2 0.5811 8.7922

The results clearly show that message bundling could significantly save the total
energy consumption for the 1-ary tree topologies. Of the two bundling schemes, the total
energy consumption for the proposed optimal bundling scheme based on INLP is smaller
than that for the state-of-the-art one based on ILP in all the cases considered. Overall, the
proposed bundling scheme can save up to 51.8% and 8.8% of the total energy consumption
with respect to the baseline of no bundling and the bundling based on ILP, respectively,
as shown in Table 7. As discussed before, this is because the proposed optimal bundling
scheme can take into account both the positive and negative effects of message bundling
on the energy consumption during the optimization thanks to the objective function given
in Equation (10). These results demonstrate the importance of striking the optimal balance
between the positive and negative effects of message bundling, which is further discussed
with the results of the number of transmissions in the following section.

4.3. Number of Transmissions and End-to-End Delay

Unlike the ILP model of [17], the effect of packet retransmissions due to packet errors—
especially on a link with a lower SNR—is taken into account in the objective function of
the proposed INLP model through Equations (2)–(5). This effect of packet retransmissions
is also properly captured in the Cooja emulation thanks to the Contiki-NG CSMA MAC
protocol. Table 8 summarizes the average number of transmissions (including the original
transmission) at the MAC layer.

Table 8. Average number of transmissions at the CSMA MAC layer.

Topology
Bundling Scheme

ILP [17] INLP

T2 1.3007 1.3333

T4 1.2911 1.2837

T6 1.3080 1.2624

T8 1.4684 1.3778

Except for the simplest topology of T2, INLP results in a lower number of transmissions
than that with ILP. The difference between the two bundling schemes increases as the
number of nodes increases; the difference in the average number of transmissions is 0.0906
for T8 compared to 0.0074 for T4. This difference in the number of transmissions is better
illustrated through its distribution for the most complicated topology of T8, as shown in
Figure 6.
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Figure 6. Distribution of the number of transmissions for T8: (a) ILP [17] and (b) INLP.

Note that the mote output module of the Cooja emulator can display the E2E delay
of each node. We observe that the requirement of user-defined synchronization accuracy,
which is translated into the E2E delay of 6 seconds, is met for all of the cases considered, as
shown in Table 9.

Table 9. End-to-end delay performance.

Topology Bundling Scheme
E2E [ms]

Max. Min. Avg.

T2 ILP 2312 64 1122
INLP 3352 72 1650

T4 ILP 4352 88 2357
INLP 1344 72 647

T6 ILP 4440 104 2375
INLP 3368 88 2261

T8 ILP 5184 168 2519
INLP 2520 152 1294

4.4. Discussion

The results of energy and power consumption based on Cooja emulation and Equa-
tion (10), respectively, clearly show the importance of taking into account the negative
effects of message bundling—including increased PER and the number of retransmissions—
as well as its positive effects. Thanks to the objective function that considers both the
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positive and negative effects of message bundling on the energy consumption, the pro-
posed energy-efficient optimal bundling scheme can save more energy than the bundling
based on ILP, which focuses only on the positive effects of message bundling.

The same results of energy and power consumption also show that Equation (10),
based on the empirical model of the amount of energy required for the transmission of
one information bit based on PER [6], captures the effect of packet retransmissions due to
packet errors well; as discussed in Section 4.2, the results based on the Cooja emulation
employing the CSMA MAC protocol match well with those based on Equation (10).

Note that, though the energy consumption measurement with the Cooja emulation
has many advantages over that with actual hardware, as mentioned in Section 1, the
results of energy consumption presented in Section 4.2 should be interpreted appropriately;
the numerical results based on Equation (10) verify those based on the Cooja emulation
by providing similar trends, but they cannot completely guarantee the accuracy of the
energy consumption measurement with the Cooja emulation in comparison with that with
actual hardware. In this regard, the energy consumption results presented in this section
are to be interpreted as the relative performance of the bundling schemes, but not the
absolute performance.

5. Conclusions

In this paper, we proposed a new energy-efficient optimal message bundling scheme
for WSNs. Unlike the ILP model of [17], where the energy consumption is indirectly
reduced by maximizing the message bundling number, the proposed scheme directly
minimizes the power consumption of sensor nodes by considering relayed traffic from
descendant nodes, as well as self-generated traffic, under the same constraints of E2E delay
and synchronization accuracy. We formulated the optimal message bundling problem
based on the power consumption of the entire WSN as an INLP model, which can take
into account both the positive and negative effects of message bundling on the energy
consumption, including packet retransmissions, and used SGHS to find an optimal solution.
The experimental results based on the Cooja emulator of Contiki-NG demonstrate that
the proposed optimal bundling scheme saves up to 51.8% and 8.8% of the total energy
consumption with respect to the baseline case of no message bundling and the state-of-the-
art ILP model of [17], respectively.

As a future extension of the current work, it is worth investigating an alternative
formulation of the energy-efficient optimal bundling problem that enables analytical ap-
proaches (e.g., convex optimization), possibly with the approximation of the nonlinear
objective function, given the complexity of the INLP model based on the nonlinear objective
function for sensor nodes’ energy consumption and the solution procedure based on SGHS.
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